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Abstract 

 This paper reviews the state-of-the-art and the art-of-the-practice of the classification machine 

learning algorithms. In addition, this paper proposes a novel input-output relation classification and testing 

strategy called Minimum Maximum Strategy (MMS). Internally, MMS derives the classification rules based 

on minimum-maximum values of attributes for each class till all entries in a data set are covered at least one. 

In doing so, MMS achieves 100% classification accuracy as well as mining the data set which facilitate 

building the classification model. Moreover, unlike other existing algorithm MMS generates instances for 

testing based on the boundary value analysis. As a proof of concept,  MMS is used to build a classifier and 

test instances for the famous IRIS data set. Encouraging results are obtained from experimentations on the 

accuracy against well-known classification algorithms as well as the effectiveness of the test data generated 

by the MMS. Finally, it should be mentioned that all experiments are done using the WEKA machine 

learning tool.  

Keywords: classification; Input-output relation; machine learning; data mining; boundary value analysis; 

evaluation metrics; evaluation matrix; learning; testing. 

1. Introduction 

 Building an accurate and efficient classifiers for a data set is one of the active tasks of data mining 

and machine learning research. Usually, classification is a preliminary data analysis step for examining a set 

of cases (instances) to see if they can be grouped based on similarity to each other [1]. As such, given a 

classification and a partial observation, a statistical estimate of the unobserved attribute values and as the 

departure point for constructing new models, based on user's domain knowledge [1, 2]. The problem of 

classification is considered as NP-Complete problem (i.e., there is no unique solution). In addition, the 

prediction accuracy is considered as NP-Hard problem (i.e., there is no unique method that gives optimal 

results as far as the accuracy is concerned) [3-7]. For these reasons, many different types of classification 

techniques have been proposed, studied, and well explained in the literature. The classification algorithms 

can be classified according to their working methods into five categories: Rules, Bayesian, Decision Tree, 

Lazy, and Functions. In addition, a hybrid integration of these algorithms is also proposed  [8-10]. 

 The rule based classifier (e.g., Decision Table (DT) [11, 12], Decision Table/ Naive Bayes hybrid 

(DTNB) [12], JRip[13, 14], Fuzzy Unordered Rule Induction Algorithm (FURIA) [15], Part [16], 

Conjunctive Rule (CR)[17], ZeroR , OneR, Ordinal Learning Method (OLM) , Non-Nested Generalized 

Exemplars (NNGE), and Ripple-Down Rule learner (RIDOR) [5, 9]) uses a single attribute as the basis for 

its decisions and chooses the one that works best. Another simple technique is to use all attributes and allow 

them to make contributions to the decision that are equally important and independent of one another , the 

classification decision is based on the probability of statistical occurrence [9, 10]. 

 Bayesian classifiers (e.g., NaiveBayes, Averaged N-Dependence Estimators (ANDE), and BayesNet 

) are a family of probabilistic classifiers based on applying Bayes' theorem with density estimators [18, 19]. 
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NaiveBayes is a simple classifier that uses the normal distribution to model numeric attributes. NaiveBayes  

can use kernel estimation for improving the accuracy. BayesNet  learns Bayesian nets by a learning 

algorithm for estimating the conditional probability tables of the network. Internally, the search is done 

using a selected algorithm among (K2, TAN, hill-climbing (HC), repeated hill-climbing(RHC), simulated 

annealing (SA), tabu search (TS), and genetic search (GS)) algorithms. The search algorithm can be set to do 

local or global optimization [8-10]. Averaged N-Dependence Estimators (e.g., A1DE and A2DE) achieves 

highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models, 

the algorithm has highly accurate classification on many classification problems [19].  

 Decision Trees (e.g., J48 (an open source Java implementation of C4.5 algorithm) [20-21], 

NavieREPTree, SimpleCart, Random Tree [6, 7], Best First Tree (BFT) [1, 4], A Hoeffding tree [22], 

Logical Analysis Data (LAD) tree [9], and Logistic Model Tree (LMT) [23]) are a non-parametric learning 

method used for classification based on simple decision rules inferred from the data features or using hybrid 

technique (e.g., NavieBayes Tree (NBT) which use NavieBayes classifier at the leaves).  

 Lazy Classifiers (e.g., Instance Based Learner (IBk) [24], kStar [24], and Locally Weighted Learning 

(LWL) [26]) store the training instances until the classification time. IBk is a k-nearest-neighbor (KNN) 

classifier. A variety of different search algorithms (linear search, kD-trees, ball trees, and cover trees)  can 

be used to speed up the task of finding the nearest neighbors based on Euclidean function [9]. The kStar is a 

nearest-neighbor method with an entropy-based distance function. The LWL uses an instance-based 

algorithm to assign instance weights. 

 The functions category (e.g., sequential minimal-optimization (SMO) [27], Logistic [28], and 

MultilayerPerceptron (MLP) [4]) includes an assorted group of classifiers that can be written down as 

mathematical equations[9]. SMO implements the sequential minimal-optimization algorithm for training a 

classifier. Logistic uses regression functions to build a logistic regression model.  MLP is a variant of 

multilayer feedforward neural network and can be trained using backpropagation. 

