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Abstract— In this research, the williamson flow with heat transfer through 

the tube of compliant wall properties with slip at boundaries is analyzed analyti-

cally. An approximated theoretical model is constructed of springbacked flexible 

compliant walls pipe, chosen to move as sinusoidal wave 
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1 Introduction 

The flow of electrically oriented fluid has a lot of applications and this science deal 

with many branches. In astronomy, it helps to understand what happens in the sun, such 

as rotating solar spots, what happens inside other stars through their life cycle, and 

geology.  To reduce it in an area far from the walls of the container by magnetic fields, 

so that the temperature and pressure can be increased to values close to the correspond-

ing values within the stars and so on. Nigam and Singh [1], have studied the effect of 

heat-transfer on laminar flow among parallel flakes under the impact of transverse mag-

netic field. Attia and Kotb [2], have studied the heat-transfer with MHD flow of viscous 

fluid among two parallel flakes. The hydro-magnetic free convection flow during a po-

rous medium among two parallel plates was discussed by Massias et al. [3]. Mustafa 

[4], Researches relevant to this type are presented in the following. Pandey and Chaube 

[5] investigated the influence of flexible wall features on the couple stress fluid travel-

ling peristaltically. Hina et al. [6] investigation handled the wall properties impact on 
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the wavy flow of Maxwellian liquid through duct. Radhakrishnamacharya and Srini-

vasulu [7] took both effects of wall properties and heat transfer on the peristaltic 

transport of fluid via channel in their study. Srinivas et al. [8] studied the influence of 

several variables of wall slip, magnetic field, wall properties, and heat transfer on the 

wavy flow through channel. Also Srinivas et al. 

2 Mathematical Formulation:  

Let us consider the flow of a Williamson fluid in a channel of width h  under the 

effects of electrically applied magnetic field and radioactive heat transfer as depicted 

in (Fig. 2.1). Supposed that the fluid has very small electromagnetic force produced and 

the electrical conductivity is small. We are considering Cartesian coordinate system 

such that, (u(y),0,0) is a velocity vector in which u is the x-component of velocity and 

y is perpendicular to the x-axis. 

 

Fig. 1. Physical model 

3 Basic Equations: 

The basic equations governing for Williamson fluid are given by: 

The continuity equation is given by: 
𝜕𝑢

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 0  (1) 

The momentum equations are: 
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In the 𝑦 – direction: 

𝜌(
𝜕�̅�

𝜕𝑡̅
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅�𝑥𝑦̅̅ ̅̅

𝜕�̅�
+

𝜕�̅�𝑦𝑦̅̅ ̅̅

𝜕�̅�
−

𝜇0

𝑘
�̅� (3) 

The temperature equation is given by:  

𝜌
𝜕𝑇

𝜕𝑡̅
=
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where �̅�  is the axial velocity, 𝑇  is a fluid temperature, 𝐵0 is a magnetic field 

strength, 𝜌 is a fluid density, 𝜎 is a conductivity of the fluid, 𝛽 is a coefficient of vol-

ume amplification due to temperature, 𝑔 is a hastening due to gravity, k is a permeabil-

ity, 𝑐𝑝 is a specific heat at constant pressure, 𝐾 is a thermal conductivity and 𝑞 is a ra-

dioactive heat flux. 

The temperatures at the walls of the channel are given as: 

𝑇 = 𝑇0 at  �̅� = 0 , and   𝑇 = 𝑇1at  �̅� = ℎ (5) 

The radioactive heat flux [9] is given by:  
𝜕𝑞

𝜕𝑦
= 4𝜂2(𝑇0 − 𝑇) (6) 

The radiation absorption denoted by 𝜂. 

4 Flexibe Wall  

The governing equation of motion of  the flexible wall may be expressed as: 

𝐿∗ = �̅� − �̅�0 (7) 

where 𝐿∗ is an operator, which is used to represent the motion of stretched membrane 

with viscosity damping forces such that  

𝐿∗ = −𝑘
𝜕2

𝜕�̅�2
+𝑚1

𝜕2

𝜕𝑡̅2
+ 𝐶

𝜕

𝜕𝑡̅
  (8) 

where 𝑘 is the eiastic tension in the membrane, 𝑚1 is the mass per unit area,  𝐶 is 

the coefficient of viscous damping forces.  

