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Abstract: Although the conventional machine learning-based anti-phishing 

techniques outperform their competitors in phishing detection, they are still 

targeted by zero-hour phish webpages due to their constraints of phishing 

induction. Therefore, phishing induction must be boosted up with the extraction 

of new features, the selection of robust subsets of decisive features, the active 

learning of classifiers on a big webpage stream. In this paper, we propose a hybrid 

feature-based classification algorithm (HFBC) for decisive phish webpage 

classification. HFBC hybridizes two statistical criteria Optimized Feature 

Occurrence (OFC) and Phishing Induction Ratio (PIR) with the induction settings 

of the most salient machine learning algorithms, Naïve Bays and Decision Tree. 

Additionally, we propose two constituent algorithms of features extraction and 

features selection for holistic phish webpage characterization. The superiority of 

our proposed approach is justified and proven throughout chronological, real-time, 

and comparative analyses against existing machines learning-based anti-phishing 

techniques. 
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1 Introduction 

Although the Web provides a huge communication channel and many services to both users 

and enterprises, it causes digital identity theft and monetary loss annually due to phishers’ 

activities. Phishers usually evolve their variants of phish webpages that impersonate 

legitimate webpages to deceive users [1, 2]. To thwart phishers’ activities and mitigate 

their consequences on both web security and economy, researchers develop different anti-

phishing techniques. Amongst them, are phishing machine learning-based classifiers [1-3] 

that assisted by various features and baseline machine learning algorithms looking forward 

effective and efficient phishing classification [3]. Constructed classifiers rely on various 

features to promote their discriminating power by characterizing phish exploits. Also, they 

apply algorithms of Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree 

(DT), and Logic Regression (LR) etc. to classify phish webpages decisively. Therefore, 

machine learning-based anti-phishing techniques outperform their competitors [2-4]. 

However, they are evaded by phishers who evolving zero-hour phish webpages continually 

due to their deficiency of inductive factors. Indeed, lack of potential inductive factors leads 

to partial phishing characterization and inefficient phishing classification in realistic mode 

[3-5].  

In this context, this paper proposes a Hybrid Feature-Based Classifier (HFBC) which 

is a hybrid of features subset selection algorithm and two of the most salient machine 

learning algorithms with statistical phishing induction criteria. The outperformance of 

HFBC is validated throughout three analyses: a chronological analysis across three 

benchmarking datasets, 30 days interval of real-time analysis on an evolving webpage 

stream, and a comparative analysis against the state-of-the-art machine learning 

algorithms. Next sections give the bird’s eye on HFBC as it follows: Section 2 surveys and 

synthesizes the related works to address what facets need to boost. Whereas, Section 3 

depicted the workflow of HFBC including its constituent algorithms and supportive 

induction criteria. Then, Sections 4 exhibits HFBC performance validation and discusses 

the outcomes. In Section 5, conclusions are drawn and future insights are inferred. 

2 Related Work 

Among the prominent phish webpage, classifiers were CANTINA and its upgraded version 

CANTINA+ that developed as ensemble feature-based classifiers by the researchers at 

Carnegie Mellon [5]. Both learned multiple machine learning algorithms including Naïve 

Bayes (NB), Support Vector Machine (SVM), and Logic Regression (LR) etc. Around 15 

features were derived from the webpage content and URL to accurately classify phishing 

on redirecting webpage, login forms, and webpages of English language. Although 

CANTINA+ achieved a True Positive Rate (TPR) of  (92%) and a False Positive Rate 

(FPR) of (1.4%). However, it encountered a trade-off in classifying phishing on other 

webpage exploits involved in up-to-date webpage streams due to the use of textural features 

that were limited to English text. Then, a single feature-based classifier of Support Vector 

Machine (SVM) was devoted to tackling phishing on login form webpages [6, 7]. The 

developed SVM classifier could identify 17 phishing features in login forms’ contents. It 

achieved a rationale performance of (99.6%) as TPR and (0.42%) as the FPR.  However, 

it was computationally intensive and time-consuming due to its pre-defined whitelist of the 

topmost legitimate webpages that was integrated as an external resource. Meanwhile, the 

authors in [8] attempted to identify phishing deceptions on Chinese e-business webpages 

via their single feature-based classifier. For their motive, the best-ranked subset of features 
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was obtained from 15 URL features by using Chi-Squared (2) for further learning with 

four machine learning algorithms including Sequential Minimum Optimization (SMO), 

Logic Regression (LR), Naïve Bayes (NB), and Random Forests (RF). Experimentally, 

their developed classifier performed (95.83%) of detection accuracy on a life-like Chinese 

webpage flow. However, it was applicable to Chinese e-business webpages rather than 

other webpage exploits due to the exclusive phishing features and datasets that it used.  

Later, other classifiers were developed such as that adopted in [9] to learn 17 URL 

features with an ensemble platform of machine learning algorithms including Support 

Vector Machine (SVM), and Random Forest (RF). The developed classifier achieved 

(94.91%) and (1.44%) of classification accuracy and faults respectively by using three 

different mechanisms of features selection such as Information Gain (IG), Correlation-

Based Feature Selection (CFS) and Chi-Squared (χ2). Although, it could learn relatively 

big datasets; it was inefficient to handle data imbalanced issue. On the other hand, a Neural 

Network (k-NN) feature-based classifier was presented in [10-12] to detect different phish 

exploit on a big webpage stream (96,018 webpages) with an accuracy of (96.71%). Due to 

the substantial rate of misclassification, the classifier was optimized into an ensemble 

design by integrating four machine learning algorithms including Support Vector Machine 

(SVM), Random Forest (RF), C4.5, and JRip. Thus, it learned actively with 212 typical 

features to increase the detection accuracy and decrease the detection faults. 