 The WEKA (Waikato Environment for Knowledge Analysis) workbench is a collection of state-of-

the-art machine learning algorithms and data preprocessing tools. It includes all the algorithms described 

previously. The WEKA tool is developed using Java programming language and available free at the 

WEKA website [29]. In addition, WEKA enables the developers to integrate their algorithms within WEKA 

framework.  

 In general, the classification contains two phases:  a training  phase to train the classifier followed by 

testing phase (to evaluate the classifier). However, there is no guaranty that the trained classifier will give 

adequate accuracy on the data set due to the aforementioned NP-Hard problem. In addition, there is a 

possibility to predict the output for some instances not in the trained data set which requires test case data 

generation sampling strategy. Fortunately, WEKA provides a virtualized experimental environment with 

auto-generated metrics to evaluate the algorithms involve: summary of the evaluation,  confusion matrix, 

and classification details per class. The summary of evaluation reports the accuracy, Kappa statistic (KS), 

Mean Absolute Error, Root Mean Squared Error  (RMSE), Relative Absolute Error (RAE), and Root 

Relative Squared Error (RRSE). The confusion matrix summary the results of classification by class, from 

which the details are derived include: true positive (TP) rate, false positive (FP) rate, true negative (TN) rate, 

false negative (FN) rate, Precision,  Recall,   F-Measure,  Matthews correlation coefficient (MCC), receiver 

operator characteristic (ROC) Area, and  Programmatic Risk Classification (PRC) Area [9][29]. An ideal 

classifier should have 100% accuracy, KS=1.0, MAE=0, RMSE=0, RAE=0, RRSE=0, a confusion matrix 

with non-zero diagonal elements, and zero non-diagonal elements, which implies TP=TN= 

Precision=Recall=F-Measure= MCC=ROC Area=PRC Area =1, and FP=FN=0 [8-10]. As such, achieving 

an ideal classifier is considered a challenging task. 

 Boundary Value Analysis (BVA) is widely used as a black box test case generation sampling 

strategy in software and hardware testing.  BVA  is based on minimum and maximum values for attributes 

http://scikit-learn.org/stable/modules/tree.html#tree-classification
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in the System Under Test (SUT) [30]. However, the problem in the classification differs from test case 

generation for testing because the data set may have missing values and thus cannot be adopted directly for 

learning phase. On the other hand, as a black box sampling strategy, it could be adapted to generate test case 

data generation for the testing phase in the classification problem. 

 Fix and build from earlier works and motivated by achieving ideal classifier challenge , this paper 

proposes a novel input-output relation classification strategy called Minimum Maximum Strategy (MMS) to 

build an expert system that capable to analyze and classify the data set perfectly. In addition, the proposed 

MMS can generate test instances for evaluation purposes.  This paper  is organized as follows. Section 2 

highlights the proposed MMS strategy. Section 3 gives the summary of the IRIS data set. Section  4 gives an 

illustrative example on applying MMS on Iris data set. Section 5 discuss integrating the derived rules on 

WEKA tool.  Section 6 discuss the derivation of test cases from the derived rules using BVA. Section 7 

evaluates the MMS_IRIS classifier and compares it against the reviewed algorithms. Finally, Section 8 

states the conclusion and gives some recommendations for future work. 

 

2. The Proposed MMS Strategy 

 In order to facilitate the classification, it is required to reverse the rule of BVA (i.e., given data set 

then analyze the boundary values to make a decision rules for the output).   

 The MMS strategy  derives the classification rules based on the input-output relation (IOR). First, it 

copies the entire data set into a converge data set (Called Pi). The Pi data set separates the inputs and outputs 

attributes. Next, the output attributes are divided according to the class values (i.e., for each output). After 

that, the derivation of classification rules starts in which MMS counts the number of instances per class and 

determines the minimum and maximum values for each input attribute per output values. The classification 

rules are built  iteratively based on the minimum and maximum boundary values inside the data set. Then 

eliminates these entries in the Pi data set. This process is done iteratively until Pi data set is empty (i.e., 100 

% coverage criteria is satisfied). Fig. 1 shows the MMS strategy to derive the classification rules.  

 

While (Pi) is not empty 

   { 

      Reports the count for each class 

      Determine Minimum-Maximum values for each input attributes 

     for each input attribute 

           for each class 

{ 

If there is an inference rule based on unique classification with the corresponding  attributes 

 { write the rule, based on the derived rule  

    eliminates the instances from the data set 

 }//if 

                    } //for each class 

  }// while 

Fig. 1 The MMS Classification Rules Derivation. 
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3. The IRIS Data Set Summary 

 The IRIS data set is taken from the University of California at Irvine (UCI) data sets, and is freely 

available on the UCI’s website [31].  The IRIS data set has 150 instances, three IRIS plants (Setosa, 

Versicolour, and  Virginica), and  4 real-valued attributes as tabulated in Table 1. each class has 50 

instances.  As such, the class distribution is 33.3% for each of the three classes. 

Table 1 The IRIS Data Set Summary. 

Attributes Names Attributes Minimum, Maximum Values 

Min Max 

Sepal Length (SL)   in cm  4.3 7.9 

Sepal Width  (SW)  in cm 2.0 4.4 

Petal Length  (PL)  in cm 1.0 6.9 

Petal Width   (PW) in cm 0.1 2.5 

 

4. IRIS Classification Rules Derivation 

 This section gives an illustrative example by considering the Iris data set described in section 3, 

followed the steps described in section 2. Here, MMS determines the boundary values (i.e., minimum and 

maximum values of the inputs for each class separately) as summarized in Table 2. 