The continuity of stress at �̅� = ℎ̅ and using momentum equation, yield: 
𝜕

𝜕�̅�
𝐿∗(ℎ̅) =

𝜕�̅�
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= −𝜌(

𝜕𝑢
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5 The Fundamental Equation:  

The fundamental equation for Williamson fluid given by: 

𝑺 = −�̅�𝑰 + 𝜏 (10) 

𝜏̅ = [𝜇∞ + (𝜇0 − 𝜇∞)(1 + Γ�̅̇�)
−1]𝐴1  (11) 

where �̅� is the pressure, 𝑰 is the unit tensor, 𝜏̅ is the extra stress tensor, Γ is the time 

constant, 𝜇∞ and 𝜇0 are the infinite shear rate viscosity and zero shear rate viscosity, 

then  �̇� is defined as: 

γ̇ = √
1

2
∑ ∑ �̇�𝑖𝑗 �̇�𝑗𝑖𝑗𝑖 = √

1

2
∏        (12) 

Here ∏ is the second invariant strain tensor. We consider the fundamental Eq. (11), 

the case for which Γ�̇� < 1, and 𝜇∞ = 0. We can write the component of extra stress 

tensor according to follows as: 
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𝜏̅ = 𝜇0[(1 + Γ�̅̇�)]A1  (13) 

Then 

𝜏�̅�𝑥̅̅̅̅ = 𝜏̅𝑦𝑦̅̅ ̅̅ = 𝜏�̅�𝑧̅̅̅̅ = 𝜏�̅�𝑧̅̅̅̅ = 0 (14) 

𝜏�̅�𝑦̅̅ ̅̅ = 𝜏�̅�𝑥̅̅ ̅̅ = 𝜇0[(1 + Γ�̅̇�)](�̅�𝑦 + �̅�𝑥) = 𝜇0[(1 + Γ�̅̇�)](�̅�𝑦) (15) 

6 Method of Solution:  

The governing equations of the motion, we may introduce the non-dimensional con-

ditions are as follows:  

𝑥 =
�̅�

ℎ
  , 𝑦 =

�̅�

ℎ
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𝑢

𝑈
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ℎ
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�̅�ℎ

𝜇𝑈
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𝜎𝐵0
2ℎ2

𝜇
   

 𝑊𝑒 =
Γ𝑈

ℎ
, 𝜏𝑥𝑥 =

ℎ
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ℎ
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𝜏�̅�𝑦̅̅ ̅̅ , γ̇ =

ℎ

𝑈
γ̅̇, 𝐷𝑎 =

𝑘

ℎ2

𝑅𝑒 =
𝜌ℎ𝑈

𝜇
 , 𝑃𝑒 =

𝜌ℎ𝑈𝑐𝑝

𝐾
 , 𝑁2 =

4𝜂2ℎ2

𝐾
, 𝐺𝑟 =

𝜌𝑔𝛽ℎ2(𝑇1−𝑇0)

𝜇𝑈 }
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where (𝑈) is the mean flow velocity, (𝐷𝑎) is Darcy number, (𝑅𝑒) is Reynolds num-

ber, (𝐺𝑟) is Grashof number, (𝑀) is magnetic parameter, (𝑃𝑒) is the Peclet number and 

(𝑁) is the radiation parameter.  

Substituting the Eq. (16) into the Eq. (1-4), we have  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  (17) 

𝑅𝑒
𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
[
𝜕𝑢

𝜕𝑦
+ 𝑤𝑒(

𝜕𝑢

𝜕𝑦
)2] + 𝐺𝑟𝜃 − (𝑀2 +

1

𝐷𝑎
)𝑢  (18) 

𝑃𝑒  
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2
+ 𝑁2𝜃 (19) 

−
𝑘𝑎

𝜇0𝑈ℎ

𝜕3(ℎ)

𝜕𝑥3
+

𝑚1𝑎

𝜇0𝑈ℎ

𝜕3(ℎ)

𝜕𝑡2𝜕𝑥
+

ℎ𝐶𝑎

𝜇0𝑈

𝜕2(ℎ)

𝜕𝑡𝜕𝑥
= −𝑅𝑒

𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑦
[
𝜕𝑢

𝜕𝑦
+ 𝑤𝑒(

𝜕𝑢

𝜕𝑦
)2] + 𝐺𝑟𝜃 −

(𝑀2 +
1

𝐷𝑎
)𝑢  (20) 

−𝐹1
𝜕3(ℎ)

𝜕𝑥3
+ 𝐹2

𝜕3(ℎ)

𝜕𝑡2𝜕𝑥
+ 𝐹3

𝜕2(ℎ)