As time progresses, a case based reasoning classifier CBR-PDS with K-NN machine 

learning algorithm was proposed in [13]. Experimentally, CBR-PDS could predict phish 

webpages over scalable and different datasets with a range of accuracy rates from 95.62% 

up to 98.07%. CBR-PDS pursued phishing detection in both offline and online modes to 

easily predict webpages. However, it deployed typical URL features to distinguish phish 

webpages on small sets of data. The set of typical URL features was not distinctive and 

decisive enough to adapt the advanced exploits and the new features that encompassed in 

zero-hour phish webpages during real-time practice. Later, in [14] a Cognitive Framework 

using typical domain knowledge features and semantic text as well as layout features, was 

adopted to detect phish webpages. Cognitive Framework deployed a deep learning 

algorithm of Bidirectional LSTM RNN for phishing classification along with Convolution 

Networks (CNN) for features extraction actively. However, not all necessary performance 

validations were involved, and particular phishing cases on business websites were studied 

to demonstrate its effectiveness and its efficiency as a web safe service through browser 

extensions or API calls. 

The aforesaid achievements encountered the problems of: (i) using typical and 

uninformative features rather than new and distinctive features for phishing 

characterization; (ii) the sets of features were not decisive enough because they were 

minimally relevant to phishing classes and maximally redundant in phishing exploitations 

[1-4, 15-19]; (iii) heavyweight webpage crawling and processing along with an imprecise 

phishing induction against variable datasets [1-4, 15, 16]; (iv) the learning datasets were 

unreflective to the web data that of scalable size, variable webpage exploits, and 

imbalanced phish and/or not-phish class [3, 4, 17, 18], (v) inactive learning strategy 

pursued by the developed classifiers so that their default phishing induction settings were 

inaccurate and inadaptable to classify zero-hour phish webpages at any given time [4, 3,19-

20], (vi) almost developed classifiers produced significant cost of operating errors and 

misclassification in real-time practice due to their divergent induction settings and pruning 

parameters, and then (vii) the use of limited number and typical features rather than the 

new features that might not be crafted in zero-hour phish webpages more and this in turn 

yields a partial phishing characterization with high rates of misclassifications.  
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3 Materials and Method 

This section exhibits the constituent steps of the proposed approach “Hybrid Feature-

Based Classifier (HFBC)” alongside their relevant computational algorithms, experimental 

datasets, performance measures, and experimental design, as it follows:   

3.1 Hybrid Feature-Based Classifier 

The proposed approach “Hybrid Feature-Based Classifier (HFBC)” was pursued through 

three steps: features extraction, features selection, and phishing classification. In features 

extraction step, three different sub-vectors of features including 24 embedded objects 

features (𝐹𝐸
24), 24 cross Site Scripting (XSS) features (𝐹𝑋

24), and ten language independent 

features (𝐹𝐿
10); were extracted from three parts of the webpage such as Hypertext Markup 

Language (HTML) part, JavaScript part, and URL part [15, 16] by implementing Feature 

Extraction Algorithm (FEA).  Extracted features were formulated into a single feature 

vector(𝐹𝑣 = {⋃ (𝐹𝐸
24, 𝐹𝑋

24, 𝐹𝐿
10 )58

1 }), as illustrated in 𝐅𝐢𝐠𝐮𝐫𝐞 𝟏. Each phish or legitimate 

webpage in the training webpage stream was characterized into a feature vector along with 

its actual class 𝐶𝑚as either a phish or a legitimate (see Figure 1). All extracted feature 

vectors were formulated into a multidimensional matrix named as feature space ( 𝐹𝑠𝑝𝑎𝑐𝑒). 

Thus,  𝐹𝑠𝑝𝑎𝑐𝑒 =  {𝐹𝑣1, 𝐹𝑣2, … , 𝐹𝑣𝑗, … , 𝐹𝑣𝑚}) in which each row represented a feature vector 

(𝐹𝑣𝑗) with its corresponding values (𝑣𝑗) and its relative class label (𝐶𝑗) where ( 𝑗 =

1,2 ,3 , … , 𝑚) and (𝐶𝑗 ∈ {−1, 0, 1}). Whenever, (𝐶𝑗 = −1) then (𝐹𝑣𝑗) was a phish; or (𝐶𝑗 =

1) then (𝐹𝑣𝑗) was a legitimate. Otherwise, (𝐶𝑗 = 0) denoting that (𝐹𝑣𝑗) was a suspicious 

webpage (neither valid phish nor valid legitimate).  

In features subset selection step, the Recursive Features Subset Selection Algorithm 

(RFSSA) including its supportive sub-algorithm Features Selection Algorithm (FSA); was 

proposed to select the most distinctive features and the best subset of decisive features, 

respectively. FSA pursued mRMR which could boost both the mutual information of the 

targeting class and the mutual dependencies among features in the same set of features. 

Then, the output set of distinctive features were fed to RFSSA which split it into N subsets 

to prioritize the best features subset according to validating ratios of goodness (Good 

Ratio), stability (Stab Ratio), and similarity (SimRatio) [4, 17 and 18] as per Equations (2), 

(3), and (4) [4, 17 and 18]. The Good Ratio and Stab Ratio demonstrated subset’s 

distinction and robustness versus the evolving data flow over a period of time; whereas, 

SimRatio proved the subset’s potentiality amongst its competitors versus the evolving data 

[4, 17 and 18]. 