Table 2 The Initial PI for the IRIS Data Set.  

Attributes Names Attributes Minimum Maximum Values / Class 

Setosa  

(50) 

Versicolor  

(50) 

Virginica 

(50) 

Min Max Min Max Min Max 

SL   in cm  4.3 5.8 4.9 7.0 4.9 7.9 

SW  in cm 2.3 4.4 2.0 3.4 2.2 3.8 

PL   in cm 1.0 1.9 3.0 5.1 4.5 6.9 

PW  in cm 0.1 0.6 1.0 1.8 1.4 2.5 

 

Now applying the classification rules derivation, at the first iteration, the following rules are derived:  

If (SL<4.9) Setosa 

If(SL>7.0) Virginica 

If(SW>3.8) Setosa 

If(SW<2.2) Versicolor 

If(PL<=1.9) Setosa 

If (3.0<=PL<4.5) Versicolor 
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If(PL>5.1) Virginica 

If(PW<=0.6) Setosa 

If (1.0<=PW<1.4) Versicolor 

If(PW>1.8) Virginica 

These derived rules eliminate 124 instances from the Pi data set. The updated Pi data set is summarized in 

Table 3. It should be mentioned that the data set is mined to the residual data set (i.e., by eliminating the 

covered instances by the derived rules). In addition, the Setosa class is eliminated (i.e., achieves 100% 

coverage for the Setosa classification).  Moreover, new class occurrence, minimum, and  maximum values 

are determined during the second iteration. 

Table 3 The Residues PI for the IRIS Data Set at the Second Iteration. 

Attributes Names Attributes Minimum Maximum Values / Class 

Setosa  

(0) 

Versicolor  

(18) 

Virginica 

(8) 

Min Max Min Max Min Max 

SL   in cm  - - 5.4 7.0 4.9 6.3 

SW  in cm - - 2.2 3.4 2.2 3.0 

PL   in cm - - 4.5 5.1 4.5 5.1 

PW  in cm - - 1.4 1.8 1.5 1.8 

At the second iteration, the following rules are derived:  

If (SL<5.4)  Virginica  

If(SL>6.3) Versicolor 

If(SW>3.0) Versicolor 

If (PW<1.5) Versicolor 

Similarly, these rules eliminate 13 instances from the Pi data set. It should be mentioned that there is no prediction 

rule for the Petal Length attributes, since the residues classes have the same boundary exactly. The updated Pi data set 

is summarized in Table 4. 

Table 4 The Residues PI for the IRIS Data Set at the Third Iteration. 

Attributes Names Attributes Minimum Maximum Values / Class 

Setosa  

(0) 

Versicolor 

 (6) 

Virginica 

(7) 

Min Max Min Max Min Max 

SL   in cm  - - 5.4 6.3 5.9 6.3 

SW  in cm - - 2.2 3.0 2.2 3.0 

PL   in cm - - 4.5 5.1 4.8 5.1 

PW  in cm - - 1.5 1.6 1.5 1.8 
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At the third iteration, the following rules are derived:  

If(SL<5.9) Versicolor 

If(PL<4.8) Versicolor 

If (PW>1.6)  Virginica  

These rules eliminates 9 instances from the Pi data set. The updated Pi data set is summarized in Table 5. 

 

Table 5 The Residues PI for the IRIS Data Set at the Fourth Iteration. 

Attributes Names Attributes Minimum Maximum Values / Class 

Setosa  

(0) 

Versicolor 

 (2) 

Virginica 

(2) 

Min Max Min Max Min Max 

SL   in cm  - - 6.0 6.3 6.0 6.3 

SW  in cm - - 2.5 2.7 2.2 2.8 

PL   in cm - - 4.9 5.1 5.0 5.1 

PW  in cm - - 1.5 1.6 1.5 1.5 

During the fourth iteration, the following rules are derived:  

If (SW<2.5)  Virginica  

If (SW>2.7)  Virginica  

If(PL<5.0) Versicolor 

If (PW>1.5)  Versicolor 

These rules eliminates the remaining four instances, thus the Pi data set now is empty as shown in Table 6. 

Thus, all instances are covered for all outputs. Since the first two identification rules removes the Virginca 

class from the Pi data set, the last two rules can be replaced by unconditional inference rule as follows: 

 Versicolor. 

Table 6 The Empty PI for the IRIS Data Set after the Fourth Iteration. 

Attributes Names Attributes Minimum Maximum Values / Class 

Setosa  

(0) 

Versicolor 

 (0) 

Virginica 

(0) 

Min Max Min Max Min Max 

SL   in cm  - - - - - - 

SW  in cm - - - - - - 

PL   in cm - - - - - - 

PW  in cm - - - - - - 
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The next section explains the mapping and integrating the classification rules to build a classifier for the 

IRIS data set using WEKA tools. 

5.Constructing and Integrating the  MMS_IRIS Classifier with WEKA Tool 

 Like others machine learning algorithms, MMS starts by learning phase to derive the classification 

rules as explained in the previous section. The MMS compiles the generated rules into a dedicated 

classification model. The mapping involves two steps. First generate the source code that is compatible with 

WEKA tools. The second phase compiles the generated source code into a class file using Java compiler. 

