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| ABSTRACT

The set of all Z — valued class functions of a finite group
G form an abelian group cf(G,Z) under point wise addition.
Inside this group we have a subgroup of Z — valued generalized
characters of G denoted by R(G).
The problem of finding the cyclic decomposition of the
factor group K(G) = cf(G,Z) / R(G) has been considered in this
thesis for G = the special linear finite group SL(2,p) where

p=3,5,7 11, 13,17, and 19.
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INTRODUCTION

The importance of representation and character theory for the study
of the groups stems on the one hand from the fact that should it be
necessary to present a concrete description of a group , this can be
achieved with a matrix representation. On the other hand, group
theory benefits mainly from the use of representations and
characters, when these approaches are employed as an additional
means to analyse the structure of a group. Moreover representation
and character theory provide varied applications, not only in other

branches of mathematics but also in physics and chemistry.

In this thesis our focus will lie on the cyclic decomposition of
K(SL(n,p)) the factor of Z — valued class functions of the considered
group SL(2,p), p =3, 5, 7, 11, 13, 17, and 19 module the group of the
generalized characters of the same group. The problem of the
determination of the cyclic decomposition of K(G) has been considered
for many groups and been solved completely for G = S,, D,, and
elementary abelian groups but for the special linear finite groups it seems

to be untouched

In chapter 1 The foundations of representation theory are described

and illustrated by a number of definitions and basic examples (section

1.2), the notion of a character of a finite group is deduced and considered




in detail in (section 1.3). Again great importance is attached to the
description of examples to illustrate these concepts, we use that for
constructing the ordinary character table of SL(n,p¥) where p is prime and
P # 2 in chapter 2. In (Section 1.4) we develop the theory necessary to
understand the contents of a character table. In (section 1.5) we introduce
some important definitions of the abelian group and describe the
character table of this group. In (section 1.6) we describe an additional
and very important method which constructs characters of a group from
characters of an arbitrary subgroup, this method is used to find some of
the irreducible characters of the special linear finite groups in chapter 2.
In (section 1.7) we study the factor group K(G) also the section includes

fundamental concepts and the order of this group.

chapter 2 Is devoted to the some members and an important class of a
group the special linear finite groups. After describing important features
of this group and investigating their conjugacy classes (section 2.2) we
move on to constructing the ordinary character table of SL(n,p*) where p
iIs prime and p # 2. Great care is taken to illustrate each step and a

number of additional calculations (section 2.3).

In chapter 3 This chapter covers the study of the character table of

the irreducible rational representations of SL(2,p), p is an odd prime,

k > 0 and odd by using the character table and the Schur indices (section
3.2), then we introduce the diagonalization of the matrix (=*SL(2,p))
which gives us the cyclic decomposition of K(SL(2,p)), wherep =3, 5, 7,
11,13, 17, and 19 (section 3.3).







Chapter one Preliminaries

9)

PRELIMINARIES

1.1. INTRODUCTION:

In this chapter, some definitions and basic concepts of representation theory,
character theory, the characters of finite abelian group, induced characters and

factor group are introduced.

1.2. REPRESENTATION THEORY:

This section introduces some important definitions of the representation

theory of finite groups.

DEFINITION (1.2.1):

The set of all nxn non-singular matrices over the field F this set forms a

group under the operation of matrix multiplication. This group is called the

general linear group Of dimension n over the field F, denoted by GL(n,F). See [1].

DEFINITION (1.2.2):
Let V be a vector space over the field F and let GL(V) denote the group of

all linear isomorphisms of V onto itself.

«1l»



Chapter one Preliminaries

A representation 0f a group G with representation space V is a
homomorphism t: g — t(g) of G into GL(V). See [1].

DEFINITION (1.2.3):

A matrix representation 0f a group G is a homomorphism T: g — T(g) of G

into GL(n,F), where n is called the degree 0f the matrix representation. See [1].

EXAMPLE (1.1):
Consider the symmetric group S; of order 6, define T: S;— GL(3,C) ,as

follows:
1 00 010 0 01
T(1) = 010 T(12) = 100 T(13) = 010
0 01 0 01 100
10 010 0 01
T23)=|0 0 T123)=|0 0 1 T132)=|1 0 0
01 100 010

It is easy to show that T is a matrix representation of Ssof degree 3.

DEFINITION (1.2.4):

Two representations t and t with representation spaces V and M

respectively are said to be equivalent if there exists an isomorphism f of V onto

M such that forall g € G, t(g) f=f t(g).

«2»




Chapter one Preliminaries

Similarly, two matrix representations T, and T, are equivalent if they have

the same degree, say n, and if there exists a fixed invertible matrix A € GL(n,F)

suchthatforallg € G, T, (g) =A™ T, (g) A. See [1].

EXAMPLE (1.2):

Consider two representation of degree 2 of the symmetric group

Ss=<r,c:rr=c=1,rc=c’r>={1, (12), (13), (23), (123), (132)},

where r = (12), ¢ = (123). Let T1: S; — GL(2,C) and T,: S; — GL(2,C) such
that:

(0 -1 (01
Tl((lz)) - -1 0 Tl((123)) - -1 -1
01 0 -1
T((12) =, TA(123) =,
T, and T, are homomorphism, Then T, and T, are matrix representations, also

10
j in GL(2,C) such that

there exists an invertible matrix A = (O 1

T.)=A T T,(x) A, Vx € S;

Hence T, and T, are equivalent.

DEFINITION (1.2.5):

Let T be a representation of a group G such that T(g) =1,V g € G. Thent

is called the linear trivial representation. See [1].

«3»




Chapter one Preliminaries

DEFINITION (1.2.6):

A matrix representation T of a group G is called reducible representation if

it is equivalent to a matrix representation of the form

(Tl(X) *

0 TZ(X)j,VXEG

where T, and T, are representations of G, whose degree is less than the degree of
T.
A reducible representation T is called completely reducible if it iS equivalent

to a matrix representation of the form

[Tl(X) 0

0 Tz(x)j,VXEG

If T is not reducible then T is said to be an irreducible representation. See [11].

EXAMPLE (1.3):
In symmetric group S define T: S; — GL(2,C) such that

10
(O J if xiseven permutation
T(X)=

-10
( 9 1] if xisodd permutation

Then T is a matrix representation on S.

«4d»




Chapter one Preliminaries

Also there exists a non-singular matrix A = @ 11j in GL(2,C) such that

vV XeS,

AlT(x)Az[Tl(X) ) j

0 T,(X)

Therefore T is reducible.

1.3. CHARACTER THEORY:

This section introduces some important definitions and basic concepts of the

character theory of finite groups.

DEFINITION (1.3.1):

Let T be a matrix representation of a finite group G over the field F.

The character ) Of T is the mapping y: G — F defined by

v (Q)=Tr (T@) V g € G, where Tr (T()) refers to the trace of the matrix T(g).

The characters of degree 1 are called linear characters. See [4].

EXAMPLE (1.4):

In symmetric group S; = <r, ¢ | rP =¢c® =1, rc = ¢ >, define the

representation T: S; — GL(2,C) such that:

01 @ 0 .
r— , C— , where @ = ™"
10 0 o

The character y of T is: x(r) = 0, x(C) = ® + ®° = -1.

«5»




Chapter one Preliminaries

DEFINITION (1.3.2):

The function 1lg, with constant value 1 on G, is a linear character, it is

called the principle Or sometimes (unit Or trivial) character of G.

The character afforded by irreducible representation is called irreducible

Character, Otherwise it is called compound Character. See [4].

EXAMPLE (1.5):

Linear characters are irreducible character.

PROPOSITION (1.3.3):
If ¢ is the character of a representation T of degree n, we have:
i. 7 (1) =n.

.  yx(s?*)=z(s) forse G (wherethe bar denotesthe complex conjugate)

PROOF: See [5].

LEMMA (1.3.4):

Let ¢t be the character of a representation T of a group G of degree n, if T

and T are representations of G, then yr @ y1" =yt + y1".

PROOF: See [6].

T O

o T"j .Hence tr(T® T ) =tr(T) + tr(T ).

The matrixof T® T is [

« b »




Chapter one Preliminaries

LEMMA (1.3.5):
Let y is the character of a group G and suppose char(F) | |G|. Then there

exist irreducible characters yy, ... , yx Of G such that y = 1+ ... + y«.

PROOF: See [6].

DEFINITION (1.3.6):

A class function 0N a group G is a function f: G — C which is constant on

conjugacy classes, thatisf (x 'y x) =f(y) Vx,y €G.

If all values of f are in Z, then it is called z-valued class function. See [4].

LEMMA (1.3.7):

Characters of a group G are class function.

PROOF: See [4].

Let p be matrix representation and  character of p

X (7Y X) =Trp(xy X) = Tr p(X7).Tr p(y). Tr p(x) = Tr p(y) = ().

DEFINITION (1.3.8):

Let y and y be characters of the group G. The inner product is defined as

g

> x(@w(g™) (1.0)

geG

See [4].

«T»




Chapter one Preliminaries

EXAMPLE (1.6):
Let G = C; = {1, a, a°} and suppose that 0, ¢ are characters of a group G

define from G into C as follows:

1| ala®
6 111
|2 |i|-1

<9,¢>=%(2-1+i 14 (=1)-1) =%(1+i) ,

<t9,0>=%(2-2+i-i’+(—1)-(—1))=2

THEOREM (1.3.9):

Let y and y be characters of two non-isomorphic irreducible representation

of a group G. Then we have
i. (xw)=0.

i. (xox)=1

PROOF: See [5].

Corollary (1.3.10):

If 1, ..., xx are irreducible characters of a group G, and y is any character
k
of G, then ZZZ()@%)%
i=1

PROOF: See [6].

«8»




Chapter one Preliminaries

Corollary (1.3.11):

k
If y1, ..., yxare irreducible characters of a group G, and ;(=Zni;(i , and
i=1

k
://:Zmi & are any two characters of G, then
i=1

<9N/I>=§ni m,

PROOF: See [6].

THEOREM (1.3.12):
Let T and S be representations of G with characters x and . Then T and S

are equivalent if and only if they have the same character.

PROOF: See [4].

PROPOSITION (1.3.13):

Let x be a character of G. Then  is irreducible if and only if { z, x) =1.

PROOF: See [4].