 

𝑚𝑎𝑥 Ф(𝐷, 𝑅), Ф = 𝐷(𝑆, 𝑐) − 𝑅(𝑆).  (1) 

 

Where, 𝐷 is the set of features 𝑆  having the maximal dependency to the 

target class c, and 𝑅 is the set of features having the highest dependency among 

other features in 𝑆. 

𝐺𝑜𝑜𝑑𝑅𝑎𝑡𝑖𝑜(𝑆𝑖) =
1

𝑌
∑

𝑁𝑖
𝑡𝑝

𝑁𝑖

𝑌
𝑖=1      

(2) 
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Where Y, 𝑁𝑖
𝑡𝑝

and 𝑁𝑖 are the number of classes in the dataset, the number 

of true positive of each class and the total number of instances for class i 

respectively.” 

𝑆𝑡𝑎𝑏𝑅𝑎𝑡𝑖𝑜(𝑆) =  ∑
𝐹𝑓𝑖

𝑁
×

𝐹𝑓𝑖
− 1

|𝐷| − 1
𝑓𝑖∈𝑋

 
(3) 

Where 𝑓𝑖 ∈ 𝑋and 
𝐹𝑓𝑖

𝑁
 are all features in a collection dataset S and the 

relative frequency of each feature in a subset. If all subsets are identical then 

Stab(S) closes to 1; otherwise it closes to 0.” 

𝑆𝑖𝑚𝑅𝑎𝑡𝑖𝑜(𝑡1, 𝑡2) = 1 −
1

2
∑ |

𝐹𝑓𝑖

𝑡1

𝑁𝑡1
−

𝐹𝑓𝑖

𝑡2

𝑁𝑡2
| 

(4) 

Where 𝐹𝑓𝑖

𝑡1 and 𝐹𝑓𝑖

𝑡2 denoting the number of frequencies of feature 𝑓𝑖 in 

two candidate feature selection methods 𝑡1 and 𝑡2 respectively. Similarity takes 

values within [0,1].”” 
 

 
Figure 1. Webpage analysis and features extraction through FEA 

 
FEA // Features Extraction Algorithm  

Input: W, N // W is the input dataset and N is the number of its instances 

Output: Feature Space                    

Begin 

1. Define 𝑭𝒗// feature vector, and  Tree   // DOM Tree             

Set Feature Space as 𝑚 × 𝑛 matrix 

2. For I=1 To N  { 

a. Construct a graph Tree for the input webpage W(I) 
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b. Remove any uninformative nodes from Tree 

c. Collapse Tree 

d. Extractor (Tree, 𝑭𝒗) 

e. Store (I, 𝑭𝒗, Feature Space) } 

3. Feature Space=Mapping (Feature Space) //adjust heterogeneous 

feature values 

End of FEA 

 

Extractor 

Input   : Tree // DOM tree 

Output: 𝑭𝒗 // feature vector 

Begin 

i. Set 

 

Raw as a raw of Tree 

 𝐹𝐿 as vector of URL features 

𝐹𝑋 as vector of XSS-based or JavaScript features  

𝐹𝐸 as vector of HTML features or embedded objects  

ii. If (Raw is text leaf) OR(Raw is the last child)  Skip  

Else If (Raw = = head)           Parser(“LINK”, 𝐹𝐿) 

        Else If (Raw= = BODY) { Parser(Raw, 𝐹𝑋); Parser(Raw, 𝐹𝐸); 

Parser(Raw, 𝐹𝐿); }                                                                                                                     

iii. 𝑭𝒗 = (𝐹𝐿  ∪ 𝐹𝑋 ∪ 𝐹𝐸) 
End of Extractor 

 

Parser 

Input   : Raw // A raw of Tree 

Output: 𝑭𝒔𝒖𝒃 // a sub-vector of parsed features 

Begin 

i. Set  Node as a node in Raw 

Count_Start_Node as counter Node ‘s opening tag 

Count_End_Node as counter Node ‘s closing tag 

StartPos as pointer to the position of Node ‘s 

opening tag 

EndPos as pointer to the position of Node ‘s closing 

tag 

ii. EndPose=Count_End_Node 

iii. While (StartPos≠EndPose) Do  

{Content=extract string between StartPos and EndPos       

Count_Start_Node=frequency of open given Node 

Count_ End_Node= frequency of closing given Node   

 𝑭𝒔𝒖𝒃 [StartPos] =Content } 

End of Parser 

FSA // Features Selection Algorithm  

Input   : FSet// the original set of features such that 𝐹𝑆𝑒𝑡 = {𝐹𝑆𝑒𝑡𝑖}𝑖∈|𝐹𝑆𝑒𝑡|  

Output : OutputSet // the set of most relevant and least redundant features                     

Define Red_Rev // the set of maximal relevant and minimal redundant  

OutputSet // the set of output features such that OutputSet={} 

Begin 

1 Compute maximal relevancy and minimal redundancy in 𝑭𝑺𝒆𝒕 
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 For i=1 To |𝑭𝑺𝒆𝒕|  Do the following {      

a. Compute relevance for 𝐹𝑆𝑒𝑡                                                  

b. Compute redundancy for 𝐹𝑆𝑒𝑡  

} // end of for loop 

2 Initialize k 

While (FSet ≠{}) AND (k<=|𝑅𝑒𝑑_𝑅𝑒𝑙|) do the following { 

Compute Ф =max(Red_Rel) for 𝑭𝑺𝒆𝒕 as per Equation (1) }  

3 Exclude Ф from FSet 

Add Ф to OutputSet 

Project the remaining of FSet onto the feature space to return OutputSet 

End of FSA 

 