𝜕𝑡𝜕𝑥
= −𝑅𝑒

𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑦
[
𝜕𝑢

𝜕𝑦
+ 𝑤𝑒(

𝜕𝑢

𝜕𝑦
)2] + 𝐺𝑟𝜃 − (𝑀2 +

1

𝐷𝑎
)𝑢 

 (21) 

𝐹1 =
𝑘𝑎

𝜇0𝑈ℎ
 , 𝐹2 =

𝑚1𝑎

𝜇0𝑈ℎ
 , 𝐹3 =

ℎ𝐶𝑎

𝜇0𝑈
 

Now, we solve the temperature Eq. (19) with boundary conditions  

𝜃(0) = 0  , 𝜃(1) = 1   (22) 

Let 

𝜃(𝑦, 𝑡) = 𝜃0(𝑦)𝑒
𝑖𝜔𝑡   (23) 

The frequency of the oscillation denoted by 𝜔. 
Substituting the Eq. (23) into the Eq. (19), we have 
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𝑃𝑒  
𝜕

𝜕𝑡
(𝜃0(𝑦)𝑒

𝑖𝜔𝑡) =
𝜕2

𝜕𝑦2
(𝜃0(𝑦)𝑒

𝑖𝜔𝑡) + 𝑁2(𝜃0(𝑦)𝑒
𝑖𝜔𝑡) 

𝜕2𝜃0

𝜕𝑦2
+ (𝑁2 − 𝑖𝜔𝑃𝑒)𝜃0 = 0   (24) 

The solution of Eq. (24), is: 

𝜃0(𝑦) = csc(𝜑) sin (𝜑𝑦)  (25) 

where 𝜑 = √𝑁2 − 𝑖𝜔𝑃𝑒 . 

Hence 

𝜃(𝑦, 𝑡) = csc(𝜑) sin (𝜑𝑦)𝑒𝑖𝜔𝑡  (26) 

The solution of Eq. (21), is: 

𝑢 = 𝐵/𝐴 +  {−(𝐵/(𝐴 (1 + )))} +  {−((𝐵 )/(𝐴 (1 +

)))} + 𝑆 ∗ (1/𝐴 {−((𝐵 )/(  (1 + ))) + (𝐵 )/(  (1 +

))}{−((𝐵 )/(1 + )) − (𝐵 )/(1 + )}2 +

 (−(({−((𝐵 )/(  (1 + ))) + (𝐵 )/(  (1 +

))}{−((𝐵 )/(1 + )) − (𝐵 )/(1 + )}2)/(𝐴 (1 +

)))) +  (−1/(𝐴 (1 + ))  {−((𝐵 )/(  (1 + ))) + (𝐵 

)/(  (1 + ))}{−((𝐵 )/(1 + )) − (𝐵 )/(1 +

)}2))  (27) 

Where 

𝐵 = 𝐺𝑟 ∗ (𝐶𝑠𝑐[ ]) 𝑆𝑖𝑛[  𝑦]  

𝐴 = 𝑀2 + 𝑅𝑒 + 1/𝐷𝑎  

7 Results and Discussion: 

We discuss the influence of heat transfer on the Magneto hydrodynamics oscillatory 

flow of Williamson fluid through a porous medium. Numerical assessments of analyt-

ical results and some of the graphically significant results are presented in figures (2-

12). We use the (MATHEMATICA-12) program to find the numerical results and il-

lustrations. The momentum equation is resolved by using perturbation technique and 

all the results are discussed graphically.  

The velocity profile of Poiseuille flow is shown in figures (2-9). (Fig.2) shows the 

velocity profile 𝑢 decreases with the increasing 𝑆. (Fig.3) illustrates the influence 𝐺𝑟 

on the velocity profiles function 𝑢 vs. 𝑦. It is found by the increasing 𝐺𝑟 the velocity 
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profiles function 𝑢 increase. (Fig.4) shows that velocity profile 𝑢 rising up by the in-

creasing influence the parameter 𝐷𝑎. (Fig.5) shows that velocity profiles decreases with 

the increase of the parameters 𝑃𝑒. (Fig.6) shows that velocity profiles decreases with 

the increase of the parameters 𝑅𝑒. (Fig.7) shows the velocity profile 𝑢 increases by the 

increasing 𝑀. (Fig.8) shows that velocity profiles decreases with the increase of the 

parameters 𝑊. (Fig. 9) shows that velocity profiles increasing with the increase of the 

parameters 𝑁. 

Based on equation (26), (Fig.10) show that influence of 𝑁 on the temperature func-

tion 𝜃. The temperature increases with the increase in 𝑁. (Fig.11 we observed that the 

influence 𝑃𝑒 in temperature 𝜃 by the increasing 𝑃𝑒 then 𝜃 increases. (Fig.12 show us 

that with the increasing of 𝜔 the temperature 𝜃 decreases. 