PROPOSITION (1.3.14):

k
If x1, ..., xare all irreducible characters of G, then >_ x° (1) =|G|.

i=1
This is a convenient criterion for the irreducibility of a character.
PROOF: See [4].

«9»




Chapter one Preliminaries

THEOREM (1.3.15):

Sum and product of characters are character.

where if we suppose y and y are characters of a group G, then

1.  The sum of characters is defined by
O+ W@ =9 + W@ forge G
2.  The multiplication of characters is defined by

(X W)@ = xO) . Y@ forge G

PROOF: See [4].

THEOREM (1.3.16):

The number n of distinct irreducible characters of G is equal to the number

of its conjugacy classes.

PROOF: See [5].

PROPOSITION (1.3.17):

The degres n; satisfy the relations

k

1. Znizz‘G‘.

i=1

K
2. If1#geGwehave 2 M x(9)=0.
1=1

PROOF: See [5].

« 10 »



Chapter one Preliminaries

THEOREM (1.3.18):

Let 1, ..., y« be all the irreducible characters of a group G and let g,..., gk

be the representation of the conjugacy classes Cg, ..., Cyof G. Then we have:

1.  The row orthogonality relation:

d Zi(ga)}(j(ga) _ N
1\CGT = Oj forall i,j=1,2,..., K

2.  The column orthogonality relation:

k -
Z 7(9,) 7:(9,) = Oup ‘CG (ga)‘ forall a,f=1,2,...,k

i=1

1 if i=]
where Cg(g,) denote the centralizer of g, in G, 5ij = {0 i i;t; :

PROOF: See [6].

EXAMPLE (1.7):

Consider the characters of a group S; as follows, where the conjugacy

classes of this group are:
C.={1}, C2 ={(12), (13), (23)}, Cs = {(123), (132)}

«11»



Chapter one Preliminaries

(Xar 25) = %(1.2.2+3.0.o +2(-D(-D) = %(4+ 2)=1

(Xas 22) = %(1.2.1+ 3.0.(-D)+2(-1).1) = %(2 -2)=0

Zsl)a (C,) (C,) =1.1+(-1).1+0.(-1) =0

t=1

Zslﬂa (C,) 1(C,) =11+ (-1).(-1) +0.0=2

DEFINITION (1.3.19):

Let y be the character of the representation T of degree n, define the kernel

of y to be ker y =ker T. See [4].

LEMMA (1.3.20):
If % be a character of G, then Ker y = {g € G: x(9) =y (1)}

PROOF: See [4].

«12 »




Chapter one Preliminaries

Corollary (1.3.21):
If H <G ,then H=N { Ker y;: H<Kery; }.

PROOF: See [6].

1.4, THE CHARACTER TABLE :

The complete information about the characters of a group G is conveniently
displayed in a character table, which lists the values of the k irreducible
characters for all elements of G. Since the character is constant on each of the

conjugacy classes C,, (1 <a <Kk), thus it is sufficient to record the values

Xi (goc)’ i:]'l 21 LUK | k ] If gOL (S COL

Table (1.1) presents a typical character table, the body of the table is a k by k
square matrix whose rows correspond to the different characters while each
column contains the values of all irreducible characters for a particular
conjugacy classes, denoting the number of elements in C, by h, we have the
class equation h; + h, + ... + he= |G|, and the degree of the k distinct

representations of G over Chy n;,i=1,2, ..., k.

The size of the centralizer Cs (C,) = |G| / h,= m,, although they are not
properly speaking, a part of the table. See [1].

T — N N N N N N NN NN AN ————— 13 »



Chapter one Preliminaries

C, C, C, |...] Cy |...] Ck
|Cy hy hy |[...] hy |...] hg
|Ca(Co)l | My m; ... Mg | ... Mg
el 1 1 1 1

%2 Ny | %2092) | --- | X2(9e) | -+ | X2(9K)

A3 N3 | %a(92) | --- | X3(9a) | --- | X3(9)

Ak N | Xd@2) | o | Nd@a) | oo | 29K

TABLE (1.1)

EXAMPLE (1.9):
The group S; has three conjugacy classes, namely
C. = {1}, C2 ={(12), (13), (23)}, C5 = {(123), (132)}

Therefore S, has three irreducible representations, they are:

1. pug=1 Vg E S,

1 if xisaneven permutation
2. p2(9) = s .
-1 if xisanodd permutation

3 1) = 10 12) = 01 (13) = -1-
. pP3 01 P3 10 P3 0 1

3=t 0 a3 =|2 1 asp= "t 71
P3(23) 11 P3 1 pP3 1 0

« 14 »
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Then the character table of S is:

Ce C. | C | C

IC4l 1 | 3 | 2

1Ca(Co)l 6 2 3

= S,= ” 1] 1] 1
" 1 | 1] 1

" 2 [ 0o | 1

We check that
neZ+n’+nf=12+12+2*=6

which confirms that we have indeed found all the irreducible characters of Ss.

1.5. CHARACTERS OF FINITE ABELIAN GROUP:

In this section we introduce some important definitions of the abelian group

and describe the character table of this group.

DEFINITION (1.5.1):

A group G is called abelian group if every pair of elements commutes, that

is, iIf xy=yx forall x, yin G. See [10].

DEFINITION (1.5.2):

A group G is called finite group if G is a finite set. In this case the number

of elements in G is called the order of G and is denoted by |G|. This amount to

«15»
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saying that each conjugace class of G consists of single element, also that each

function on G is a class function. See [10].

THEOREM (1.5.3):

A finite abelian group G of order n has exactly n distinct characters.

PROOF: See [10].

1.5.4 The Character Table Of Finite Abelian Group :

For a finite abelian group G of order n a complete information about the

irreducible characters of G is displayed in a table called the character table 0f G.

We list the elements of G in the 1% row, we put

v(d) =yl ,1<i<n,1<j<n-1

C, 1 X NG N
IC4] 1 | 1 1 1
|CG(Ca)| n n n n
" 1| 1 1 1
=G= %o 10" [0 | . | ™
%n 1| ()t | () ()™
TABLE (1.2)

« 16 »




Chapter one Preliminaries

27

If G = Z,, the cyclic group of order n, and let ® = e M he a primitive

n-th root of unity then the general formula of the character table of Z, is:

C, 1 z 7? z"!

|Cy 1 1 1 1

|Ca(C,)| n n n n

e 1 1 1 1
= Zn = Xz 1 o) 0)2 mn-l
Y3 1 | o | o | ... ]

Xn 1 wn 1 n-2 ®

TABLE (1.3)

See [4].

EXAMPLE (1.10):

The group Zs consists the elements 1, z, Z%, 2°, 2%, (z° = 1).
27mi/5

Leto=e . Then the character table of Z5 is:
C, 11z 22|27
|Cyl 1|1 1 1 1
ICc(Cy)] |5 5| 5| 5 5
Y1 1] 1 1 1 1
l| o | | 0| o

= ZS = L2

%3 1o | 0| 0o | @
XA 1 (,03 (,l) 4 2
As 1l o | @ | o | ©

« 17 »




Chapter one Preliminaries

For the general case of a finite abelian group G of order n, can be written G
as a direct product of a cyclic subgroups ,say
G=<Z> X <Z,>% .. X</ >
where Z,, is of order n,and n=ns.n, ... Ny,

. . . a, _a a
An arbitrary element x € G is then uniquely expressed as X = z; ~ zp 2...Zm "

where the exponents are subject to the conditions 0<a,<n, (n=I1,2,...,m)
In order to construct the irreducible characters of G, we choose for each p an
n,-th root of unity

&= €

(2rxi r, /nﬂ) . . . .
where ry 1S any Integer satlsfylng

0<r,<n,(p=1,2,...,m) ...(1.2)

Corresponding to each m-tuple [r] = [ry, r2, ..., Im |

We define the function

(Zniiaﬂrﬂln#) (1 3)
Xm=e o

Then there are nm-tuples satisfying (1.2), since distinct m—tuples correspond to
distinct functions, then all n irreducible characters of G are obtained by (1.3).
See [4].

EXAMPLE (1.11):
The characters of G = Z,x Z3 can be found by applying (1.3), r = [r,r,] and
|G|=2x%3=6.

Letw=e>""3 then the character table of G is:

«18 »
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Co | (L1 | D) | @y) | xy) | @Y) | xY)
C4l 1 | L | 1 | 1] 1|1
CoC)l| 6 | 6 | 6 | 6 | 6 | 6

Ao | 1 1 1 1 1 1

%[1,0] 1 -1 1 -1 1 -1
%[0,1] 1 1 ® 0) 0% o’
A[1.1] 1 -1 ® -® o’ -?
%[0,2] 1 1 0% 0% ® ®
X[1,2] 1 -1 0% -’ ® -

1.6. INDUCED CHARACTERS:

In this section we describe an additional and very important method which

constructs characters of a group from characters of an arbitrary subgroup

DEFINITION (1.6.1):

Let H be a subgroup of a group G, and ¢ be a class function of H. Then

(pTG, the induced class function on G, IS given by
1

pT(9)= H D o' (xgx )
where ¢° is defined by :
¢°(h) = ¢(h) if heH
and
¢°(h) =0 if heH

«19 »
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Clearly ¢1° is a class function on G and ¢1°(1) = [G:H] ¢(1).

Then the character of the induced representation is called induced character

and can be rewritten as:

G Cs(C,)
T (Ca)zw g;;ﬂ(g) ...(1.4)

where  ¢1°(C,)=0 if C, ¢ H. See [4].

EXAMPLE (1.12):

The three conjugacy classes of the symmetric group Ss, are:

C:={1}, C2={(12), (13), (23)}, C5 = {(123), (132)}

To calculate the induced characters of S; from the unit characters of the

cyclic subgroups C;, i =1, 2, 3, by using the formula (1.4).
The partitions to the order of S; equal 3, they are 1°, 12, 3, while the orders

of the three classes of S; are 1, 3, 2, and the orders of the centralizer are 6, 2, 3
respectively. Thus:

1- (1% 110 =[S::Cilu (1) =6(1)=6
Sg S3 _ - 3 3
1 al °= 1, al °= 0. since (12) & (1 ), and (123) ¢ 1.