RFSSA // Recursive Feature Subsets Selection Algorithm  

Input   : FSet // the original set of features  

Output: SubSetBest // the best generated subset of features 

Define   SubSet={}     // list of chosen subsets 

RatioSet= {} // list of goodness scores 

SubSeti         // a generated subset of size 𝑁𝑆𝑢𝑏𝑆𝑒𝑡 

N                  // the number of generated subsets 

OutputSet // // the set of most relevant and least redundant features          

Begin 

1 FSA (FSet, OutputSet) 

2  Generate N SubSet from OutputSet such that each subset has its size 𝑁𝑆𝑢𝑏𝑆𝑒𝑡   

REPEAT  Compute SimRatio  across N SubSet as per Equation (4) 

 UNTIL (SimRatio>= ThreshValue)AND(OutputSet ={}) 

For i=1 to N  { 

a. Compute 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠𝑆𝑢𝑏𝑆𝑒𝑡𝑖
  as per Equation (2) 

b. Compute 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑢𝑏𝑆𝑒𝑡𝑖
   as per Equation (3) 

c. 
Set  𝑅𝑎𝑡𝑖𝑜𝑆𝑒𝑡𝑆𝑢𝑏𝑆𝑒𝑡𝑖

=
𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠𝑆𝑢𝑏𝑆𝑒𝑡𝑖

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑢𝑏𝑆𝑒𝑡𝑖

                                                                     

} // end of for loop 

Sort RatioSet in descending order 

Exclude 𝑆𝑢𝑏𝑆𝑒𝑡𝑖 of max(𝑅𝑎𝑡𝑖𝑜𝑆𝑒𝑡𝑆𝑢𝑏𝑆𝑒𝑡𝑖
) from SubSet 

3 Repeat 2 Until (OutputSet ={}) 

4 SubSetBest ←  𝑆𝑢𝑏𝑆𝑒𝑡𝑖 

End of RFSSA 

 

In phishing classification step, the training webpage stream could be learned 

actively based on the best selected features subset via the proposed hybrid 

features-based classifier (HFBC). HFBC leveraged the cutting back decision tree 

of DT to split the training feature space into sub-training spaces that would be 

pruned by NB’s induction function recursively. Thus, the training feature space ( 

𝑊 = {𝑊1, … , 𝑊𝑚} ) was given such that ( 𝑊𝑗 =  {𝑊𝑗,𝑖}
𝑗∈𝑚,𝑖∈|𝑊𝑖,𝑗|

 ) with the 

predictive classes ( 𝑃𝑐𝑙𝑎𝑠𝑠 = {𝐶1, 𝐶2}: 𝐶1 = 1, 𝑎𝑛𝑑 𝐶2 = −1 ). Each feature 

vector was represented as (𝑊𝑗 = {𝐶𝑘, 𝑊𝑗,𝑖}
 𝑖∈|𝑊𝑖,𝑗|,𝑘∈|𝐶𝑘|

), as illustrated in Figure 
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2.  The prior probability 𝑃(𝐶𝑘) was computed as per Equation (5) to predict how 

often each class occurs over ( 𝑊 ) relatively to the feature vector (𝑊𝑗 ). Whilst, 

the conditional probability of (𝑊𝑗 ) was computed by Equations (6) to predict the 

relevance between the predicted class (𝐶𝑘) and its corresponding feature (𝑊𝑗,𝑖) as 

it was indicated by (𝑃(𝑊𝑗,𝑖|𝐶𝑘)). Then, the predictive class of each examined 

feature vector (𝑊𝑗 ) as well as any miss-examined feature vector (𝑊𝑗 ) were 

prioritized by Optimized Feature Co-occurrence (OFC) and Phishing Induction 

Ratio (PIR) as per Equations (7), (8) and (9) respectively [17, 18]. It is noteworthy 

to mention that OFC was optimized from the formerly used criterion (Co-

occurrence) in [17] to update the predictive class labels of features. Unlike Co-

occurrence, OFC computed the features’ frequencies with respect to all labeled 

phish and not-phish feature vectors (𝑊𝑗 ) across the training feature space (𝑊). 

 

P(Wj⌈Ck) =  P(Ck) ∏ (Wj,i|Ck)

e=1→p

 
(5) 

Ck = Cj → Pms( Wj, Ck) (6) 

𝐶𝑓 =  
𝐶𝑓,𝐷−𝐶𝑓,𝐷′

𝐶𝑓,𝐷+𝐶𝑓,𝐷′
     (7) 

 

Where𝑑 ∈ 𝐷, 𝑑′  ∈ 𝐷′ 𝑎𝑛𝑑 𝑓 ∈ 𝐹, D is the set of phish websites, and D' is 

the set of non-phish websites. Then, Cf is the occurrence of each feature f 

belongs to feature vector F in all instances that included in D and D'.  Whereas, 

Cf, D is the occurrence of feature f with respect to all instances in D, and Cf, D' is 

the occurrence of feature f with respect to all instances in D'.” 