The mapping is done by the MMS automatically, and the resulted source code is shown in Fig. 2.  

The classify function is required by the WEKA tool , it takes an object array argument and returns an integer 

that represents the index to the output array ( in our case   Setosa, Versicolor, and Virginica) which has the 

index values 0, 1, and 2 respectively. First, the classify function casts the object array into their 

corresponding real values. Next, each iteration is mapped to a function called leveln-1 (where n is the number 

of iteration). Thus the first, second, ..., nth iterations are  mapped to function name Level0, Level1, ..., leveln-

1 respectively. Each classification rule is mapped to if statement and return the index of the corresponding 

output. If all rules are not taken, the function returns the decision from the next level and so on. 

6. Constructing Test Data Set  

 Unlike other classification algorithms, MMS supports test data generation based on applying the 

simple BVA on the derived rules, the resulted test suite is called MMS_IRIS_Testing for short. The idea is 

to pick a value in the range of the decision rule for a certain attribute and fix other attributes values in their 

range. For clarity, consider the first derived rule   (i.e., If (SL<4.9) Setosa) two test cases can be derived:   

instance 1: 4.3, 2.3, 1.0, 0.1, Iris-setosa 

instance 2: 4.6, 4.4, 1.9, 0.6, Iris-setosa 

 Referring to Table 2, the minimum SL is 4.3 which is the first value in the first test case, and the 

second value is chosen from the range (4.3, 4.9). The second, third and forth attributes values for the first 

and second test cases are chosen from minimum and maximum attributes values respectively. The complete 

test case suite is shown in Fig. 3.  It should be mentioned that the generated test suite is not a subset of the 

IRIS data set; thus, it can be used for testing and evaluating other IRIS’ classifiers. 

7. Evaluation and Discussion  

 In order to evaluate the MMS_IRIS classifier and  make a fair comparison with other classification 

algorithms, a series of  experiments is conducted to meet the following intertwined objectives: 

 To investigate  whether or not the MMS_IRIS supports the ideal classification condition. 

 To evaluate and compare MMS_IRIS against  other families. 

 To investigate  the effectiveness of the derived MMS_IRIS_Testing.  

 It should be mentioned that all the experiments are done using a laptop with Windows 7 Installed, WEKA 

version 3.7.12, and  Intel Core I7 CPU.  

 



International Journal of Computing Academic Research (IJCAR), Volume 4, Number 4, August 2015 
 

169 
 

 

public class IRISMinMaxClassifier { 

public static int classify(Object[] i) throws Exception { 

        // cast the input attributes to its corresponding values 

        //the function returns 0,1,2 for  Setosa,Versicolor,Virginica 

       double sepalLength=(Double)i[0]; 

       double sepalWidth=(Double) i[1]; 

       double petalLength=(Double)i[2]; 

       double petalWidth=(Double) i[3]  ;  

       return  Level0(sepalLength,sepalWidth,petalLength,petalWidth); // call Level0 

       } //classify 

  static int Level0(double sepalLength,double sepalWidth,double petalLength,double petalWidth) { 

  if(sepalLength<4.9) return 0  

  if(sepalLength>7.0) return 2;   

  if(sepalWidth>3.8) return 0;  

  if(sepalWidth<2.2) return 1; 

  if(petalLength<=1.9) return 0; 

  if(petalLength<4.5 && petalLength>=3.0) return 1; 

  if(petalLength>5.1) return 2; 

  if(petalWidth<=0.6) return 0; 

  if( petalWidth<1.4 && petalWidth>=1.0) return 1; 

  if(petalWidth>1.8) return 2; 

  return Level1(sepalLength,sepalWidth,petalLength,petalWidth); 

    } // Level0 

  static int Level1(double sepalLength,double sepalWidth,double petalLength,double petalWidth) { 

  if(sepalLength<5.4) return 2 ;  

  if(sepalLength>6.3) return 1;  

  if(sepalWidth>3.0) return 1;  

  if(petalWidth<1.5) return 1;    

  return Level2(sepalLength,sepalWidth,petalLength,petalWidth); 

   }// Level1 

static int Level2(double sepalLength,double sepalWidth,double petalLength,double petalWidth) { 

if(sepalLength<5.9) return 1 ;  

if(petalLength<4.8) return 1; 

if(petalWidth>1.6) return 2;    

 return Level3(sepalLength,sepalWidth,petalLength,petalWidth); 

  }//Level2 

static int Level3(double sepalLength,double sepalWidth,double petalLength,double petalWidth) { 

if(sepalWidth<2.5) return 2 ;  

if(sepalWidth>2.7) return 2 ;  

return 1; 

  }// Level3 

}// Class 

Fig. 2 The Auto-Generated Java Source Code by the MMS for IRIS Classifier. 
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@RELATION iris 