Oy(x)=(6 0 0)

« 20 »



Chapter one

Preliminaries

6
2-(12): 1= 5 Y 1=3

2
112c2T83=§ Zl =1

13 CZTS3 =0. since (123) ¢ (12).

D(x)=(3 1 0)
s, O
3-8 lafT=gl=2
112 C?,ng =0. since (12) & (3)

3
1y cat > = 3 2 1+1=2

Ds(x)=(2 0 2)

We declare that in this table:

C. 1° 12 3
IC4l 1 3 2
1Ca(Co)l 6 2 3
@, 6 0 0
@, 3 1 0
@4 2 0 2
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Corollary (1.6.2):
Let H be a subgroup of G, and ¢ be a character of H. Then ¢1° is a character
of G.

PROOF: See [4].

1.7. THE FACTOR GROUP K(G):

In this section we will study the factor group K(G) of a group G, also this

section includes fundamental concepts and the order of K(G).

DEFINITION (1.7.1):

A rational valued character 0 of G is a character whose values are in Z, that

is0x) € Zforall x € G. See [7].

DEFINITION (1.7.2):

Two elements of G are said to be a-conjugate if the cyclic subgroups they

generate are conjugate in G, this defines an equivalence relation on G, its classes

are called the a-classes of G. See [7].

Let G be a finite group and let y1, %2, ..., xx be its distinct irreducible
characters, A class function on G is a character if and only if it is a linear
combination of the y;<s with non-negative integer coefficients. We will denote
by R*(G) the set of all these functions, the group generated by rR+(G) is called the

group of the generalized characters of G and denoted by R(G). We have
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R(G)=Zy®Zypy® ... ® Zyx
An element of R(G)is called a virtual character. Since the product of two
characters is character, R(G) is a subring of the ring cf(G) of C-valued class

functions on G.

Let cf (G,z) be the group of all Z-valued class functions of G Which are

constant on Q-classes, and let R(G) be the intersection of cf (G,Z) with R(G) R(G) IS

a ring of Z-valued generalized characters of G.

Let &, be a complex primitive m-th root of unity. We know that the Galois

group Gal(F(en) / F) is a subgroup of the multiplicative group (Z / mz)" of

invertible elements of Z / mZ. More precisely, if 6 € Gal(F(en) / F), there exists

a unique element t € (Z/mZ)" such that

oem)=¢cm  ife"=1

We denote by It the image of Gal(F(en) / F) in (Z/ mZ)’, and if t € T'¢, we

let o; denote the corresponding element of Gal(F(ep) / F).

Take as ground field F the field Q of rational numbers. The Galois group of
Q(em) over Q is the group denoted by I'. See [8].

THEOREM (1.7.3): [Gauss [J Kronecker]:
We have I' = (Z / mZ) .

PROOF: See [5].
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PROPOSITION (1.7.4):

The characters @;, @,, ..., @, form a basis of R(G) and their number is

equal to the number of conjugacy classes of cyclic subgroups of a group G,

where

¢ = Zlia

oeGal(Q(xi)/Q)

and v; are the irreducible C-characters of G.

PROOF: See [8].

LEMMA (1.7.5):
The factor group K(G) has a finite exponent equal to the order of G.

PROOF: See [8].

DEFINITION (1.7.6):

Let M be a matrix with entries in a principal domain R. A k- minor of M is

the determinant of a k by k submatrix preserving row and column order. See [7].

DEFINITION (1.7.7):

A k-th determinant divisor of a matrix M is the greatest common divisor of

all the k-minors of M, and is denoted by b,(m). See [7].
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THEOREM (1.7.8):

Let M, P, Q be matrices with entries in a principal domain R. Let P and Q
be invertible matrices. Then D(Q M P™) = D (M).

PROOF: See [7].

THEOREM (1.7.9):

Let M be an m x n matrix with entries in a principal domain R. Then there

exist matrices P, Q, D such that:

1. Pand Q are invertible.

2. QMP!=D.

3. D is diagonal matrix.

4. If we denote D;; by d; then there exists a natural number r, 0 <r < min(m,n)
such that j > r implies dj = 0 and j < r implies d; # 0 and 1 <j <r implies d;

divides dj;.

PROOF: See [7].

DEFINITION (1.7.10):

Let M be a matrix with entries in a principal domain R, be equivalent to a

matrix D = diag { dy, d, ..., dy, O, ..., 0 } such that d; / dj;; for 1 <j <r, we call b

the invariant factor matrix of M and d, , d,, ..., d, the invariant factors of M. See [7]
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THEOREM (1.7.11):

If M be a matrix with entries in a principal domain R, then the invariant

factors are unique (modulo unit multiples).

PROOF: See [7].

THEOREM (1.7.12):

Let M be a finitely generated module over a principal domain R, then M is

the direct sum of cyclic submodules with annihilating ideals

<d; > <d;> ..., <dn>dj/dforj=1,2, ..., m-1

PROOF: See [7].

Suppose cf(G,Z) is of rank r , and let (='G) denote the r x r matrix whose
rows correspond to the ®;’s and columns correspond to the I'- classes of G. The
matrix expresses the R(G) basis in terms of the c¢f(G,Z) = Z" basis (= G) hence,

by theorem(1.7.9), we can find two matrices P and Q with determinant + 1 such

that Q (='G) P* = diag { dy, dy, ..., d; },

di== Di(E*G) / Di-l(E*G)

This yields a new basis for R(G) and cf(G,2), { vi, V5, ..., V; } and
{uy, Uy, ..., uc} respectively with the property v; = d; u;.
Hence by theorem (1.7.12) the Z—-module K(G) is the direct sum of cyclic

submodules with annihilating ideals < d; >, <d, >, ..., <d, >.
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THEOREM (1.7.13):

K(G) = @1 Zq4,, where d; = + D(="G) / Di4(='G).

PROOF: See [8].

THEOREM (1.7.14):
IK(G)| = det(='G).

PROOF: See [8].

THEOREM (1.7.15):

Let {Xx}, 1<1 <t be the set of representatives of I'— classes of G and assume

each x; contains n; classes of G, then

1/2

K G — ﬁ nig
K@= Too

PROOF: See [8].

LEMMA (1.7.16): [8]
If A and B are two matrices of degree n and m respectively, then
det(A ® B) = (det(A))™. (det(B))"
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LEMMA (1.7.17): See[8]

Let A and B are two non-singular matrices of degree n and m respectively

over a principal domain R, and let
P1 A Qi =D(A) =diag { di(A), d2(A), ..., dy(A) },
P, B Q, = D(B) = diag { di(B), d2(B), ..., dw(B) }
Be the invariant factor matrices of A and B then
(P1 ®P2) (A®B) (Q: ® Q) = D(A) ® D(B),

And from this the invariant factor matrix of A ® B can be written down.

Let H and L be P;and P, —groups respectively, where P,and P, are distinct
primes. We know that
=(HxL)==(H) ®=(L)
since gcd (P,,P,) = 1, we have
=* (H x L) ==*(H) =" (L)

We consider the case where G is a cyclic P—group, for the cyclic group of
prime order, all the non principal irreducible characters are I'-conjugate.

Hence
(_ G)_ (p_l _1] =A

det(A) = P = |K(G)| = exp(K(G))

THEOREM (1.7.18):

Let G be a cyclic P—group. Then
K(G) = Z,.

PROOF: See [8].
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THEOREM (1.7.19):
Let G be a cyclic group of order P". Then

K(G)= & Zp

PROOF: See [8].

EXAMPLE (1.13):

The rational valued character of Z, and Z; are

=2, = [1 1] and (= Z5) = (1 1}

1-1 2 -1
Let
(11 (-2 1 (10 (-1 1
Pl—(o J,Pz—[ L Oj ’Ql—(l 1] ansz—( L O)
Then
* 2 0 * -3 0
Pl(EZZ)le(O _J,Pz(EZa)Qz:[O J
By lemma (1.7.17), we obtain
-6 0 0O
* * 0 3 00
(P1®P) (EZ) ® (EZ3)) (A ®Qy) = 00 2 0
0 0 0 -1

Hence
K(Zg X Zg) = ZG @ Zg ® Zz @ Zl.
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Chapter Two The Finite Special Linear Groups

@

THE FINITE SPECIAL LINEAR GROUPS

J

2.1. INTRODUCTION:

This chapter concerns some members of an important class of groups:

the finite linear groups. Important features are described and the conjugacy
classes of this group is investigated. We develop character tables for some of

the finite special linear group.

2.2. THE GRoUPS SL(n, p“):

In chapter one we already met the general linear group, i.e the group of

invertible nxn matrices over a field F denoted by GL(n,F). The determinant of
these matrices is a homomorphism from GL(n,F) into F~ and we denote the
kernel of this homomorphism by SL(n,F),the special linear group. Thus
SL(n,F) is the subgroup of GL(n,F) which contains all matrices of determinant
one.

In this chapter we are interested in finite special linear group, and we

choose F to be finite, we consider the case when n=2 and F = p*, where p is

prime, p # 2, k is natural number.
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THEOREM (2.2.1):
The order of SL(2,p%) is | SL(2,p") | = p* (p* - 1).
PROOF: See [6]

SL(2,p") = {[Xxl ))((Zj: X1, Xp, X3, X, € F and XX, —X, X :1}

3 A4

We now count the elements of SL(2,p") by considering two cases, the sum of
which will give the required result.

Casel:x3=0

Then XiXa — XoX3 = X1X4 = 1. Thus, if we fix x; # 0, then X, is determined as the
multiplicative inverse of x;. Hence there are pk—l choices for x;and non for
X4.0n the other hand x, can be chosen arbitrarily, i.e. p* choices for x, In total
we have counted p* (p¥ — 1) elements for case |I.

Case ll: x3#0

From Xx;X; — XoX3 = 1 we deduce x, = (X;X4 — 1) / X3. Now we have p" — 1 choices
for x3. We may choose x; and x, arbitrarily and x, is then determined. Hence we
have p* choices for x;, p* choices for x, and non for x,

Case I cover p* (p*— 1) element of SL(2,p").

EXAMPLE (2.1):
The order of SL(2,3) is | SL(2,3) | =3 (3°— 1) = 3 (8) = 24.

Case I gives 3 (3-—1) =6 elements.