𝑃𝑟(𝑃 ∣ 𝑓𝑖) =
𝑁𝑓𝑖→𝑃

𝑁𝑓𝑖→𝑃+𝑁𝑓𝑖→𝐿
 (8) 

𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔 𝐼𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜, 𝑃𝐼𝑅(𝑊𝑗) =
∑ Pr (𝑃∣𝑓𝑖)

|𝑊𝑗,𝑖|

𝑖=1

|𝑊𝑗,𝑖|
 

(9) 

 

Where 𝑊𝑗 is the examined webpage, Phish Ratio (𝑊𝑗) is the prediction of phishing 

susceptibility, 𝑓𝑖 is the feature in 𝑊𝑗, 𝑁𝑓𝑖→𝑃 is the number of occurrences of 𝑓𝑖 in phish 

instance, 𝑁𝑓𝑖→𝐿 is the number of occurrences for 𝑓𝑖 in legitimate instance, and 

|𝑊𝑗,𝑖| is the number of features in 𝑊𝑗.” 
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HFBC // Hybrid Feature-Based Classifier  

Input:  𝑾    // Webpage stream such that 𝑊 = {𝑤𝑚}𝑚∈|𝑊| 

S    // the set of the proposed novel features  

Output:      𝑷𝒉𝒊𝒔𝒉𝑫𝒂𝒕𝒂, 𝑵𝒐𝒏, 𝑷𝒉𝒊𝒔𝒉𝑫𝒂𝒕𝒂 

Define Fspace // the generated feature space where 𝐹𝑠𝑝𝑎𝑐𝑒 = {𝐹𝑖}𝑖∈|𝐹| 

Fi // a feature vector included in Fspace 

𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒 // constructed decision tree for Fspace 

𝐹𝑠𝑢𝑏 // a sub-space of Fspace such that 𝐹𝑠𝑝𝑎𝑐𝑒 =

{𝐹𝑠𝑢𝑏}𝑠𝑢𝑏∈|𝑠𝑢𝑏| 

𝑆~ // the best chosen feature subset generated by RFSSA 

𝐶𝑗 // a targeting class in Fi, where 𝐶 = {𝐶𝑗}
𝑗∈𝑁

, and N is 

the number of classes 

Begin 

1 Apply FEA (W) to generate Fspace 

2 For each Fi, parse Fspace  for replica and keep only a single copy 

 

Note: 𝑊𝑗  is the examined webpage or feature vector;  

𝑃𝐶𝑙𝑎𝑠𝑠 represents the predictive class such that 𝑃𝑐𝑙𝑎𝑠𝑠 = {𝐶1, 𝐶2}; 

𝐶1 = 1 denotes phish class;  

𝐶2 = −1  denotes not-phish class;  

𝑓𝑗,𝑖 is a given feature in the examined feature vector;  

𝐹𝐸 refers to embedded objects features category;  

𝐹𝑋 refers to XSS based features category;  

𝐹𝐿 refers to Language independent feature category. 

Figure 2. Illustration of phishing classification step throughout HFBC 
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3 REPEAT // pursue steps from (3) to (8) 

a. Create 𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒 

b. IF (all feature vectors {𝐹 𝑖}𝑖∈|𝐹|  in F have the same class 𝐶𝑗) THEN  

𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒 ← 𝐿𝑒𝑎𝑓𝑁𝑜𝑑𝑒 
c. IF 𝐹 = { } THEN attach 𝑇𝑟𝑒𝑒𝑁𝑜𝑑𝑒 with the majority class 𝐶𝑗 

4 𝑆~ ← 𝐑𝐅𝐒𝐒𝐀(𝑆)  // apply RFSSA with FSA to give the best feature subset 

𝑆~ from original set 𝑆  

5 Exclude 𝑆~ from 𝑆 such as 𝑆 ← 𝑆 − 𝑆~ 

6 With 𝑆~, for each Fi in Fspace do the following steps Classify Fi over Fspace  

a. Calculate the prior probability of a phish class 𝐶𝑗  over Fspace  such that 

𝑃(𝐶𝑗|𝐹𝑠𝑝𝑎𝑐𝑒 ) as per Equation (5) 

b. Calculate the conditional probability of each feature 𝑓𝑖,𝑗 in regard to 𝐶𝑗 

over 𝐹𝑠𝑝𝑎𝑐𝑒 𝑃(𝑓𝑖,𝑗|𝐶𝑗) as per Equation (6) 

c. Update Fi in 𝐹𝑠𝑝𝑎𝑐𝑒 regarding to its class Cj  with the maximal 

𝑃(𝑓𝑖|𝐶𝑗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑃(𝐶𝑗|𝑓𝑖); 𝐶𝑗  → 𝑃𝑚𝑙 (𝐶𝑗|𝑓𝑖) as per Equation (7)                       

7 IF any misclassified Fi  THEN  

a. a. Calculate PIR  as per Equations  (8) and (9) 

b. Choose maximal PIR 

c. b. Partition 𝐹𝑠𝑝𝑎𝑐𝑒 into sub-spaces such that 𝐹𝑠𝑝𝑎𝑐𝑒 = {𝐹𝑠𝑢𝑏}𝑠𝑢𝑏∈|𝐹| and  

𝐹𝑠𝑝𝑎𝑐𝑒 ← {𝐹𝑠𝑢𝑏}𝑠𝑢𝑏∈|𝐹|    

8 Repeat (6) Until (𝐹𝑠𝑝𝑎𝑐𝑒 ≠ { }) AND (𝑆~ ≠ { }) 

9 Keep all computed probabilities in 𝑷𝒉𝒊𝒔𝒉𝑫𝒂𝒕𝒂 and 𝑵𝒐𝒏, 𝑷𝒉𝒊𝒔𝒉𝑫𝒂𝒕𝒂  

to classify unknown webpages in the future in  

End of HFBC 

 