 

Fig. 2. Velocity profile for 𝑺 with  𝐷𝑎 = 1,𝑀 = 1,W = 1, 𝜆 = 1, Re = 1,N = 1.25,𝑀 =
1, 𝑃𝑒 = 2, 𝐺𝑟 = 2, 𝑡 = 0.5 . 

 

Fig. 3. Velocity profile for 𝑮𝒓 with  𝐷𝑎 = 1,𝑀 = 1,W = 1, 𝜆 = 1, Re = 1,N = 1.25,𝑀 =
1, 𝑃𝑒 = 2, 𝑆 = 0.5, 𝑡 = 0.5 
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Fig. 4. Velocity profile for 𝑫𝒂 with 𝑀 = 1,W = 1, 𝜆 = 1, Re = 1,N = 1.25,𝑀 = 1, 𝑃𝑒 =
2, 𝐺𝑟 = 2, 𝑆 = 0.5, 𝑡 = 0.5 .. 

 

Fig. 5. Velocity profile for 𝑷𝒆 with  𝐷𝑎 = 1,𝑀 = 1,W = 1, 𝜆 = 1, Re = 1,N = 1.25,𝑀 =
1, 𝐺𝑟 = 2, 𝑆 = 0.5, 𝑡 = 0.5 .. 
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Fig. 6. Velocity profile for 𝑹𝒆 with  𝐷𝑎 = 1,𝑀 = 1,W = 1, 𝜆 = 1, N = 1.25,𝑀 = 1, 𝑃𝑒 =
2, 𝐺𝑟 = 2, 𝑆 = 0.5, 𝑡 = 0.5 .. 

 

Fig. 7. Figure .7 Velocity profile for 𝑴 with  𝐷𝑎 = 1,W = 1, 𝜆 = 1, Re = 1, N = 1.25,𝑀 =
1, 𝑃𝑒 = 2, 𝐺𝑟 = 2, 𝑆 = 0.5, 𝑡 = 0.5 .. 
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Fig. 8. Velocity profile for 𝑾 with  𝐷𝑎 = 1,𝑀 = 1, 𝜆 = 1, Re = 1,N = 1.25,𝑀 = 1, 𝑃𝑒 =
2, 𝐺𝑟 = 2, 𝑆 = 0.5, 𝑡 = 0.5 .. 

 

Fig. 9. Velocity profile for 𝑵 with  𝐷𝑎 = 1,𝑀 = 1,W = 1, 𝜆 = 1, Re = 1,𝑀 = 1, 𝑃𝑒 =
2, 𝐺𝑟 = 2, 𝑆 = 0.5, 𝑡 = 0.5 .. 
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Fig. 10. Influence of  𝐍 on Temperature 𝛉 for 𝛚 = 𝟏, 𝐏𝐞 = 𝟎. 𝟕, 𝐭 = 𝟎. 𝟓 

 

Fig. 11. Influence of 𝐏𝐞 on Temperature 𝛉 for 𝐭 = 𝟎. 𝟓, 𝐍 = 𝟏,𝛚 = 𝟏 
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Fig. 12. Influence of 𝛚 on Temperature 𝛉 for 𝐭 = 𝟎. 𝟓,𝐍 = 𝟏, 𝐏𝐞 = 𝟎. 𝟕 

8 Concluding Remarks: 

We discuss the influence of heat transfer on magnetohydrodynamics oscillatory flow 

of Williamson fluid through a porous medium. The perturbation technique for the two 

kinds of flow Poiseuille flow and Couette flow. We found the velocity and temperature 

are analytical. We used different values to finding the results of pertinent parameters, 

namely Darcy number (Da), Reynolds number (Re), Peclet number (Pe), magnetic pa-

rameter (M), Grashof number (Gr), Weissenberg number (𝑊𝑒), frequency of the oscil-

lation (𝜔) and radiation parameter (𝑁) for the velocity and temperature.  

The key points are: 

• The velocity profiles were increased by the increasing 𝑅𝑒, 𝑁, 𝐷𝑎, 𝜆 and 

𝐺𝑟 for both the Poiseuille and Couette flow.  

• The velocity profiles decrease with the increasing 𝜔 and 𝑀 for both 

the Poiseuille and Couette flow. 

• We show that by  increasing 𝑁 and 𝑃𝑒 the temperature increasing 𝜃 

and the temperature 𝜃 decreases with the increasing 𝜔 
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