Case Il gives 3% (3—1) = 18 elements.

o3/lo 2Hrollos)ls el o2 (Mo )2 o o)) e )
9|91 L o L e e e [

SL(2,3)=



Chapter Two The Finite Special Linear Groups

PROPOSITION (2.2.2):

The centre of SL(2,p") is SZ(2,p"), where SZ(2,p*) denotes the subgroup of
SL(2,pk) of all matrices al, o € F, such that o = 1,
forp#2 o e{-1,1}. See [6].

THEOREM (2.2.3):
G=SL(2,p") has exactly p* + 4 conjugacy classes :

p*-3 p*-1
1,2,¢,d,zc,2zd,a,a% ...,a 2 ,b,b% ...,b 2

Let:

= v be the generator of the cyclic multiplicative group F',
= 1<e<(p-3)2,

= [ <m<(p*-1)/2.

Thus this conjugacy classes is satisfied
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geG Notation | C, | Cq | | Cs(9) |
10 k (2K
[0 J 1 C1 1 p (p B 1)
~10
( . _J z C, 1 p* (p*-1)
10
3 c | co |e*-vr|
10
0 d | c |e*-ne| 2
-1 0
SO B B - [
-1 0
T e e |
v 0
0 wj a Cat |p“(P“+1) | p‘-1
Element of
order(p“+1) ™ Co™ | p*(p“-1) p“+1
m
TABLE (2.1)

PROOF: See [6]
Stepl: Cy, C,, C., Cqy, Cy, Cyq, are as described in table (2.1)

Clearly, the elements 1 and z = -1 both form a conjugacy class of their
own, since they lie in the center of G. We have | G | = p* (p* — 1), and hence the
first two rows of the table.

To find the conjugacy classes of c, d, zc and zd we consider an arbitrary

X X o . - X, —X
element g = ( ' ZJGG and its inverse g = ( b
X3 X =X X

J. Then
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X, 1-xx,

1 1-%X, —X,
gleg=| 1)

From (2.1) we deduce that zc cannot be conjugate to c, since for this we would
need x, = 0 and then 1 = -1, a contradiction.

A similar argument shows that d ~ zd
The elements d and zd cannot be conjugate to c either. In this case it would

follow that x,* = + v.If, however v is a square in F, it will not generate all of F’,
for |F|= pk is odd. Hence, C,, Cq4, C,c and C,q are all distinct.

To find the size of these conjugacy classes we examine the sizes of the
centralizers of c, d, zc and zd. We use the element ¢ again as an example.
By (2.1) the following must hold for g to be in Cg(c):

1'X1X2=1,'X22:O,X12=1<:>X1=i1,X2:0.

So X3 can be chosen arbitrarily and x, is determined as the multiplicative inverse

X 0
C,(C) ={£x3 XJ X, X €F, % =1},

which is a set of size 2p*. It turn out that the sizes of the centralizers of d, zc and

of X4, 1.e. X4 = X1.Thus

zd are exactly the same as |Cg(c)|. The next four rows of the table follow.
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PROOF: Step 2:

(i) The order of a=| - O_ is p“— 1.
O 1
1%

(ii) Ify e (a) with |y | > 2, then Cq(y) = (a).
(iii) If y is conjugate to a power y" in G, theny" e {y, y'}.
(iv) The Ca‘are as described in the table. (2.1).

(i) Clearly, since v generates F’, we have | (v) | =| F*| = p*— 1 and so
[@]=p"-1.
(i) Assume thatye(a), i.ey = a’ for some ¢, < 1 <¢<p*“— 1 and assume that y

y— vi 0
0 v*’

and so y is a diagonal matrix which is not a scalar multiple of the identity.

l

has order greater than two. If > 2, then | v | > 2. Hence vitv

We now want to find the elements of the centralizer of y in G. The element
y is a power of a, and thus it commutes with all other power of a,

I.e (@) < Cg(Y). Suppose there is some other g €G, g¢(a), that commutes with y

i [%% v' 0 ve 0\ (X X x v Xy v’ X'
. = < ) =
Xy X4 0 Vﬁk 0 Vﬁk X3 X, X3V( X4V7€ X3V7( X4V7€

For ge (a) this is the case if and only if v= v, which contradicts our initial

assumption that | y | > 2.Thus (a) = Cg(Y).

(iii) Consider the normalizer of {y) in G, Ng({y)). Then g €G lies in Ng({y))

X %

if and only if g™'cg is diagonal. For g = ( J this means that

X; X,

« 35 »




Chapter Two The Finite Special Linear Groups

9lyg :( X X4V€ - X2X3V_€

XXV = XXV J
¢ -t
— XXV + X XV

14 -1
— XXV + X X,V

has to be diagonal. Thus we have x,x, = 0 and x;x; = 0, because v’ # v . Since
g is assumed to be invertible, we are left with two cases: x, = x3 = 0 or

X1 = X4=0.Then Ng({y)) is the following set:
a 0 0 B N
(52 5 e}

In other words, Ng((y)) = <CG(y),G _01J>. We observe that Ng({y)) contains all
the power of yand that [Ng({y)) : Cs(y)] = 2. Thus the cojugacy class of y in
Ng((y)) has size 2, i.e. it contains only one element other than y. It is easy to

check that if g = Gj _olj’ then g'yg = y*. Hence if y is conjugate to a power y"

in Ng((y)), theny" € {y, y* }. As Ng({y)) contains all the powers of y in G, the

result follows.

(iv) First consider a’ for 1< ¢ < (p*—3)/2 .In this case | a“ | > 2 and (iii) tells us
that the only powers of a‘ conjugate to it are a“and a ‘. Now

a‘=a® P and.(p" + 1) /2 < (p* - 1) - € < p* — 2. We deduce that the
conjugacy classes of a ‘ are all distinct for 1< £ < (p* — 3)/2.The size of these

conjugacy classes is |G| / |Cs(a’)] and by (i) and (ii), we have \Ca/ \= P (p* +1).

Now we examine the remaining powers of a.For ¢ = (p“— 1) / 2 we have

|’ |= 2. Also, a® '% «1, since v* '2 1. We deduce a® /2 =7z,

Clearly, for ¢ = p“— 1, a’ = 1 and we have cover all powers of a.
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PROOF: Step 3:

(i) G contains an element, b say, of order. p* + 1.

(i) Ify e (b) with|y|> 2, then Cs(y) = (b).

(iii) Ify is aconjugate to a power y" in G, theny" e {y, y'}.
(iv) The Cbare as described in the table (2.1).

We will omit the proofs of (i)-(iii), since they do not provide insights which
could be helpful for the construction of the character table of SL(2,p"), and we
omit the proof of (iv) since it is practically identical to the one in the proof of

(iv) in step2.

Now to show that the number of conjugacy classes is p“ + 4 and that these
conjugacy classes are all disjoint. If we add up the elements contained in those

conjugacy classes we get:

k k

-3 -1
5 p“(p* +1)+pT p“(p* -1) = p“(p* -1).

2k
1+1+4 P > 1+ P

As p* (p* = 1) = | G|, so this theorem gives all conjugacy classes of SL(2,p").

EXAMPLE (2.2):
To compute the conjugacy classes of the group G = SL(2,5).

|G |=|SL(2,5) | =5(5*— 1) = 5 (24) = 120.

This group has exactly 5 + 4 = 9 conjugacy classes.
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So these conjugacy classes are:

1,2, ¢,d,zc, zd, a, b, b?

We can table these conjugacy classes as a table (2.1):

geG Notation Cy | Cq| | |Ca(9) |
10
( 0 1) 1 C; 1 120
4 0
( 0 4} 4 C, 1 120
10
(1 1) Cc C. 12 10
10
J d Cq 12 10
4 0
4 4j ZC Cy 12 10
0
3 4 zd Cu 12 10
2
0 a Ca 30 4
3 2
4 3 b Co 20 6
2 2
4 b Cp? 20 6
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2.3. IRREDUCIBLE CHARACTERS OF SL (2,0, p22

In this section we are able to construct the irreducible characters of this

group since we know the conjugacy classes of SL(2,p").

THEOREM (2.3.1):

Lete=(-1)"" "2 let p e C be a (p* — 1)-th root of unity and o € C be a

(p* + 1)-th root of unity. Note that the character values for C,. and C,q can be

derived from the following relations for all irreducible characters y of SL(2,p):

x(2) 2 x(2) q
x(z¢) = 0 x() | x(zd) = ()z()

Then the ordinary character table for G = SL(2,p), p# 2 is:
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For 1<i<(*-3)2, 1<j<(p‘—1)/2,1<e<(P“=3)2, 1 <m<(p"-1)2.

Columns for zc and zd are missing in this table. These values are computed from the relations:

x(z¢) =

22 ) 2(2d) =22 1a)

xQ)

x@)

C, 1 Z c d a’ b™
| G 1 1 (P*-1)2 | (p*-1)2 | p(“+1) | p(p*-1)
g9
|Ce@ 1] P (™ -1) | p*(p™-1) 2p" 2p" p*-1 p*+1
1g 1 1 1 1 1 1
Y p* ‘ 0 0 1 1
2 (pF+1) | (D' +1) 1 1 P " 0
0 (-1 | (D'p°-1) -1 -1 0 [(c"+o™
& | OrDR | e | Saeep) | S | (D) 0
& | DR a2 | Safept) | Sarer) | Gy 0
| 002 | D2 | ) | ek | o ("
e | (-2 | -ep-1)2 %H—W ) | 1) 0 (-1)™
TABLE (2.2)

T  —  —  ——— ——  —  ———— ——— — T i ih——— 40 »
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PROOF: See [6]
Step1: 1, v, Yu .., Y(p* —3)/2 are irreducible characters of G=SL(2,p") are
described in the table (2.2).

Clearly, 1 is the linear trivial character. To construct the remaining
characters of this step of the proof, we use the technique of induced characters
as described in chapter one .

Consider the following subgroup of G:

To examine the structure of H further, we, in turn, consider a subgroup S of H:
1
S= {( Oj:xse F}.
X; 1

Thus S| = p¥, S< H, H=S«a) and S " (a) = 1. Then |H| = || | (&) | = p* (p*— 1).

Define linear characters for H by:
vt 0 " ...(2.2)
/1i: ,B _t — P

where 8 € F, p e Cisa (p*— 1)-th root of and 0 < i < p*— 1.We observe that,
S < Ker 4;, and that 4, , =4, =1,,, the linear trivial character of H.