3.2 Benchmarking Datasets 

Through experiments, three different benchmarking datasets were utilized to attain 

the motives of HFBC’s performance analysis as they are presented in Table 1. The 

benchmarking datasets differed in their abundance of both phish and legitimate 

samples, size, and webpage exploits such as homepages, login forms, e-business 

webpages, end-up, and pharming webpages. Furthermore, they encompassed 

different hosting languages like English, Chinese, French, Italian, German, 

Spanish, etc. Each benchmarking dataset was split up into 
2

3

𝑛𝑑
 and  

1

3

𝑟𝑑
 splits for 

both training and testing tasks, respectively. As such, HFBC and its competitors 

were tested and evaluated across the splits of every benchmarking dataset 

individually. Experimental results were averaged to estimate the overall 

performance outcomes and overall performance overhead of the tested classifiers.  

 
Table 1. Merits of benchmarking datasets 

Merits Dataset1 Dataset2 Dataset3 

Dataset Size 52 2878 96,018 
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Phish Webpages 36 1382 48009 

Legitimate Webpages 16 1496 48009 

Dataset Archive PhishTank 

/Alexa 

Chinese  

E-Business  

PhishTank 

/DMOZ 

Related work [20] [8] [10-12] 

Aggregation Time 25-31/7/2010 2014 2012-2015 

Webpage Exploits  Login Forms/  

Pharming/ 

e-Business/ 

End-Up/  

Homepages       

English/ 

French/ 

German 

e-Business  

Chinese 

e-Business/            

Homepages/ 

Login Forms/  

Social networking/ 

Pharming 

English/French/ 

German/Italian/ 

Spanish etc. 

3.3 Performance Measurements 

To distinguish a webpage as phish or legitimate, its actual and predictive states can 

be set in a form of Confusion Matrix whose rows contain the actual states and 

columns cover the predictive states. As such, a correct prediction can be depicted 

by the diagonal cells whereas actual classifications and misclassifications can be 

depicted by the other cells. On the basis of Confusion Matrix, typical performance 

evaluation measurements were calculated to evaluate HFBC and the comparable 

machine learning classifiers throughout experiments. The derived measurements 

included: True Positive Rate (TPR) that indicated the rate of correctly classified 

phish samples, and False Positive Rate (FPR) referred to mistakenly classified 

legitimate samples as phishes, whereas; False Negative Rate (FNR) referred to 

mistakenly labeled phish samples as legitimate ones which implied 

misclassification cost [23]. Furthermore, Elapsed Time was used to compute the 

amount of time spent by the tested classification model from its start-up to its 

ending-up. The Elapsed Time quantified how long the tested classifiers took to 

detect phishing on a batch of webpage stream in practice [23]. In addition, 

Detection Accuracy Rate [23-27] was used in to validate the effectiveness of the 

proposed HFBC at detecting zero-hour phish webpages adaptably on the flow of 

webpages during the real-time practice.   

3.4 Experimental Design 

As illustrated in Figure 3, the empirical workflow was pursued via three analyses: 

chronological analysis, real-time practice, and comparative analysis across the 

benchmarking datasets. Accordingly, each dataset was formulated into feature 

vectors to be manipulated by the tested classification model. It is worthy to 

mention that 27 computerized simulations for the comparable classification 

models and benchmarking datasets throughout a highly used tool for data mining 

that is “WEKA 3.5.7-Waikato Environment for Knowledge Analysis” which is 
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developed by some researchers at the University of Waikato. (27 repetitions of 

the conducted experiment across three benchmarking datasets). 

 

 

Data Archives 

on The Web

HFBC

Benchmarking 

Data Set

Web Page

Training 

Data (2/3)

Testing 

Data (1/3)

Comparable Machine 

Learning Classifiers  

Results
Performance 

Evaluation

Comparative 

Analysis

Chronological 

Analysis

Results Real-Time 

Analysis

100 90 80 70 60 50 40

Efficient Inefficient

20%

20%

20%
20%

20%

 
Figure 3: Experimental design 

4 Results and Discussion 

4.1 Chronological Analysis 

This chronological analysis was conducted to validate the classification 

performance of the proposed HFBC across different benchmarking datasets and 

the best selected subsets of features, as shown in Figure 4. Throughout a ten-fold 

cross-validation strategy, the results were merged and evaluated in terms of TPR, 

FPR, and FNR with respect to the benchmarking datasets. Charts in Figure 4 

showed that HFBC could achieve the best rates of TPR (from 0.984 to 0.989), FPR 

(from 0.051 to 0.066), and FNR (from 0.014 to 0.0156). Overall, the evaluated 

rates disclosed the following issues: 

i. High TPRs and low FPRs and FNRs implied that the chosen subsets of 

features were decisive to characterize typical and zero-hour phish webpages 

holistically. Furthermore, HFBC could classify almost phish exploits on 

balanced and imbalanced datasets besides leveraging dataset’s scalable size. 

