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ABSTRACT A Radio mean labeling of a connected graph G is an injective function 4 from the ver-
tex set, V(G), to the set of natural numbers N such that for any two distinct vertices x and y of G,
’—w >diam+1—d(x, y). The radio mean number of A, rmn(h), is the maximum number assigned
to any vertex of G. The radio mean number of G, rmn(G), is the minimum value of rmn(h), taken over all
radio mean labeling 7 of G. This work has three contributions. The first one is proving two theorems which
find the radio mean number for cycles and paths. The second contribution is proposing an approximate
algorithm which finds an upper bound for radio mean number of a given graph. The third contribution
is that we introduce a novel integer linear programing formulation for the radio mean problem. Finally,
the experimental results analysis and statistical test proved that the Integer Linear Programming Model
overcame the proposed approximate algorithm according to CPU time only. On the other hand, both the
Integer Linear Programming Model and the proposed approximate algorithm had the same upper bound of

the radio mean number of G.

INDEX TERMS Channel assignment problem, radio mean number, upper bound, path and cycle.

I. INTRODUCTION
Let V(G) and E(G) denote the set of vertices and the set of
edges for the graph G respectively. Hale [1] proposed the
channel assignment problem. The radio labeling of graphs
(multilevel distance labeling) is proposed by Chartrand et al.
[2] in 2001 due to the regulations for channel assignments of
FM radio stations. Zhang [3] determined the upper bounds
of the radio numbers of cycles. Liu and Zhu [4] introduced
the exact formula for the radio numbers for paths and cycles.
Badr and Moussa [5] introduced the algorithm that deter-
mines the upper bound of radio k-chromatic number for a
graph. This algorithm overcame the algorithm that was due
to Saha and Panigrahi [6]. Saha and Panigrahi [7] proposed
two radio k-coloring methods for a given graph which will
find radio k-colorings.

Ponraja et al. [8] and Ponraja and Narayanan [9] proposed
the radio mean labeling of graphs as follows: let & be an
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injective function from the vertex set, V(G), to the set of
natural numbers N where where for any two distinct vertices
x and y of the graph G, {w > diam + 1 — d (x, ),
where diam is the diameter of G and d(x, y) denotes the dis-
tance between the two vertices x and y. The number of radio
mean of h,rmn(h), is the maximum number assigned to any
vertex of G. The number of radio mean of G, rmn(G), is the
minimum value of rmn(h), taken over all radio mean labeling
h of G. Ponraja et al. [8] found the number of radio mean
for networks with diameter 3, lotus with a circle, Sunflower
networks and Helms. Ponraja and Narayanan [9] determined
the number of radio mean for some networks that are related
to cycles and complete graph. In [10] they found the num-
ber of radio mean for triangular ladder network, P,0K, (It
consists of a path P, in which every vertex x; joined to two
vertices y; and z; of K>), K,OK; (It consists of a complete
graph K, in which every vertex x; joined to two vertices y;
and z; of K») and W,,0K> (It consists of a wheel W,, in which
every vertex x; joined to two vertices y; and z; of K>»). Since
the radio mean labeling problem is derived from the radio
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k-coloring application, so, the radio mean labeling applica-
tion is NP-hard problem for a graph. In [11] the authors
introduced an application for radio frequency identification
(RFID). On the other hand, the metaheuristic approaches for
the linear wireless sensor networks were proposed in [12]

This work has three contributions. The first contribution
is proving two theorems which find the radio mean number
for cycles and paths. The second contribution is proposing
an approximate algorithm which finds an upper bound for a
radio mean number of a given graph. The third contribution
is that we introduce a novel integer linear programing formu-
lation for the radio mean problem. Finally, the experimental
results analysis and statistical test proved that the Integer Lin-
ear Programming Model overcame the proposed approximate
algorithm according to CPU time only. On the other hand,
both the Integer Linear Programming Model and the proposed
approximate algorithm had the same upper bound of the radio
mean number of G.

The rest of this work is organized as the following: the
radio mean number of cycle and path are introduced in
Section 2. An approximate algorithm which finds the upper
bound of radio mean number of a graph is proposed with
an example in Section 3. A novel integer linear programing
formulation for finding a radio mean number of a graph is
introduced with an example in Section 4. In Section 5 the
numerical results analysis and statistical test between the
Integer Linear Programming Model and the proposed approx-
imate algorithm are provided. Finally, conclusions are drawn
in Section 6.

Il. MAIN RESULTS

In this section, we introduce some basic definitions before
proving the theorems that determine the radio mean number
of cycle and path.