@ATTRIBUTE sepallength  REAL  

@ATTRIBUTE sepalwidth   REAL 

@ATTRIBUTE petallength   REAL  

@ATTRIBUTE petalwidth   REAL 

@ATTRIBUTE class  {Iris-setosa,Iris-versicolor,Iris-virginica} 

@DATA 

4.3,2.3,1.0,0.1,Iris-setosa 

4.6,4.4,1.9,0.6,Iris-setosa 

7.1,2.2,4.5,1.4,Iris-virginica 

7.1,3.8,6.9,2.5,Iris-virginica 

4.3,4.3,1.0,0.1,Iris-setosa 

4.8,4.1,1.9,0.6,Iris-setosa 

4.9,2.0,3.0,1.0,Iris-versicolor 

7.0,2.1,1.0,1.8,Iris-versicolor 

4.3,2.3,1.0,0.1,Iris-setosa 

4.8,4.8,1.9,0.6,Iris-setosa 

4.9,2.2,3.0,1.0,Iris-versicolor 

7.0,3.4,4.4,1.8,Iris-versicolor 

4.9,2.2,5.5,1.4,Iris-virginica 

7.0,3.8,6.9,2.5,Iris-virginica 

4.3,2.3,1.0,0.3,Iris-setosa 

4.8,4.8,1.9,0.5,Iris-setosa 

4.9,2.2,4.5,1.0,Iris-versicolor 

7.0,3.4,5.1,1.3,Iris-versicolor 

4.9,2.2,4.5,1.9,Iris-virginica 

7.0,3.8,5.0,2.5,Iris-virginica 

4.9,2.2,4.5,1.5,Iris-virginica 

5.3,3.0,5.1,1.8,Iris-virginica 

6.4,2.2,4.5,1.4,Iris-versicolor 

7.0,3.4,5.1,1.8,Iris-versicolor 

5.4,3.1,4.5,1.4,Iris-versicolor 

6.3,3.4,5.1,1.8,Iris-versicolor 

5.4,2.2,4.5,1.4,Iris-versicolor 

6.3,3.0,5.1,1.4,Iris-versicolor 

5.4,2.2,4.5,1.5,Iris-versicolor 

5.8,3.0,5.1,1.6,Iris-versicolor 

6.0,2.2,4.5,1.5,Iris-versicolor 

6.3,3.0,4.7,1.6,Iris-versicolor 

5.9,2.2,4.8,1.7,Iris-virginica 

6.3,3.0,5.1,1.8,Iris-virginica 

6.0,2.2,5.0,1.5,Iris-virginica 

6.3,2.4,5.1,1.5,Iris-virginica 

6.0,2.8,5.0,1.5,Iris-virginica 

6.3,2.8,5.1,1.5,Iris-virginica 

6.0,2.5,4.9,1.5,Iris-versicolor 

6.3,2.7,4.9,1.6,Iris-versicolor 

6.0,2.5,5.0,1.6,Iris-versicolor 

6.3,2.7,5.1,1.6,Iris-versicolor%%%   

 

Fig. 3 The Auto-Generated Test Cases by the MMS in WEKA Format.  
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7.1 MMS_IRIS Classifier Evaluation 

 The MMS_IRIS classifier evaluation consists of two phases. In the first phase, the MMS_IRIS 

classifier is evaluated under the exhaustive testing (ET) (i.e., use the full data set; with 150 instances, for 

testing). In the first phase, the classifier MMS_IRIS is evaluated under the MMS_IRIS_Testing (i.e., use 42 

test cases). Tables 7 till 9 and Tables 10 till 12 give the summary of evaluation,  confusion matrix, and 

classification details per class for the MMS_IRIS classifier under the ET and the MMS_IRIS_Testing, 

respectively.   

 

Table 7 Summary of Evaluation for the MMS_IRIS Classifier under the ET. 

Correctly 

Classified 

Accuracy% KS MAE RMSE RAE% RRSE% 

150 100 1.0 0 0 0 0 

 

Table 8 The Confusion Matrix for the MMS_IRIS Classifier under the ET. 

a  b  c      <-- classified as 

50  0  0  |  a = Iris-setosa 

0 50  0   |  b = Iris-versicolor 

0  0 50   |  c = Iris-virginica 

       

   Table 9 Classification Details per Class for the MMS_IRIS Classifier under the ET. 

 

Table 10 Summary of Evaluation for the MMS_IRIS Classifier under the MMS_IRIS_Testing. 

Correctly 

Classified 

Accuracy% KS MAE RMSE RAE% RRSE% 

42 100 1.0 0 0 0 0 

 

Table 11 The Confusion Matrix for the MMS_IRIS Classifier under the MMS_IRIS_Testing. 

           

  

 

TP 

Rate   

FP 

Rate   

TN 

Rate   

FN 

Rate   

Precision   Recall    F-Measure MCC ROC 

Area   

PRC 

Area   

Class 

1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 Iris-setosa 

1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 Iris-versicolor 

1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 Iris-virginica 

a  b  c      <-- classified as 

8  0  0    |  a = Iris-setosa 

0 20  0   |  b = Iris-versicolor 

0  0 14   |  c = Iris-virginica 
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Table 12 Classification Details per Class for the MMS_IRIS Classifier under the MMS_IRIS_Testing. 

 

 Referring to Tables 7 till 12, it is clear that MMS_IRIS classifier meet the ideal condition under both 

ET and MMS_IRIS_Testing as far as all evaluation metrics is concerned. From another perspective, 

MMS_IRIS_Testing data set is a good sampling strategy that can be used as a testing data set for evaluation 

purposes. In addition, the MMS_IRIS_Testing data set is not necessary to be a subset of the original data set 

due to sampling behavior of black box strategy. As such, it can be used to test the prediction accuracy for 

other IRIS classifiers. 