That was due to the robustness of the selected feature subsets in terms of their 

goodness and stability against the chronological evolving datasets. Although, 

the selected subsets of features had several features in common and varied in 

their settings, they characterized phish webpages similarly versus the scale of 
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datasets. That was attributed to the maximal relevancies and minimal 

redundancies of all-inclusive features to different phish exploits over all 

datasets. Hence, they had potential effects on the HFBC’s performance 

despite of their distinctions in compactness and settings. 

ii. HFBC achieved accurate classification versus the scale in size and the 

variable abundance in phish class of the benchmarking datasets (see Figure 4 

(a)). This was attributed to building the predictive classes in a structure of DT 

for learning known labeled datasets as well as pruning the classification 

process of DT by the induction function of NB for learning unknown 

instances.  

iii. Since HFBC utilized OFC and PIR as its own constraints of the decision to 

tune its own default induction boundaries (i.e. the hybrid induction settings of 

DT and NB). Therefore, HFBC could re-examine any misclassified features 

or feature vectors in the learning datasets, and it could judge their phishing 

class with minimal false rates (see Figure 4 (b) and Figure 4 (c)). 

 

10 Features 15 Features 20 Features
0.0

0.2
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(a) Performance on Dataset1 (b) Performance on Dataset2 
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(c) Performance on Dataset3 

Figure 4. Chronological analysis of HFBC  
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Altogether, (i) the hybridity of two machine learning algorithms (NB and DT) for 

more effective phishing classification, (ii) the synchronization of two statistical 

ratios (OFC and PIR) for more decisive phishing prediction, (iii) the conjunction 

of HFBC with RFSSA for robust feature subsets selection, and (iv) the hybrid set 

of 58 new and different features for holistic phishing characterization; provided 

potential induction factors to HFBC in phishing detection on three different 

datasets. 

 

4.2 Real-Time Analysis 

This section exhibits the real-time analysis of the proposed HFBC during 

one-month sampling interval on evolving webpage streams. During real-time 

analysis, classification outcomes were reported and evaluated day after day by 

averaging the Detection Accuracy Rate (ACCR) as per Equation (10).  

 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑅𝑎𝑡𝑒 (𝐴𝐶𝐶𝑅) =
𝑇𝑃𝑅+𝑇𝑁𝑅

𝑁𝑡𝑜𝑡𝑎𝑙
                         (10) 

 

Where, 𝑇𝑃𝑅 denotes the number of is correctly testified non-phish webpages, 

𝑇𝑁𝑅 is the number of correctly testified phish webpages, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total 

number of all inspected webpages included in the dataset. 

Respectively, the plotted values of ACCRs in Figure 5 showed the progressive 

effectiveness of HFBC from the 1st day to the 30th day and they inferred that HFBC 

could manifest its adaptive and effective classification against both the zero-hour 

phish webpages (new phishes) as well as the prevalent phish webpages. That was 

attributed to the hybridization of NB and DT induction margins besides the 

synchronization of OFC and PIR which could update HFBC’s default induction 

margins actively on every batch of webpage flow. However, a radical escalating 

and/or de-escalating of performance trend line was reported at certain days. This 

was caused by the merits of the daily fetched webpage batches that varied in their 

size, their webpage exploits, and their rational and irrational distribution of phish 

class to non-phish class. Moreover, the daily grabbed batch of webpages might 

have different ratios across webpage functionality and exploitations that might 

need a long-term crawling and a complex processing. Furthermore, each grabbed 

batch of webpages might encompass typical and/or new that were either embedded 

objects, or cross-site scripting (XSS), or language independent features, or hybrid 

features. Thus, HFBC yielded a variable performance outcomes during 30 days of 

real-time practice.  

On the other hand, the elapsed time required to examine a batch of 100 

webpages per day was varied according to the examined webpages themselves as 

it can be observed from Figure 6. Indeed, an examined webpage might be either 

a zero-hour phish variant, or a prevalent phish variant, or a valid legitimate 

webpage. So far, such webpages might exploit login-forms, pharming, 

homepages, e-business websites, etc. Thus, the elapsed time required for a single 

webpage or a batch of webpages could vary according to the webpages’ 

exploitations and classes. That, in turn, could increase or decrease the time spent 
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by the steps of features extraction and/or features selection and/or phishing 

classification during HFBC’s implementation.  

 

 

Figure 5. Daily basis real-time analysis of HFBC in  accuracy rate 

 

Figure 6. Daily average elapsed time spent by HFBC to tackle phishes 

on a batch of 100 webpages during real-time analysis. 

ACCR

Elapsed Time (sec)
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4.3 Comparative Analysis 

This comparative analysis was conducted to appraise the classification 

performance of the proposed HFBC versus those machine learning-based 

classifiers adopted by the state of the art of anti-phishing techniques. The chart 

legends in Figure 7 pointed out how the HFBC and its competitors including SMO, 

SVM, TSVM, NB and DT; did perform in the presence of the three different 

benchmarking datasets. Obtained classification outcomes were exposed in terms 

of TPR, FPR, and FNR. 

So far, HFBC showed its superiority among its competitors as presented in 

Figure 7. This was disclosed to:  

i. As shown in Figure 7 (a), the comparable classifiers rendered variations in 

TPRs because they fall short in characterizing new phishing features and 

various phish webpage exploits. Whilst, HFBC achieved the highest TPRs 

which assured its decisive characterization at different phish exploits and its 

effective classification at zero-hour phish webpages across the datasets. 

ii. The active learning of HFBC versus the inactive learning of the comparable 

classifiers attained the minimal false classifications, i.e. FPRs of HFBC were 

closest to zero among those of its competitors as shown in Figure 7 (b). 