Definition 1: The distance from a vertex u to a vertex v is
the number of edges in a shortest # — v path in G and it is
denoted by d(u, v).

Definition 2: Let G be a connected graph, the eccentricity
e(v) of a vertex v is the distance between v and a vertex farthest
from v in G.

Definition 3: The diameter diam(G) of G is the greatest
eccentricity among the vertices of G.

Theorem 1: The radio mean number of the cycles C, is
given by:

n if3<n<7
rmn(Cy) = {LM_4J ifn>8
2 _

Proof: Let xy,x2,...,x, be cycle of length n so
diam(C,) = L%J Define a function — h:V(C,)N by the
following cases:

Case a: For 3 < n < 7, we have three subcases as the
following:

Case a.1: At 3 < n < 5, in this subcase the vertices are
labeled by the following function:

hx))=1i1<i<n.
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Case a.2: At n= 6, in this subcase the vertices are labeled
by the following function:

(1) = n—1—2i:0 <i < g—l
B ) = 2420 <j < = — 1

h (x%) =nh (x%H) =1

Case a.3: Atn = 7, we may label the vertices of C7 as the
following

) . n+1

h(xit1)) =n—1-2i;0< i< 2
. . n—1

h(xn_j) =2j+2;0< j< 7

Therefor for any pair (x;,xj) J#Fj, 1 <i<m 1 <j<n
we have:

hx))+h (xj)

d (x;, %)) + { 5

Case b: For n = O(mod4) i.en =4 k + 8, k > 0, we may
label the vertices of C, as follows:

Wz 1+[§J — 1+ dim(Cy)

h(x%) — Lh(g)=n+2k—1

h (xip2) = g—1+2i,0§i< )

NI

h(ta_j) = g—z 1+2j,0<j <

Therefore for any pair (xl-,xj) JdFj 1 <i<n1<j<n,
we have:
hx)+h (xj)

d (x,-,xj) + ’, >

Case c: n = 1(mod4)i.e n= 4k +9, k > 0, in this case the
vertices are labeled by the following function:

h(x%l) = 1, (1) =n+2k h(x) = LgJ 2
heoon) = |5 |42 = | 5]
h(xis2) = SJ 142i,0<i< SJ 1

n . ) n
ho-as) = [ 5] +a+2i05< 5] -3

—‘ > 14 SJ = 14-dim(Cy)

Therefore for any pair (xi,xj) JdF1I<i<nl<j<n,
we have:

h(x)+h (xj)

d (xi, %)) + { 5

Case d: n = 2(mod4) i.e n= 4k + 10, k > 0,, in this case
the vertices are labeled by the following function:

|2 14(3) -1 vames

h(xgﬂ) =Lh()=n+2k+1
n . . n
h (xiy2) = 5—1+2L,O§z§§—2
n . . n
h(xn—j) = 572205 <51
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Therefore for any pair (x,-,xj) Jd#Fj,1<i<nl1<j<n,
we have:
hx)+h (xj)

d (xi,xj) + ’7 2

Case e: n = 3(mod4)ien= 4k +7,k > 1, in this case the
vertices are labeled by the following function:

h(x%l) = Lh(y) =n+2k—1, h(x) = LgJ )
hean) = | 5] 420 heao) =[5

n ) ) n
h(xi+2)=bJ—1+2z, 0§z<{§ —1

|
ha-s) = | 5] +4+20 05i<[5]-3
<

—‘ > 14 SJ — 14-dim(Cy)

Therefore for any pair (x;, x;) ,i # j, < li
we have:

R e

Thus, the radio mean condition is satisfied for all pairs of
vertices. Now, we have the upper bound of the radio mean
labeling of C, as the following inequality:

n if3<n<T

rmn (C,) < rmn (h) = {2‘_4J ifn>38

n,1 <j<n,

1+dim(C,)

ey
2

Since & is an injective mapping (i.e. we can’t label two or
more vertices in V(C,) with the same natural number in N)
then the lower bound of the radio mean labeling of C, is
determined by the following inequality:

n if3<n<7
C,) > 3 2
rmn(Cy) > {_n_4J ifn>8 2
2
From Inequalities 1 and 2, we have:
n if3<n<T
Cy) = 3
rmn(Cp) \‘_n_4J ifn>8
2
Therefore, the labeling 4:V(C,) — N defined by the above
cases satisfies the radio mean condition. [ |

Theorem 2: The number of radio mean for the path graph
P, is given by:

1 ifn=1
rmn(Pp) = {2 ifn=2
2n—3 ifn>2

Proof: Let x1,x2,...,x, be path of length n — 1,
i.e. diam (P,) = n — 1. Define a function h:V(P,) — N,
as follows:
hx) =1,
h(x,—))=n—14+i,0<i<n-—1
Therefore for any pair (x;,x;) , i #j, 0 < i,j < n, we have

hx)+h (xj)

d (x,-,xj) + ’7 >
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—‘ > 14n—1=1+dim(P,)

Algorithm 1 The Upper Bound of Bound of the Radio Mean
Number of a Graph G

Input: The adjacency matrix of the graph G and the diameter
of G (dim).
Output: The upper bound of radio mean number o Gf.

Begin
1: Choose a vertex u and lab(u) = dim.
2: 5= {u.

3:Forallv € V (G) — S, compute,
temp (v)

= max {lab (1) -ceil (
tes

max {(dim+1—d (u,v), 1})}
dim

4: Let min = min,cy(G)—s {temp(v)}
5: Choose a vertex v € V (G) — S, where

temp (v) = min.

6: Assign, lab (v) = min.

7:S=SU{v

8: Repeat Step 3 to Step 6 until all vertices are labeled.
9: Repeat Step 1 to Step 7 for every verte x € V(G)x.
End

for any pair (x,x;),i # j,0 < i<n,0 < j < n. Thus,
the radio mean condition is satisfied with all pairs of vertices.
Now, we have the upper bound of the radio mean labeling of
P, as the following inequality:

rmn (P,) <rmn(h) =2n—-3 3)

Since & is an injective mapping (i.e. we can’t label two or
more vertices in V(C,) with the same natural number in N)
then the lower bound of the radio mean labeling of P, is
determined by the following inequality:

rmn (P,) > 2n—73 4

for all radio mean labeling 4. From Inequalities 3 and 4,
we have:

rmn (P,) = 2n—3,n > 3.

Therefore, the labeling h:V (P,) — N defined by the above
satisfies the radio mean condition. |

IlIl. A NEW GRAPH RADIO MEAN ALGORITHM

In this section, we propose an algorithm that determines an
upper bound of the radio mean for an arbitrary graph G. The
main idea of the proposed algorithm is that the algorithm
changes the initial vertex to improve the upper bound. The
diameter of G is assigned to some vertex. The next vertex is
labeled by the minimum possible integer. After all vertices
are labeled, the algorithm changes the initial vertex over all
vertices.

Complexity of Algorithms 1: It is clear that step 1 and
step 2 both have one operation. On the other hand, step
3 has a nested loop which has O(n?) time complexity. Three
steps (step 4, step 5 and step 6) have O (n) time complexity.
Step 7 has one operation but the last two steps (step 8, step9)
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have O(n?) and O(n*) respectively. The proposed algorithm
has the following time complexity:

20(1) 4+ 30(n) + O(1) + 0(n*) + O(n*) = O(n*)

Example 1: This example shows how to compute the upper
bound of the number of radio mean for the path P5. We sup-
pose that x; are the labels of the vertices v; suchthat 1 <i < 5.
So, Algorithm 1determines the upper bound of the number of
radio mean as the following:

It is known hat diam(Ps5) = 4. We choose a vertex x; and
lab(x;) = 4. Let S= {x1 and for allv € V (G) — S, compute,

MAX {(4+ 1 — 1,1}) s

10
MAX{4+1-2,1
temp (x3) = max 4~|—ceil< (« 1_5 ’ }>
x|

MAX{4+1-3,1
4~|—ceil< @+ 3 }>

10
MAX {(4 + 1

—4, 1})}25.
10

Let min = min,cy(G)—s {temp(v)} = 5 we choose a vertex
x2 € V(G) — S. Such that temp (xp) = 5. Give lab (x3) = 5
and S = {xl, X1

temp (x2) = max {4 + ceil (
x|

=5

=5

temp (x4) = max
X1

temp (x5) = max {4 + ceil <
X

4 + ceil (max{(4+172,1})
temp (x3) = max 10 =6
12 | 5 4 ceil (M)

10
4 + ceil max{(4?;)]73,1}
temp (x4) = max max =6
. ax{(4+1-2,1}
X2 S+ ceil | =
4 + ceil max{(4fblf4,l}
temp (x5) = max max =6
. ax{(4+1-3,1}
x2S el | = ——