Let A, = 4 forg € H and 4;= 0 for g ¢ H. We use formula (1.4) to derive the

induced characters 4;1°of G:
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To compute the actual values of 416(g) it is useful to know which of the
elements of each conjugacy class Cy lie in the subgroup H, since they can be
ignored otherwise. Let F, be the set of non-zero squares in F, then

| F | = (p*= 1) / 2.We will now consider C. and Ca’ in detail. From (2.1) we

g :[Xl Xz]_
X, X,
2

1_ - 1 0 *
glcg = e 7% o ex?=0iex =0 ,thus C.NH = feF L.
X 1-xX i i C A1 S
172

derive for C; and

For Ca‘ we have from the proof of step 2 (iii) in theorem (2.2.3) that

glag ( XXV = XXV XXV - x2x4v€]

— XXV XXV = XX XXV

For 1< ¢ < (p* - 3)/2 we have seen that v’ # v ¢, and hence

gla‘geHe X% =0

XX,V 0

0

1) Letx, =0. Then g™'a'g = L )
XX (v —v) XXy

j , where X1Xs = 1, since

g has determinant 1.

-t
— X, XV

XX =v) = XX

2) Letx, =0. Theng™a'g :[ J where X,x3 = -1, since

g has determinant 1

Hence C_, NH —{[Vﬁ 0 J,(V{ O},BeF}.
a ﬂ V—( Vé
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g |Gyl X (g)forge(CNH) [|CoNH]| | 41°(9)
Clearly, we have | Ca‘ N H | = 2p*, since g can be chosen arbitrarily and

vi#v ‘. Inasimilar way to the above the following can be deduced:

-1 0 .
C..NH :{(_ﬁ _J.ﬁer }

-1 0 .
Cq,MNH :{(—Vﬂ _J.ﬂe F, }

We have | CcNH|=|Cx NH[=|CaNH|=|CuNH|=(p“—1)/2. Ifwe

sum all the elements of H over all the conjugacy classes we get:

k k
1+1+4P 2_1+ P 2_32pk = p*(p* 1) =|H].

Thus we have already accounted for all elements of H, and hence no element of

the conjugacy classes Cbo™ can lie in H.

Now with [G:H]= p* + 1 and using (2.2) and (2.3) we can compute 41°(g) for
geG:
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1 1 1 1 (p*+1)
7 1 P2 _ gy 1 (-1)'(p“ + 1)
c | (p*-1)2 1 (p“—1)/2 1
zc | (p*-1)12 p? I = (1) -2 | (Y
d | (p*-1)2 1 (p*—1)/2 1
zd | (p™-1)12 p "I = (1) -2 | (Y
a' | p‘(p“+1) *) 2 p* p+p™
b™ | p(p“-1) - 0 0
TABLE (2.3)
Note that ,O(pk_l)/2 =-1, since p*— 1 is even.

(*) Fora'e(C, NH), ={[2 (L}ﬂe F}We have 4 (a‘)=/"and
|4

|(Ca’ N H),| =p"

For a'e(C, NH), ={; [OJ:ﬂe F} we have Z; (a“) = p" and
v

|( Ca’ N H),| =p~.

Examining this table we see that not all of the computed characters 1;1°

—i ¥4 k_ —1i - - - -
are distinct: ,O( Ve =p(p ' ')Z, since the roots of unity occur in conjugate

pairs.

Hence for (p* + 1)/2 <i < (p* — 1) we get the same values for p” + p™ as in the
cases of 1 <i<(p*— 3) /2. Thus we only need to consider 41 for

0 <i < (p*— 1)/2. For these values of i let = 2i1°.
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The next task is to investigate whether the characters p, ..., ¥ p* -1)/2

are irreducible. We have seen that a suitable irreducibility criterion is the value

of the direct product of a character with itself (proposition 1.3.13).

Now, using formula (1.1), we have

K 2 K a2 p2k—1 ka -1
o) =————[1(p* +1)2 +1-(p* +1)% + 1+ 1
<ZO ZO> pk(p2k _1) (p ) (p ) 2 2
p2k _1 p2k _1 pk_3 ) )
1 1 . 1)-4|=2
+ > + , + ; p (p* +1)

Thus yg is reducible, i.e., by (lemma 1.3.5), the sum of irreducible characters of
G. From (corollary 1.3.10) we know how to calculate the multiplicities of the

constituents of yg. It is straightforward to check that (yo,1¢) = 1.

We can deduce from (corollary 1.3.11) and {yo,%0) = 2 that o IS the sum
of the linear trivial character and one further irreducible character of G, vy say,

also with multiplicity 1. The degree of yg IS p“+ 1, and so deg(y) must be p~.

The values y(g) can be computed using y(g) = %(9) — 1g(9).

Now we examine the characters y; for 1 <i < (p*— 3)/2. In these cases

2k 2k 2k
(21 26)=— 1 (p +D)2 41 (pf 42+ Pty PPy Pl

1 1
p“(p* -1) 2 2 2
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p* -1 Gl Kk i0  ie)?
+ 1+ ) pi(p +1)‘,0 +p ‘ =1
/=1

The only term in this calculation which yields some difficulty is

(p*-3)/2

> ‘p” +;O‘”\2 We use:

(=1

(p*-3)12 _ (p“=3)/2 . (p¥=3)/2  (p*-3)/2 .
¢ —ir z ¢ z Z —2i¢
‘pl +p 1 ‘ — p 1 + 2+ p 1
/=1 /=1 /=1 /=1
) (p¥=3)/2 (p¥-3)/2
2i/ -2i¢
=(p"-3)/2-2+ E o+ Ep
/=1 /=1

Now the sum of the roots of unity p' is zero, independently of the value of i,

. . k . k - (pk—l)/2 i
ie. p +p% 4t pP I pPDT 0 for alli. Consequently, D,p°" =0
(=1
CROTE 2i P1 G
1/ .. =210
Hence X, P =—(p 2 )=—1similarly, 2,p " =-1,
/=1 /=1

Thus we have shown that the characters y, ... , ¥ p —3)/2 are irreducible.

In step 2 of this proof we will consider the remaining character 6’(pk_l),2 :

PROOF:
Step2: 6,0

(o1 are irreducible characters of G = SL(2,p") as described

in the table of theorem(2.3.1).
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As in the first step of this proof we use an induced character to derive

the required irreducible characters. In this case let L be the subgroup of G
generated by the element b, L = (b). Then define the following linear characters
for L:

THTA (2.4)
where ¢ is defined as the (2 + 1)-th root of unity, 1<j < (p* + 1).

Again, let ¢;"(9) =9 (9) if g € L and ¢;"(g) = 0if g ¢ L. From step 3 (i)
of theorem (2.2.3) we have | L | = p* + 1. Clearly, the only elements of those in
G that lie in L are 1, and (b). Thus, using (2.3) and (2.4) as in step 1, we can

derive the following table for the induced characters (pjTG:

TABLE (2.4)
(*) We saw in step 3 (iii) of theorem (2.2.3) that the only powers of b™

conjugate to b™ are {b™, b™}. Thus these two elements of Cb" are the only ones

g | Gyl ¢;""(g)for ge(CyN H) |CgNH| #1%(0)

1 1 1 1 p(p* - 1)

z 1 o P2 = (-1} 1 (-1)7p(p*-1)

c (p*—1)/2 - 0 0

c | (p*-1)2 - 0 0

d (p* - 1)/2 - 0 0

d | (p*-1)2 - 0 0

at | pi(pf+ 1) - 0 0

" | Pt 1) " 2(%) oo
that lie in L.
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The characters (pjTG are not irreducible, since deg((pjTG) = p*(p“~ 1) and
| p(p* - 1)* > |G|, which contradicts proposition (1.3.14).

To construct irreducible characters we use a trick: for 1 <j < (p* + 1)/2,
let 0; = v /IJ-TG — AjTG — ¢;1°. As all terms in this expression are characters, 6; is

again a character.

The values for 6; are easy to compute and are listed in the following table:

g 0; (9)
1 p‘—1
z (-1)'p-1
Cc -1
2C (-1)™
d -1
TABLE (2.5) 7d (-1)] +1
2l 0
To see whether the b RN characters 0 are
-0 -0
irreducible, we examine once more the inner

product (6;,0;). A similar calculation as the one in step 1 of this proof shows that
for 1<j<(p“-1)/2, (0;,0;) = 1 and the 0; are irreducible characters of G.
Again, 6,

2.1y, Will be considered in the next step of this proof.
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PROOF:
Step3: The irreducible characters of G = SL(2,p¥) are

1G7 W, X1y ooy X( pk —3)/2: 01’“"0(pk_1)/2 and (t:,la (229 N1, N2
as described in the table of theorem (2.3.1).

An easy calculation shows that <Z(pk_1),2,)((pk_1),2>= 2. Thus we conclude as in
step 1 that %, 4,is the sum of two irreducible characters, &; and &, say, both

with multiplicity 1. We have the following values for % y,,= & + &

g & + &(0)
1 p+1
z € pk +1
c 1
2C €

TABLE (2.6) ¢ .
zd €
a' 2(-1)"
m

where ¢=(-1)" "% we . 0 also know that tr (A + B)

=tr (A) +tr (B), and so

(&1t &) (9) = &i(9) + E2(9)
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Similarly, <9(pk+l),2 ,6’(pk+l),2> =2. Let ¢

(pk+1ys2 — Th 77, 54y, where n; and

n, are irreducible characters of G:

N1 +M2(9)
p-1

z ep—1
c -1
2C £
d -1

TABLE (2.7) zd €
a' 0

Again, (n; +n2)(@) = | B" 2™ | mu(9) + m(0).

Counting the irreducible characters that we have found so far we get p* + 4
characters, which are precisely the number we need, because G has p* + 4
conjugacy classes (theorem 1.3.16). However, we will still need to show that
these irreducible characters are all distinct. Since we know the values of
1e, W, xi, 65 and (& + &), (1t n2), we can compute the inner products among
them.