Because HFBC could adjust its initial induction margins by hybridizing the 

induction functions of both NB and DT with an updating criterion like OFC. 

By using OFC, HFBC could update its default induction margins and then it 

could adapt various phish webpages and their exploits across benchmarking 

datasets. 

iii. Due to their deficiency at employing new features to characterize novel and 

leveraging discriminating criteria to classify unknown samples; the 

comparable classifiers rendered high FNRs (see Figure 7 (c)) on the 

benchmarking datasets. Unlikely, HFBC could report very minimal and often 

negligible FNRs (i.e. FNRs closed to zero) due to its PIR which identifies the 

phish class of any misclassified sample decisively.  

 

The overall observations restated the important role of inductive factors in 

machine learning-based phishing classification as well as the distinction of HFBC 

versus other tested phishing classifiers whose performance outcomes were related 

to their deficiency of inductive factors partially or wholly. Unlike the revisited 

phishing classifiers [5-7, 10-12] specifically those adopted NB and DT [17-21], 

both the hybridization of NB and DT, and the synchronization of OFC and PIR 

criteria could manifest the induction settings of HFBC progressively and converge 

the overlooked features vectors from the remaining feature space iteratively for 

more decisive and effective phishing classification as depicted in Table 2.  
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Figure 7.  Performance outcomes of HFBC  during the comparative analysis 
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Table 2. General comparative analysis of HFBC and its competitors 

 
         Work                                     

 

 

Issues 

[5] [6-7] [8] [9] [10-11] [12] This work 

Machine 
Learning  

Algorithm 

SVM, LR, 

DT 

SVM SMO, 

LR, RF, 

NB 

SVM, RF, 

JRip 

k-NN SVM, RF, 

C4.5, JRip, 

HFBC 

Classifier  

Type 

Ensemble Single Single Single Single Ensemble Hybrid 

Statistical  

Induction  

Not Not Not Not Not Not OFC, PIR 

New  

Features 

3 7 Not Not 12 12 58 

Features  

Selection  

Criteria  

Not Not χ2 CFS, IG, χ2 Not Not mRMR  

Features  
Subset  

Selection  

Algorithm 

Not Not Not Not Not Not RFSSA 

Big 

Datasets 

13000 2464 2878 1400 96000 96000 100, 000 

Web page  

Exploits 

e-Business 

Login Form  

Social-  

Networking 

Pharming 

English 

e-Business 

Login Forms  

Pharming 

English 

e-Business 

Chinese 

e-Business 

Login Forms 

Pharming 

English French 

e-Business 

Pharming 

English 

French, 

German 

Italian 

Spanish  

Portuguese 

e-Business 

Pharming 

English 

French, 

German 

Italian 

Spanish 

Portuguese 

e-Business 

Pharming 

Login Forms 

Social-  

Networking 

English 

French, 

German Italian 

Spanish 

Portuguese 

Active  
Learning  

Active Not Not Not Not Active Active 

External  

Resources 

Google 

Trends,  

Yahoo Clues, 

Blacklist of 

Phish Web 

pages 

Google 

Trends,  

Yahoo Clues, 

Blacklist of 

Phish 

Web pages 

Whitelist 

of Chinese  

e-business 

web pages 

____ Google 

Trends,  

Yahoo Clues 

Google 

Trends,  

Yahoo 

Clues 

Not 

Real-Time  
Application 

Two-weeks 
practice 

Not Not Not Not Not One Month 
Practice 

Performance 

Outcomes 

♣ 
TPR (92%), 

FPR (1.4%) 

  ♣ 
TPR 

(99.6%),  

FPR (0.42%) 

♣ 
TPR 

(95.83% ) 

FPR: (2.2) 

♣ 
TPR (94.9%) 

FPR: (1.44) 

♣ 
TPR (99%), 

FPR (0.37%) 

 ♣ 
TPR 

(96.71%) 

FPR 
(0.7%) 

♠ 
TPR (98.24%), 

FPR (0.05%) 
FNR:0.032% 

Accuracy 

(0.97) 
Elapsed Time: 

21sec 

Notes HFBC=Hybrid Feature-Based Classifier, SVM =Support Vector Machine; LR=Logistic Regression; 
BN=Bayesian; DT, C4.5, and JRip are types of Decision Tree Classifier; RF=Random Forest;                    

k-NN=Neural Network; SMO=Sequential Minimal Optimization, NB=Naïve Bayes. 

♣ Overall performance evaluation outcomes as they are presented in the related works. 

♠ Overall performance evaluation outcomes as they are achieved by this work 
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5 Conclusions and Future Work 

 

By revisiting the current achievements in machine learning-based anti-phishing 

domain, it is observed that they affirmed to be computationally effective but in-

adaptive to accomplish real-time phishing detection. That is due to their full or 

partial deficiency of inductive factors such as rich set of features, big web data and 

its class imbalance, actively learned feature-based classifier, and adaptable 

modelling. By restating the causality between their limitations and their inductive 

deficiency throughout an empirical analysis; future outlooks are suggested to 

promote their induction power. Furthermore, a phishing classification model could 

be extended in the future via a high level assembly integrating functionally inter-

relating and synchronously working modules to adapt zero-hour phish patterns on 

the evolving webpage stream. Regarding the issues stated in this paper at building 

any machine learning-based classification model; effectiveness of classification 

could be elevated along with reducing the misclassification and computational 

cost. Additionally, this paper with the underlined perspectives are hoped to serve 

as a navigating taxonomy to the reseachers for their future efforts.  
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