7.2 Comparison 

 In order to make a fair comparison, it should be mentioned here that none of the reviewed algorithms 

achieved the ideal condition using cross-validation training. However, it is unfair to compare MMS_IRIS 

classifier with other existing algorithms in this way, due to the fact that MMS builds the classifier using the 

full data set. As such, the evaluation considers two steps. The first step is to run exhaustive learning/ testing  

(ELT) (i.e., use the full data set for both learning and testing) to elect the most accurate algorithms in each 

classification family. In doing so, the candidate classifiers for each family can do accurate classification with 

invariant data set (i.e., no test case values from outside the IRIS data set). In addition, this experiment will 

report the ideal classifiers  for the IRIS data set when an exact classification is desired. In the second phase, 

the selected classifiers in the first step are tested again under the MMS_IRIS_Testing data set to judge their 

behavior to classify the untrained instances which expect to be more accurate than the first phase.  

7.2.1 Comparison based on ELT 

 Tables 13 till 17 give a summary of the evaluation for the rule-based, Bayesian, decision tree, lazy, 

and function-based classifiers respectively for  the IRIS data set based on ELT. the dashed rows show the 

elected classifier based on accuracy obtained. The last column shows the rank for each classifier relative to 

its’ corresponding family. 

 Referring to Table 13, the NNGE classifier has achieved the ideal condition and has the first rank in 

this family. OLM and FURIA are in the second place. DTNB, JRip, PART, OneR, DT, Ridor, CR, and 

ZeroR classifiers have the ranks 3,4,5,6,7,8,9, and 10 respectively.  

 

 

 

TP 

Rate   

FP 

Rate   

TN 

Rate   

FN 

Rate   

Precision   Recall    F-Measure MCC ROC 

Area   

PRC 

Area   

Class 

1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 Iris-setosa 

1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 Iris-versicolor 

1.0 0 1.0 0 1.0 1.0 1.0 1.0 1.0 1.0 Iris-virginica 
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Table 13 Summary of Evaluation for the Rule Based Family under the ELT. 

Algorithm Correctly 

Classified 

Accuracy% KS MAE RMSE RAE% RRSE% Relative 

Rank 

CR 100 66.667 0.5 0.2222 0.3334 50  70.7186 9 

DT 144 96 0.94 0.0683 0.1582 15.3665  33.5636 7 

DTNB 146 97.3333 0.96 0.025 0.1246 5.632 26.4375 3 

FURIA 147 98 0.97   0.0133 0.1155 3 24.4949 2 

JRip 146 97.3333 0.96 0.0329 0.1283 7.4074 27.2166 4 

NNGE 150 100 1.0 0 0 0 0 1 

OLM 147 98 0.97 0.0133 0.1155 3 24.4949 2 

OneR 144 96 0.94 0.0267 0.1633 6 34.641 6 

PART 146 97.3333 0.96 0.0338 0.1301 7.6122 27.5902 5 

Ridor 143 95.3333 0.93 0.0311 0.1764 7 37.4166 8 

ZeroR 50 33.3333 0 0.4444 0.4714 100 100 10 

 

Table 14 Summary of Evaluation for the Bayesian Family under the ELT. 

Algorithm Correctly 

Classified 

Accuracy% KS MAE RMSE RAE% RRSE% Relative 

Rank 

A1DE 143 95.3333 0.93 0.0343 0.1362 7.7107 28.9019 8 

A2DE 145 96.6667  0.95 0.0344 0.1298 7.7313 27.5445 1 

BayesNet_GGS 144 96 0.94 0.0304 0.1368 6.8301 29.0144 3 

BayesNet_GHC 144 96 0.94 0.0304 0.1368 6.8301 29.0144 3 

BayesNet_GK2 142 94.6667 0.92 0.0331 0.1545 7.4367 32.7793 11 

BayesNet_GRHC 144 96 0.94 0.0304 0.1368 6.8301 29.0144 3 

BayesNet_GSA 144 96 0.94 0.0304 0.1368 6.8301 29.0144 3 

BayesNet_GTAN 144 96 0.94 0.0324 0.1340 7.2820 28.4244 4 

BayesNet_GTS 144 96 0.94 0.0304 0.1368 6.8301 29.0144 3 

BayesNet_LGS 144 96 0.94 0.0505 0.1372 11.3609 29.1108 7 

BayesNet_LHC 142 94.6667 0.92 0.0331 0.1545 7.4367 32.7793 11 

BayesNet_LK2 142 94.6667 0.92 0.0331 0.1545 7.4367 32.7793 11 

BayesNet_LRHC 142 94.6667 0.92 0.0331 0.1545 7.4367 32.7793 11 

BayesNet_LSA 144 96 0.94 0.0411 0.1365 9.2371 28.9596 6 

BayesNet_LTAN 143 95.3333 0.93 0.0436 0.1395 9.8165 29.6022 9 

BayesNet_LTS 142 94.6667 0.92 0.0327 0.1509 7.3553 32.0031 10 

NaiveBayes_NKE 144 96 0.94 0.0324 0.1495 7.2883 31.7089 5 

NaiveBayes_KE 145 96.6667 0.95 0.0356 0.1376 8.0029 29.1798 2 
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 Referring to Table 14, no classifier in the Bayesian family achieves the ideal condition. The 