For example, using formula (1), we have:

2k 2k
(6+8) 1 )=— 12k_1 (P +D)Lee(p* 4 1e P tpg PO

S - 11
p (p™ -1 2 2
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2k 2k (p-3)/2
p” ~1 P~ -1 s S p*(p*+1)-2(-1)’ 1| =0
/=1

Similarly, all these inner products are zero. Hence all these characters are

distinct, except possibly the & and n;, 1 = 1, 2. However, as we can see from the
tables & (z) + & (z) = & (&1 (1) + &,(1)), which forces &; (z) = € &i(1) , whereas
ni (z) = - €n; (1). Thus the &; and n; are different.

To complete the table of theorem (2.3.1) it remains to determine the values
of &1, &, muand 1,. We assume that £ = +1, i.e. that p“ =1 (mod 4). The proof in

the case of ¢ = -1 is in large parts very similar and, therefore, omitted.

If £ =+1, then & (2) = &(1) and n; (z) = -ni(1), i = 1, 2. Consequently, from
lemma (1.3.20) we have that ker n; does not contain (z), but ker &; does. We
also see that, for N< G, the irreducible characters of G/N are all those
irreducible characters of G whose kernels contain N (proof Corollary
1.3.21).Using this information and (lemma 1.3.20) we deduce that for N = (z)
the irreducible characters of G/N = SL(2,p") / (z) = PSL(2,p") are

161 \|l, XZ! cee X (pk—5)/21 92"“’9(pk_1)/2 and &_,19 &_,2-

By proposition (1.3.14) the sum of the squares of the degrees of these characters
must equal |G/N|=p*(p*-1)/2, i.e.
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Pt et B (-0 0+ 6,0 _%

1+ p* +

Nt 51(1)2 +§2(l)2 =

Together with equation & (1) + &,(1) = p* + 1we conclude that
& (1) + &(1) = (p* + 1) / 2. From this it follows directly that

) =@ =(p+1)/2,i=12.

To find the remaining values of &; and &, we use the column

orthogonality relations (theorem 1.3.18 (2)) for the elements (z) g in G/N:

[Conl()9)| =1 (2)0) +[w(2)0)] +| r.(2)a) +| z((2)0)]
+ 2 (29)] + 0(20) + |a.(2)0)]

st [0,,,(@0) +1&(20) + [ &(2)0)

...(2.5)

The only irreducible characters of G/N which are not fully known are &; and &,
and we will use (2.5) to deduce the values for 2;12 + ézz. Since we also know the

values of & +&, =7 these two equations combined and the comments in

pk-1)/2"

the proof of (Corollary 1.3.21) will enable us to complete the table for &; and &;

To be able to use (2.5) in the way described, we need to determine
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| Can (2) Q) | Tor (z) g € G/N. Thus we consider how the sizes of the conjugacy
classes of G/N differ from the ones in G: if (z) geC,, then the size of the
conjugate class remains unchanged, i.e. | C, 4| =| Cq |, and so

Con (2 Q)| = GIN|/| Ciyg | = (112) |G| /] Cq|=(1/2)| Cel9) |
whereas, if (z) g € Cg, then | Cen ((2) 9) | =] Ce(9) [and | Cip g | = (1/2) | Cy .

From theorem (2.2.3) we have that ¢ ~ zc and d ~ zd, and hence (z) ¢ € C,

and (z) d € Cq4. We also see that the only powers of a‘ conjugate to a‘ are

k_. . kK 1y
{a’,a ‘Y. Now a® "?=z and a” =a®® . Thus

: K )
a'~7a' o a’=za' < alP V=g Di2gt

Thus for £# (p“~1)/4,(zya" ¢ C_,andfor £=(p“-1)/4,(zya’e C.
A similar argument for the elements b™ shows that (z) b™ ¢ C,. .
The orthogonality relation (2.5) for (z) c, for example, leads to:
k

p* =1+0+ P 4_5-1+ P 4_1-1+‘§1(<z>c)‘2 +‘§2(<z>c)‘2

o al@e) | almof -2t

One can show that for p“= 1 (mod 4) all ordinary characters of G = SL(2,p") are

real. Thus | & |2+ &% = &2 +§22-

Using the comments in the proof of (Corollary 1.3.21) we deduce from

p*+1

&E+&0) =&((2)ef +&((2)ef =
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and
E((2)e&((2)e)=&(0)+& ()= (& +&) (©)=1
that

&@=Zaxp)and &© =Za7p").

The signs of the square roots must be chosen such that the row
orthogonality relation hold. To ensure this we can use, for example, the

equations (&;,1g) = 0, i = 1, 2. The values of & for the elements d, a“ and b™ are

derived correspondingly and we can use &; (¢) = &(zc) and &; (d) = &(zd) to find
&i(zc) and &(zd).

The rows for the characters 1; and 1), are filled in a very similar way as
the ones of &; and &,: the characters n; and ), are now the only characters of G
not fully known and we use proposition (1.3.14) as above to deduce the values
of n1(1) and n(1). The remaining values are again computed by using first the
column and then the row orthogonality relations in combination with

ni(g) =-ni(zg) forg =1, ¢, d, i = 1, 2. This finishes the proof of theorem (2.3.1).

EXAMPLE (2.3):
To compute the ordinary character table for SL(2,7).
|SL(2,7) | =7(7° - 1) =7 (48) = 336

e=-1,1<i<2,1<j<3,1<¢6<2,1<m<3,

p € Cis a primitive 6-th root of unity, to find the 6-th roots of unity in C:
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p=re’=e¢  k=01,..,5

p, =€'°=cos (0)+isin (0)=1,

p=e'% =cos (60)+isin(60)=%+i v3

.27

p, =€ 3 =cos (120)-+isin (120):—%“?, p, =€ =cos (180)+isin (180)=—1,

Ar .57
p,=€ 3 =Cos (240)+isin(240):—%—i§, ps =€ 3 =C0S (300)+isin(300):%—i\/§

prrptEpitps=lpitpt=pptps=-1,pt+p = pytpy=-1

o € C isaprimitive 8-th root of unity, to find the 8-th roots of unity in C:

2kx
o=re’=¢3 k=01,..,7
: iz 1 .1 iz
o,=e%=1 o=e4="—=+i—= o,=e?2=1,
0 1 \/E \/5 2
o —ei%ﬂ——iﬂi o,=e"=-1 o] —ei%ﬁ——i—ii
? J2 2 ’ ’ ’ J2 2
a—g%——l 0=6%22L44L
° ! ! J2 2
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1 1 2 2 3 -3
o +to T =01t =N2,0°t0  =0,+05=0,0°+0 =03+ 05 =-+/2,

4 4 6 6 9 9 1 1
c'+o =04+ 04=-2,6°+0 " =05+0,=0,(6"+ 06 Dmeag =0 +0 " =2,

This group has 7 + 4 = 11 conjugacy classes:

10 60 11 10 60 60 30
=l o=loebe=losh =) o=loe} =) odos)
01 06 01 31 66 4 6 05
azz(z OJ’ b:[o 6) bZZ(G 4} b3:(4 6]
04 13 31 10
The orders of these conjugacy classes are:
0o(z)=2,0(c)=0o(d)=7,0(zc)=0(zd)=14,0(a)=6,0(a’) =3,

o(b)=o0(b*)=8,0(b?)=4

The ordinary character table for SL(2,7) is:
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C, 1 z c d zC zd a |a | b b®> | b’
1Cq| | 1 1 24 24 24 24 56 | 56 | 42 | 42 | 42
| CT(Q) 336 | 336 14 14 14 14 6 | 6| 8 | 8] 8
1g 1 1 1 1 1 1 1 (1] 1 | 1] 1
v 7 7 0 0 0 0 1 [ 1] 1 | 1] 1
" 8 | -8 1 1 -1 -1 1 [-1] 0 | 0] o
” 8 8 1 1 1 1 11 0 [0 0
0, 6 -6 -1 -1 1 1 0|0 |20 .2
0, 6 6 1 1 -1 -1 ool o | 2] o
05 6 -6 -1 -1 1 1 0|0 | 2| 012
e | 4 | 4 %(1+ﬁ) %(1-ﬁ) %(-1-ﬁ) %(-1+ﬁ) 101 0 o] o
& 4| | AT ) ) SEET) a1 e o | o
n 3 | 3 %(—1+J—7) %(—1—\/—7) %(—1+ﬁ) %(—1—\/—7) o|o| 1 | 1] 1
1 3 3 %(—1—\/—7) %(—1+\/—7) %(—1—\/—_7) %(-1+ﬁ) oo | 1 |-1]| 1
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Chapter Three The Cyclic Decomposition of K(SL(2,P))

" THE GG NN FSL20)

J

3.1. INTRODUCTION:

This chapter is devoted to study the character table of the irreducible
rational representations of SL(2,p*), p is an odd prime, k > 0 and odd, then
we introduce the diagonalization of the matrix (=*SL(2,p)) which gives us
the cyclic decomposition of K(SL(2,p)), wherek=1,and p =3, 5, 7, 11, 13,
17,and 19.

3.2. THE CHARACTER TABLE OF IRREDUCIBLE

RATIONAL REPRESENTATIONS OF SL (n, p":

In this section we will give the character table of the irreducible rational
representations of SL(2,p), p is an odd prime, k > 0 and odd by using the
character table and the Schur indices of SL(2,p").

THEOREM (3.2.1): See[2]
Let G = SL(2,p), then the Schur indices of the irreducible characters of

G over the rational numbers Q are as follows:
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p“=1mod4 | p“=3 mod 4
1 1 1
\j 1 1
| 2 (i odd) 2 (i odd)
X 1 (i even) 1 (i even)
o 2 (j odd) 2 (j odd)
! 1 (j even) 1 (j even)
& 1 1
& 1 1
Tll 2 1
T]z 2 1
TABLE (3.1)
LEMMA (3.2.2):

Let { be a primitive n-th root of unity. Then ¢ + ¢ is rational if and only

ifn=1, 2, 3, 4, 6. The values which occur are as follows:

n 1 2 3 4 6
g+t 2 -2 -1 0 1

TABLE (3.2)

PROOF: See [2].
The result is clear for n = 1 or 2 so that we may assume that n>3.
As X — (G +E) x+1=(x-C) (x-", the index (Q):Q(E + ¢) = 2
unless { € Q, that is, unless n =lor 2.1t follows that { + (™ € Q if and only if
@(n) = (Q(C):Q) =2.