Let min = minyey(G)—s {temp(v)} = 6, we choose a vertex
x3 € V(G) — S, where temp (x3) = 6. Give lab (x3) = 6 and
S= {x1,x2,x3

4 + ceil (max{(4+1 -3, 1})
temp (x4) = max 5+Cell(max (4+1- 21}) _7
X1,X2,X3
6 -+ ceil (mexlidpl=L1) 1, 1)
4+ ceil (maxligl =t
temp (xs) = max 1 5+ ceil W _7
e {@4+1-2,1}
H max -2,
6 + ceil ( MRS
Let min = min,cy()—s {temp(v)} =7, we choose a ver-

tex x4€V (G) — S, where temp (x4) = 7. Give col (x4) =7
and S= {xy, x2, x3, x4

4 + ceil (max{(4+1—4,1})

{(4+1-3,1}
5 + Cell (%

.1 ( max{(4+1-2,1}
6+C€11 S T E—

max{(4+1—1,1}
7 + ceil — 10

temp (x5) = max
X1
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TABLE 1. Description of the computing environment.

CPU Intel (R) Core (TM) i3-3217U CPU@
1.80 GHz
RAM Size 4 GB RAM

MATLAB version | R2018a (9.4.0.813654)

TABLE 2. Comparison between Standard Radio mean number,
Algorithm and Integer Linear Programming for the upper bound of radio
mean number for the path graph.

Path Graph
. Integer Linear

n Standard Proposed Algorithm Programming

RM ma®) - cpy Time | ™P) | CPU Time
1 1 - - - -
2 2 2 0.006218 2 0.18282
3 3 4 0.007495 4 0.205361
4 5 6 0.026153 6 0.215519
5 7 8 0.036307 8 0.218075
6 9 10 0.036767 10 0.2199
7 11 12 0.044163 12 0.223014
8 13 14 0.058617 14 0.224061
9 15 16 0.069201 16 0.227619
10 17 18 0.094584 18 0.228267
11 19 20 0.149424 20 0.23177
12 21 22 0.152461 22 0.236957
13 23 24 0.195782 24 0.237275
14 25 26 0.294814 26 0.238958
15 27 28 0.439655 28 0.240135
16 29 30 0.466819 30 0.245314
17 31 32 0.497643 32 0.25213
18 33 34 0.597840 34 0.252392
19 35 36 0.715104 36 0.254802
20 37 38 1.077264 38 0.256105
21 39 40 1.079634 40 0.25981
22 41 42 1.284285 42 0.26076
23 43 44 1.490910 44 0.269241
24 45 46 1.724434 46 0.27758
25 47 48 1.987043 48 0.278393
26 49 50 2.346911 50 0.281428
27 51 52 3.063563 52 0.281446
28 53 54 3.123361 54 0.284219
29 55 56 3.598407 56 0.305907
30 57 58 4.082001 58 0.317522
50 97 98 30.19102 98 0.356951

Let min = miny,cy_g {temp (v)} = 8, we choose a vertex x5 €
V (G)—S, such that temp (x5) = 8. Give col (x5) = 8and § =
{x1, x2, x3, x4, x5}. It is clear that all vertices are labeled and
rmn (Ps5) = 8.

IV. CASTING AS AN INTEGER LINEAR PROGRAMMING
MODEL

In this section, we introduce a new mathematical model
[13]-[21] for the radio mean labeling application.

Let V(G) = {vi,v2, ..., v} are the vertices of the con-
nected graph G with order n, and let D= [dj;] be the distance
matrix of G, thatis, djj = d(v;,vj) for 1 <1i,j < n. Let x; be
the labels of the vertices v; where, 1 < i<n. We define the
function F by F = x1 + x4+ ... +x,.

Minimizing F subject to the constraints

n
2
Xi + Xxj

2n ’7%—‘ > diam + 1 — d(v;, vj) for
l<i<n—1;2<j<nandi<j where

x1’x2a~'-7xn € {07 1}

VOLUME 8, 2020
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TABLE 3. Comparison between Standard Radio mean number,
Algorithm and Integer Linear Programming for the upper bound of radio
mean number for the cycle graph.