BayesNet classifier  is trained by setting the searching algorithm to global (G) and then local (L) search. In 

general, BayesNet classifier is performed better using global optimization search algorithms. Similarly, the 

NaiveBayes classifier is trained without and with kernel estimation.  the NaiveBayes classifier is performed 

better when enabling the kernel estimation. However, changing these parameters change the evaluation 

slightly. The A2DE and NaiveBayes_KE have the same accuracy and are given the first and second relative 

rank respectively. The third rank is given for BayesNet_GGS , BayesNet_GHC, BayesNet_GRHC, 

BayesNet_GSA, and BayesNet_GTS. BayesNet_GTAN, NaiveBayes_NKE, BayesNet_LSA, 

BayesNet_LGS, A1DE, BayesNet_LTAN, and BayesNet_LTS are given the relative ranks 4 till 10 

respectively. Finally, the eleventh rank is given to BayesNet_GK2, BayesNet_LHC,  BayesNet_LK2, and 

BayesNet_LRHC. 

Table 15 Summary of Evaluation for the Decision Tree Family under the ELT. 

Algorithm Correctly Classified Accuracy% KS MAE RMSE RAE% RRSE% Relative Rank 

BFT 147 98 0.97 0.0206 0.1014 4.6250 21.5058 4 

HoeffdingTree 144 96 0.94 0.0350 0.1486 7.8697 31.5185 7 

J48 147 98 0.97 0.0233 0.1080 5.2482 22.9089 5 

LADTree 150 100 1 0.0088 0.024 1.9712 5.0861 2 

LMT 148 98.6667 0.98 0.0196 0.0921 4.4065 19.5468 3 

NBT 145 96.6667 0.95 0.0578 0.1427 13.0110 30.2671 6 

RandomTree 150 100 1 0 0 0 0 1 

REP Tree 144 96 0.94 0.0490 0.1566 11.0306 33.2123 8 

Simple Cart 147 98 0.97 0.0233 0.1080 5.2482 22.9089 5 

 

 Referring to Table 15, the Random Tree classifier has achieved the ideal condition and has the first 

rank in the decision tree family. The LAD Tree classifier has 100% accuracy with non-zero errors and given 

the second place. LMT and BFT have the ranks 3, and 4 respectively. Both J48 and Simple Cart has the fifth 

relative rank. Finally, NBT, Hoeffding Tree, and REP Tree classifiers have the relative ranks 6,7, and 8 

respectively. 

Table 16 Summary of Evaluation for the Lazy Family under the ELT. 

Algorithm Correctly Classified Accuracy% KS MAE RMSE RAE% RRSE% Relative Rank 

IBk, k=1 150 100 1.00 0.0085 0.0091 1.9219 1.9335 2 

IBk, k=2 146 97.3333 0.96 0.0198 0.0883 4.4445 18.7331 4 

IBk, k=3 145 96.6667 0.95 0.0235 0.1088 5.2910 23.0838 5 

KStar 150 100 1.00 0.0062 0.0206 1.3992 4.3621 1 

LWL 147 98 0.97 0.0765 0.1636 17.2085 34.7114 3 
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 Referring to Table 16, no classifier in the lazy family achieves the ideal condition due to non-zero 

errors. the IBK with KNN=1 gives better accuracy than KNN=2 and KNN=3 for the IRIS data set. The 

classifiers KStar, IBk_1, LWL, IBK_2, and IBK_3 have the relative ranks 1,2,3,4, and 5 respectively. 

Table 17 Summary of Evaluation for the Functions Family under the ELT. 

Algorithm Correctly Classified Accuracy% KS MAE RMSE RAE% RRSE% Relative Rank 

MLP 148 98.6667 0.98 0.0248 0.0911 5.5779 19.3291 2 

Logistic 148 98.6667 0.98 0.0196 0.0921 4.4065 19.5468 1 

SMO 145 96.6667 0.95 0.2296 0.2854 51.6667 60.5530 3 

 

 Referring to Table 17, no classifier in the functions family achieves the ideal condition or 100% 

accuracy. The Logistic, MLP, and SMO classifiers have the relative ranks 1,2, and 3 respectively. 

7.2.2 Comparison based on MMS_IRIS_Testing Data Set 

 In this section, the elected classifiers are tested again using the MMS_IRIS_Test data set. Table 18 

shows the summary of evaluation for the elected classifiers under the MMS_IRIS_Testing with 42 test cases 

(Fig. 3). Table 19 gives the miss-predicted instances for further analysis.   

Table 18 Summary of Evaluation for the Elected Classifiers under the MMS_IRIS_Testing. 

Algorithm Correctly 

Classified 

Accuracy% KS MAE RMSE RAE% RRSE% Rank 

MMS_IRIS 42 100 1.0 0 0 0 0 1 

NNGE 35 83.3333 0.74 0.1111 0.3333 26.5152 72.9695 3 

A2DE 29 69.0476 0.51 0.2156 0.3862 51.4453 84.5474 10 

NaiveBayes_KE 29 69.0476 0.49 0.2102 0.3979 50.1715 87.0986 9 

LADTree 34 80.9524 0.70 0.1320 0.3115 31.5083 68.1907 5 

RandomTree 33 78.5714 0.66 0.1429 0.3780 34.0909 82.7396 8 

IBk, k=1 35 83.3333 0.74 0.1176 0.3302 28.0749 72.2789 4 

KStar 34 80.9524 0.70 0.1478 0.2780 35.2763 60.8531 7 

MLP 37 88.0952 0.81 0.1233 0.2688 29.4317 58.8504 2 

Logistic 34 80.9524 0.70 0.1442 0.3029 34.4065 66.3160 6 

 Referring to Table 18, Only, the MMS_IRIS achieves the ideal condition and has the first rank. 