Examination of the possibilities shows that @ (n) = 2 if and only if
n=3,4o0r6.
Recall that @(n) is the Eular totient function which is defined by the number

of positive integers not exceeding n which are relatively prime to n.
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Corollary (3.2.3):
Let { be a primitive n-th root of unity and m € Z. If { + {* € Q, then so

is "+ M

PROOF: See [3].

This follows from lemma (3.2.2).

Corollary (3.2.4):

Let ¢ be a primitive n-th root of unity, let 1 < j <n. Then d + 7 is

rational if and only if n:j,2j,3j,4j,6j,gj,gj,gj_

PROOF: See [2].

Let (j,n) denote the greatest common divisor of j and n. Write j = a (j,n) and

n=Db (j, n) so that a and b are coprime and oggsl.

As ( 'is a primitive b-th root of unity, lemma (3.2.2) shows that & + ¢ is
rational if and only if b = 1, 2, 3, 4 or 6. For these values of b, the

corresponding possibilities for 2 are 1.2,1 213 10043 As j=2n, the
b 2'3'3'4'4'6 6 b

result follows.

LEMMA (3.2.5):

Let o be a primitive (p* + 1) -th root of unity where p is odd prime.

k . .
-1 then ¢! + ¢ 7 is not

Suppose that p“ = 7(mod 8) and that j=13,---,

rational.
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PROOF: See [3].

. . k
Suppose that 6/ + ¢ 7 € Q. As 1< j< P 2_1, Corollary (3.2.4) implies that

k k
P+ ford = 3, 4 or 6, by hypothesis , 8 / (p+ 1) so that pTH IS even

j=

for d = 3, 4 or 6. This contradicts the assumption that j is odd.

LEMMA (3.2.6):

Let { be a primitive (p*+ 1)-th root of unity where p is odd prime. If

k

pk+1 k

VA ey
p“=3(mod 8) and ¢ is a positive integer, then ¢ * +& % isrational.

PROOF: See [3].
This follows from Corollary (3.2.4) and Corollary (3.2.3).

Corollary (3.2.7):

Let { be a primitive n-th root of unity and n # 2. Then

(QUO)MQUE+EY =2and (Q(E+CH):Q) =3 @(n),

PROOF: See [2].
This follows from the fact that (x — ) (x— ¢ =x* =+ ¢ x + 1 and

(Q(C):Q) = &(n).
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LEMMA (3.2.8):

Let C be a primitive n-th root of unity, i € Z and d; = (i,n). If n > 2d;,

then
(QUE+E):Q) =, o).

PROOF: See [2].

Corollary (3.2.9):

Let { be a primitive n-th root of unity and 1 <i S%. Then
(AC+E)Q) =2 o).

where d; = (i,n)

PROOF: See [2].

This follows from lemma (3.2.8).

Let M be a field of characteristic zero and let K be a subfield of M.
suppose that M is a finite and normal extension of K with Galois group

I'=T (M:K). For any a € M define the trace

Trvx(@) =) a“

ael
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LEMMA (3.2.10):
Let K<L < M be fields and let M be a finite and normal extension of
K. Then:

Treox(Tryoi (X)) = Try—x(X) where X € M.

PROOF: See [2].

LEMMA (3.2.11):
Let { be a primitive n-th root of unity, i € Z and d; = (i,n). and let
n# di, 2di.Then:

3 (£ +& >“=ﬂ(§).

acl;

where I = T(Q( ¢ + '):Q) and p is the Mébius function.
Recall that p function defined by:

1 if n=1
#(n)=<0 if a*/n for some a>1
(D~ if n=p, P, Py, P, aredistinct primes.
See [9]

PROOF: See [2].
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LEMMA (3.2.12):

Let C be a primitive n-th root of unity, i € Z and d; = (i,n). and let
n#d;, 2di.Let T = T(Q( ¢ + ¢1):Q). Then

> &gty =2l
ael q)(CT) i

PROOF: See [2].

Corollary (3.2.13):

Let { be a primitive n-th root of unity and 1 <i Sg. Let

[ =T(Q({+¢"):Q). Then

> ety = 2Ll
ael q)(di) i

where d; = (i,n).

PROOF: See [2].

LEMMA (3.2.14):

Let y be a rational valued character of G and let x, y € G with

<X >=<y> Then y(X) = x(y).

PROOF: See [4].
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LEMMA (3.2.15):
Let G = SL(2,p"), where p is an odd prime. Then < ¢ > = < d > if and

only if k is odd.

PROOF: See [2].

NOTATION:
Let G = SL(2,p") for some prime p # 2, e and e” denote divisors of p*— 1

k
such that e<——= p* - > Land e<P 2_1, f and f “denote divisors of p* + 1 such that

k

k
fP +1 and f' <P +1
2 2

, Pe IS @ primitive ( - ) -th root of unity , o; is a

primitive ( ) -th root of unity, 1, z, ¢, d, a, b are as in theorem (2.2.3), ¢,

p and o are as in theorem (2.3.1).

1  if kiseven 1 if p¥=3mod4
B(k)={ . E(pk)={ b=
otherwise 2  otherwise
k
@) =Lo® L C(f)——cb<'° -
k
-1
e’ a (D( p e ) p
Tl(ee ) = Z(pe +pe ) - pk—l /u( eg’ )
ael’ (D( ee' )
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by lemma (3.2.11) where T = T'(Q(x,):Q). [Note that T = ['(Q( pe + pe ):Q)].

“+1
fr f’ CD(pf ) p“+1
B
ff

where T'; = ['(Q(6;):Q). [Note that I' = T'(Q( o7 + 61 1):Q)].

X, 0; are irreducible characters of G as in theorem (2.3.1). Then ) x“,

ael

where I' = T'(Q(x;):Q), and > 6,”, where I'; = I'(Q(6):Q), are rational valued

aell

characters of G.

%e =B@©)> x“ wheree = (i,p“ - 1).

ael’

0; =B(f)> 6, where f=(i,p" + 1).

aely

& and " denote the irreducible characters of the rational representations of

G arising from &; (or &) and n; (or 1) respectively where k is odd.

Also we know that the column for the class zc is obtained from the relation

z(z0) = Z(( ));((c) where y is an irreducible character of G.

So the character table of rational representations of SL(2,p*), p an odd prime,
k odd is described in table (3.3). See [2].
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1 1 1 1 1 1
p p 0 0 1 -1
(P + DAEB() | (-1)° (" +DAE)B(E) | A@©BE) | (-1°AE)B() | BlEm(Ee) 0
(P“=1) C(f)B(f) | (-1)' (P~ 1) C(F)B(F) | -C(F)B(f) | -(-1)' C(f)B(f) 0 -Be)w(f,f)
(p*+ 1) g (p“+1) 1 € (- 2 0
(- DE(p") & (P~ 1)E(p") 1 £ 0 ()" *2E(p)
TABLE (33

« 67 »




Chapter Three The Cyclic Decomposition of K(SL(2,P))

EXAMPLE (3.1):

To find the character table of rational representations of SL(2,5). e and

e are divisors of 4 which are 1, 2,4, suchthate<2,ande” <2,s0e=¢e"=1, f
and f ” are divisors of 6 which are 1, 2, 3, 6, such that f <3,and f "~ < 3, so
f=f"=1,2,
¢ =1, from that:

the conjugacy classes are 1, z, ¢, zc, a, b, and b?

the characters are 1g, W, y1, 01, 02, & + & =&, and qu + 2 =

D(4)

4)=0, C(1)=1,
(4)u() (1)=

A1) =%q>(4)=1, B(1)=2,1:1(1,1) =

_0(6) _©®) 6y 6 PN PN
©llD) =g HOL TL2) = g )= (D=1 CAI= 0=, @)=
2
B(2)=1, 1,(2,1) —(DE?’; 1(3)=—1, we find 1,(2,2) by (lemma 3.2.12) and
(corollary 3.2.13) so 15(2,1) = q;g; u(3)=-1, E(5)=2.

by Schur indices(theorem 3.2.1) we divide y1, 0;,and " by 2, and others by 1

The character table of rational representation of SL(2,5) is:

Cq 1 | z |clz|a]|b]|p
| Cq 1 1 [12|12|30|20 |20
1Co(g)| | 120 120 [10[10| 4 | 6 | 6
1s 1 1 1 (1|1 (1]1
" 5 | 5 [0]0]1-1]-1
1 6 6 | 1]-1,0,0|0
0, 4 | 4 1l1l0]1]1
0, 4 4 1-11-1]0 (|11
& | 6 | 6 |1]1]|2]0]0
W 4 | 4 |1]1]0]2]=2
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3.3. THE CYCLIC DECOMPOSITION OF K(SL(2,p))

WHERE p=3,5,7, 11,13, 17, AND 19

In this section we will introduce the diagonalization of the matrix
(=*SL(2,p)) by row and column operations with the condition (when we
multiply row or column by a number the number must be integer).which gives
us the cyclic decomposition of K(SL(2,p)), where p=3,5, 7, 11, 13, 17, and 19.

If we suppose that the diagonalization of the matrix (=*SL(2,p)) is

Then the cyclic decomposition for the group K(SL(2,p)) is:

KSLep)=Zm ®Zm, oz m o..0L m,

EXAMPLE (3.2):
To find the cyclic decomposition of the group K(SL(2,3)).

The character table of rational representations of SL(2,3) is :
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Cq 1|z |c|zx| Db

| Cql 1,14 |4 ) 6
|Cc(Q)| |24 24| 6 | 6 | 4
1 111111

7} 3(3]0]0]|-1

0, 2 |-2|-1]11]0
&1+ & 4 1411 |-1]0
mtn (2 | 2 |-1|-1] 2

The diagonalization of the matrix (=*SL(2,3)) is:

24 0 0 0 O
O -6 0 0 O
O 0 -2 0 O
O 0 O -1 O
O O O 0 -1

Then the cyclic decomposition for the group K(SL(2,3)) is:

KLe3)=Zuoled 2o Z1® Z1

EXAMPLE (3.3):
To find the cyclic decomposition of the group K(SL(2,5)).