Cycle Graph
. Integer Linear

n Standard Proposed Algorithm Programming

RM ma(C) | Py Time rmn(Cy)
1 - - - - -
2 R R R R N
3 3 3 0.00388 3 0.192434
4 4 5 0.007196 5 0.197589
5 5 6 0.014144 6 0.204881
6 6 8 0.01999 8 0.208477
7 7 9 0.034647 9 0.210394
8 8 11 0.048613 11 0.210555
9 9 12 0.073299 12 0.212059
10 10 14 0.087588 14 0.217347
11 12 15 0.131079 15 0.219025
12 14 17 0.133592 17 0.219235
13 15 18 0.219834 18 0.220924
14 17 20 0.225044 20 0.222914
15 18 21 0.31399 21 0.225055
16 20 23 0.375647 23 0.225115
17 21 24 0.474422 24 0.229262
18 23 26 0.574174 26 0.231136
19 24 27 0.683679 27 0.237609
20 26 29 0.827998 29 0.243028
21 27 30 1.177096 30 0.245212
22 29 32 1.184903 32 0.248772
23 30 33 1.454892 33 0.250364
24 32 35 1.683995 35 0.253585
25 33 36 2.27022 36 0.254351
26 35 38 2.549199 38 0.256721
27 36 39 2.979835 39 0.26002
28 38 41 3.442036 41 0.2711
29 40 43 3.460139 43 0.302073
30 41 44 3.936796 44 0.302639
50 71 74 31.025694 74 0.459412

Example 2: This example shows how to formulate the
radio mean problem as the mathematical model for cycle
C3. Let x; labels the vertices v; where 1 < i < 3. Now,
this mathematical model (integer programming model) is the
following:

minf = x; + x2 + x3

subject to : 6|x1 — x| > diam + 1 —d(vi, »);
6|x1 —x3| >diam+ 1 —d(vi,v3);
6|lxy — x3| >diam+ 1 —d(v, v3)
wherexy, x3,x3 > 0

Since diam = |n/2] (the diameter of C,) then diam = 1 for
C3 and the distance matrix of the cyclic graph Cj is

011
D=|101
110
So, the final form of the above mathematical model is:
minf = x; + x2 + x3
subject to : 6|x1 —x2| > 1;6|x1 —x3| > 1;
6lxo —x3| = 1; x1,x,x3>0

MATLAB solver has 3 for the solution of the above example.

VOLUME 8, 2020

Comparison between Algorithm 1 and ILPM for Path

—¥— Algorithm 1
—&— ILPM

30} #

35

25

CPU time

20 25 30 35 40 45 50
Number of Vertices

FIGURE 1. A comparison between Algorithm 1 and Integer Linear
Programming Model according to CPU time for paths.

Comparison between Algorithm 1 and ILPM for Cycle

35
—— Algorithm 1
—&— ILPM k
30} a
25
© 20}
£
)
East
10
5F
0 —haRReRee i

0 5 10 15 20 25 30 35 40 45 50
Number of Vertices

FIGURE 2. A comparison between Algorithm 1 and Integer Linear
Programming Model according to CPU time for cycles.

V. COMPUTATIONAL STUDY

In this section, we describe our numerical experiments and
present computational results, which prove that the Inte-
ger Linear Programming Model overcomes the proposed
approximate algorithm according to CPU time only. We test
the proposed approaches on path graphs and cycle graphs.
Table 1 describes the computing environment. MATLAB
solver was used to solve the mathematical model.

In Tables 2 and 3 the abbreviations Standard RM, rmn(P},),
and CPU Time are used to denote the exact radio mean
number for path graphs and cycle graphs respectively.
Table 2 shows that the proposed Integer Linear Programming
Model and the proposed Algorithm 1 determine the same
upper bound for the number of radio mean which closes
to the exact radio mean number of the path P,. On the
other hand, Integer Linear Programming Model overcomes
Algorithm 1 according to CPU time as shown in Figure 1.
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Table 3 shows that the proposed Integer Linear
Programming Model and the proposed Algorithm 1 deter-
mine the same upper bound for the number of radio mean
which is close to the exact radio mean number of the cycle C,.
On the other hand, Table 2 and Table 3 show that the
Integer Linear Programming Model overcomes the proposed
algorithm Algorithm1 according to CPU time only as shown
in Figure 2.

VI. CONCLUSION

In this work, we propose three contributions. The first con-
tribution is that we proved two theorems which determine
the radio mean number for cycle graphs and path graphs.
The second contribution is proposing a new approximate
algorithm which finds the upper bound for the number of
radio mean for a given graph. The third contribution is that
we propose a new mathematical model for finding the upper
bound for the number of radio mean of a graph. Finally,
the experimental results analysis and statistical test prove
that the Integer Linear Programming Model overcame the
proposed approximate algorithm according to CPU time only.
In future work, we will adopt new approaches for determining
the radio mean number of large graphs. These approaches are
parallel processing and metaheuristic algorithms.
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