Surprisingly, even though MLP is not achieved the ideal nor 100% accuracy under ELT, MLP has the 

second rank even. The NNGE, IBk (k=1), LADTree, Logistic, KStar, Random Tree, NaiveBayes_KE, and 

A2DE classifiers have the ranks 3 till 10 respectively. It is clear that the derived MMS_IRIS_Testing can 

classify the prediction accuracy significantly, and gives better evaluation than ELT method. 
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 Referring to Table 19, the third instance int the MMS_IRIS_Testing is the most critical test case. 

Only, MMS_IRIS classifier predicts it correctly. The other miss-predicted test cases are not unique among 

the other classifiers and thus has nominal behavior. The reason behind this miss prediction of instance 3 is 

the interaction between the boundary values for the Sepal Width, Petal Length, and Petal width attributes for 

Virginica class with other classes when fixing the Sepal Length value at minimum boundary value (Table 2).  

Moreover, when change the instance 3 to nominal values, all the elected classifiers predict it correctly, 

which is an indication that they are performed better in nominal values than boundary values. As such, their 

accuracy  is higher when tested them under ELT than in IRIS_MMS_Testing data set. 

Table 19 The Miss-predicted Instances for the Elected Classifiers in the MMS_IRIS_Testing. 

Family Algorithm Correctly 

Classified 

Instances 

Incorrectly 

Classified 

Instances 

Miss-predicted instances 

MMS MMS_IRIS 42 0 - 

Rules NNGE 35 7 3, 12,13, 21,24,26,28 

Bayes A2DE 29 13 3,8,12,13,18,19,21,24,26,36, 38, 39,41 

Bayes NaiveBayes_KE 29 13 3,12,13 ,19,21,24,26,33, 35,36,37,38,42 

DT LADTree 34 8 3,8,11,21,24 ,26,28, 33 

DT RandomTree 33 9 3,8,12,18 ,19,21,24,26,28 

Lazy IBk, k=1 35 7 3,28,30,36,37,40,42 

Lazy KStar 34 8 3,24,26,30,36,37,40,42 

Functions MLP 37 5 3,37,38,41,42 

Functions Logistic 34 8 3,8,26,30,36,37,40,42 

 

8. Conclusion 

 This paper has demonstrated and stressed the NP_Complete and  NP_Hard problems in the modeling 

and evaluation of the classifiers. As a result, there is a need to derive an ideal classifier in a systematic 

manner . In doing so, the MMS has been proposed for modeling  an ideal classifier and generates test data 

set based on BVA and IOR.  A case study regarding the IRIS data set is conducted. The practical results can 

be tackled into two intertwined perspectives.  

 The first perspective  said for an ideal classifier it is required to learn from an exhaustive data set and 

predict the entire set precisely (i.e., 100% instances coverage during learning and testing phases). As  such, 

only the MMS_IRIS, NNGE, and Random Tree classifiers have achieved the ideal conditions under 

assumption no test instances outside the IRIS data set (i.e., invariant instances).   

 From prediction accuracy point of view, it is desired to generate test instances  for testing the  

prediction of the classifier. As such a sampling strategy is required to derive new critical instances that is not 

necessary be a subset of learning set (i.e., variant instances). From this perspective, the proposed MMS has 

adopted BVA to generate the MMS_IRIS_Testing data set. By subjecting the most accurate algorithms 

based on ELT again to test under MMS_IRIS_Testing the prediction accuracy has been decreased 

significantly except for the MMS_IRIS classifier which has kept the ideal condition invariant. In addition, 
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even though some algorithms achieved 100% accuracy under ELT (with 150 instances), they are more 

sensitive for prediction new instances. For instance, as far as the accuracy is concerned, the MLP, NNGE, 

and Random Tree,  under ELT has scored 98.6667% , 100%,and  100% respectively; however, under 

MMS_IRIS_Testing (with merely 42instances) has scored 88.0952%, 83.3333%, and 78.5714 respectively. 

As such, the derived MMS_IRIS_Testing has three advantages: first it reduced the testing data set in a 

systematic manner. Second, it is more appropriate for testing the prediction accuracy than ELT approach. 

Third, the MMS_IRIS has identified a critical instance (instance 3 in Fig. 3) that is recommended to be in 

the IRIS data set as well as learning data set for the classification algorithms.  

 Our future work involves studying the reduction of decision rules by considering the number of the 

covered instances and the sensitivity of the attributes in a greedy manner. Finally, sampling strategies like 

BVA, combinatorial interaction testing are adopted widely for software and hardware testing, adopting them 

in machine learning is not widespread. However, the practical results obtained in this paper are promising. 

For this reason, further research, methodologies, and experimentations are a forthcoming stream in machine 

learning to adopt these sampling strategies. 
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