The character table of rational representations of SL(2,5) is :

e ( (O
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Cy 1 z | c|lzz|al|b|b
| Cql 1 1 12 1 12 | 30 | 20 | 20
ICo(g)] | 120 | 120 |10 |10 | 4 | 6 | 6
1 1 1 1 (/1111
7} 5 5 O] 0|1 |-1)|-1
el 6 -6 1 (-1,0]0] 0
0, 4 | 4 lal1lo]a]1
0, 4 4 -1 (-1 0 |1
e 6 | 6 |1|1|2]0]0
n 4 | 4 11022

The diagonalization of the matrix (=*SL(2,5)) is:

120 0 0 0 O 0 O
0 -30 0 0 0 0 O
0 0 2 0 0 0 O
0 0O 0 1 0 0 0
0 O 0O O0-1 0 O
0 O 0 0 0 1 0
0 0O 0 0O 0 0 2

Then the cyclic decomposition for the group K(SL(2,5)) is:

NENE)) ENAV YA YA X VAR VAR VAR YA,
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EXAMPLE (3.4):
To find the cyclic decomposition of the group K(SL(2,7)).

The character table of rational representations of SL(2,7) is :

Cq 1 z | clzc|al|a|b|b
1ICs| | 1 | 1 |24] 2456564242
1Ca(g) | | 336 | 336 |14 | 14 | 6 | 6 | 8 | 8
1s 1 1 1 (1111

v 7 17 100t ]1]1]1
’“ 8 | 8 | 1|11 |-1]0]0
A2 8 8 1{11|-1,-1,070
0, 12 | -12 -2 2|00 0] O
0, 6 6 -1/-110 (0] 0] 2
E+& | 8 | 8 | 1| 1| 2]2]0]0
m+m | 6 | 6 |1|-1]0]0]2]=2

The diagonalization of the matrix (=¥*SL(2,7)) is:

336 0 0 0 0O O O O
O -84 0 0 0 0 0 O
0 o 2 0 0 0 0 O
0 o 0 1 0 0 0 O
0 o 0 0-1 0 0 O
0 o 0 0 0 2 0 O
0 o 0 0 0O 0 -1 0
0 o 0 0 0 0 0 -2

e ( (2 »
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Then the cyclic decomposition for the group K(SL(2,7)) is:

KL ) =ZsoZsse leolioliol2e0 1022

EXAMPLE (3.5):

To find the cyclic decomposition of the group K(SL(2,11)).

The character table of rational representations of SL(2,11) is :

C, 1 |z |clzx|al|a|b|b®|b]|b

| Cq 1 1 60 | 60 | 132 | 132 | 110 | 110 | 110 | 110

| Co(Q)| | 1320 | 1320 | 22 | 22 | 10 | 10 | 12 | 12 | 12 | 12
1g 1 1 111|111 1)1

v 11 11 00|21 |1 |-1]|-1|-1]-1

e 24 | -24 | 2 |-2|1]-1]0]0]0/|0O
%2 24 | 24 | 2|2 |-1]-1]10]0]0/|O
0, 20 | 2022|000 |-2]|]0]2
0, 0 | 10 |1 |1 0O |-1(1]|]2]|1
03 10 |-10|-1}1]0]0|0|2]|0]-2
0, 0 | 10 |1 |1 0|0 |11 ]|-2|1

& +& 12 | -12 |1 |-1|-2]2|0[0|0/|O0
mwtn, 10 |10 -2 -2 ,00|2-2|2]|-2

The diagonalization of the matrix (=*SL(2,11)) is:

e ( (3D
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1320 0

o 0 0 O o0 0 0 O
0 -330 o 0o 0 O o0 0 0 O
0 0 -2 0 0 0 0 0 0 O
0 0 o 1 0 0 0 0 0 O
0 0 o 0o 1 0 0 0 0 O
0 0 o 0o 0 -2 0 0 0 O
0 0 o 0 0 0 -2 0 0O
0 0 o 0 0 O O 6 0 O
0 0 o 0 0 O O 0-220
0 0 o 0o 0 O o0 0 0 1

Then the cyclic decomposition for the group K(SL(2,11)) is:

K(SL,11)=Z1o@ Z3soe 2o Zio 1o i 20 /6@

Zro /1

EXAMPLE (3.6):

To find the cyclic decomposition of the group K(SL(2,13)).

The character table of rational representations of SL(2,13) is :
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Cy 1 z |clzc|ala|a|a"|b|b

| Cq| 1 1 84 | 84 | 182 | 182 | 182 | 182 | 156 | 156

| Co(g)| | 2184 | 2184 |26 | 26 [ 12 [ 12 [ 12 | 12 | 14 | 14
1s 1 1 |11 1212121 |1]1
|} 13 13 ] 001|111 |-1]-1
yél 28 | -28| 2|2/ 0|2 |0|-2|01]0O0
A2 14 | 14 (1|1 |1 |-1|-2]-1]01|0
13 14 | -14 (1 |-1,0]-2|0]2]0]|0

y 14 14 1 /11|12 -1,01]0
0, 36 |36 |-3|] 30,000 |-1|1
0, 36 36 |[-3|-3]0[0|0]|]0]1|1
&+& |14 | 14 |11 |-2]2|-2]2|0]0
m+n | 12 |12 -1]1|0(0|0}|0]2]-2

The diagonalization of the matrix (=*SL(2,13)) is:

2184 0 0
—546 0
0 -1

o

O O O O O O = O o o
O O o O o

O O O oo ©O o O o o o

|
O O b OO OO O O O
O N O o0 O © oo o o
P O O O © ©O 0o o o o

O O O O O b O O o o
|
N

O O O O O o o o
O O O O o o o
O O O O O O O

o O O O

Then the cyclic decomposition for the group K(SL(2,13)) is:

KL 13)=Z2asa@ Zoss v 1o 1010220 L6 L4

Zra /1
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EXAMPLE (3.7):
To find the cyclic decomposition of the group K(SL(2,17)).

The character table of rational representations of SL(2,17) is :

Cq 1 | z |clz|ala|a|b|b|b|0D°
| Cql 1 1 [ 144 [ 144 | 306 | 306 | 306 | 272 | 272 | 272 | 272
| Co(g)| | 4896 | 4896 | 34 [ 34 | 16 [ 16 | 16 | 18 | 18 [ 18 | 18
1 1 1 1 /11,11 1]1]1]|1
V] i7 17 o0 (211 -1|-1]-1]-1
yél 72 (72|14 |-4]0]0]0]0|0|0]0
12 36 [ 36 | 2|2|0]0]-4]0[0|0|0
Y4 18 | 18 |1 (1 (02,2 ,0]0]0]|O0
0, 48 | 48 | -3 3| 0| 0|00 ]0]-3]3
0, 48 | 48 | -3|1-3/ 0| 0|00 ]0] 3] 3
0, 6 |-16 |-1 |1 (0|0 |0 |-1|1]2]-2
05 6 | 16 |-1 (-1 (0|00 |1 |1]-2]-2
&+ & 18 | 18 |1 (1 (2,22 ,0]0]0]|O0
mtn | 16 (-6 |-1 1[0 [0|0|2]|-2|2]|-2
The diagonalization of the matrix (=*SL(2,17)) is:
4896 0 0 o 0 o o0 0 O 0 O
0 -1224 0 o 0 0 0 0 O 0 0
0 0 -2 o 0 o0 O O o0 o0 0
0 0 0 1 o o0 o o0 o0 o0 O
0 0 0 0 1 0 0 0 0 0 O
0 0 0 0 o 4 0 0 0 0 O
0 0 0 0 o 0 2 0 0 0 0
0 0 0 0 o 0 0 1 0O 0 O
0 0 0 0 o 0 O0oO 0 2 o0 0
0 0 0 0 o o0 o o o0 3 @0
0 0 0 0 o 0 O O O 0 ©

e ( (O
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Then the cyclic decomposition for the group K(SL(2,17)) is:

K(SL(2,17)) = Zasse @ Z1zza® oo 1o Z1e lav l20 10 2@

Z3® s

EXAMPLE (3.8):
To find the cyclic decomposition of the group K(SL(2,19)).

The character table of rational representations of SL(2,19) is :

C, 1 | z |clz|al|a|a|a|b|b|b
| Cq | 1 1 180 | 180 | 380 | 380 | 380 | 380 | 342 | 342 | 342
| CG(g)l 6840 6840 38 38 18 18 18 18 20 20 20

[HEN
[EEN
[HEN
[HEN

1 1
v 19 [ 19 [0 1
” 60 | 60 | 3 | -3 |0
3 0
1 1

H
W=
[T
1
|_\
1
H
1
H

0 30,00
" 60 | 60 3 0(-3|/3[0]|0]0
%3 20 | -20 -1 1212000
” 20 | 20 [ 1|1 ]11]22]0ofo0]o0
0, 7272 4l4]0olo]ofo]o[-2]2
0, 7272 4l4]0oflo0o]ofo]o|2]2
0, 18 |-18|-1]1]0|0]0|l0]0|2]-=2

E+E | 20 | 20| 1122220 0]0

m+m | 18 | 18 |-1|-1(0 |0 0|0 2|22

O
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The diagonalization of the matrix (=*SL(2,19)) is:

6840 O 0o 0 0 0 O 0 0 0 O
o -1y10 0 O O O 0 © 0 0 O
0 0 2 0 0 0 o0 O 0 0 O
0 0 o 3 0 0 0 O 0 0 O
0 0 0 O 1 0 0 O 0 0 O
0 0 o 0 0 6 0 O 0 0 O
0 0 o o0 o0 0 -2 0 0 0 0
0 0 o 0 0 0 0 -1 0 0 O
0 0 c o o o o o -1 0 O
0 0 o 0 o0 0o 0 O 2 0
0 0 o 0 o0 0o 0 O 0O 0 4

Then the cyclic decomposition for the group K(SL(2,19)) is:

K(SL(2,19)) = Zesao® Zinoe 22 Z3e Z1o Zed L2190 Z1 @

Zo® /4

N
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3.4. CONCLUSIONS

The diagonalization of the matrix (=*SL(2,p)) is

Also the cyclic decomposition for the group K(SL(2,p)) is:
KSLep)=Zm oZm el m ®..oZ m,

This as result some conclusions can be considered:

1. m =|SLEp) |
2. m,=|SL(2p)|/4.

3. We don’t find a similar approach to other elements.

e ( (9D



Chapter Three The Cyclic Decomposition of K(SL(2,P))

3.5. SUGGESTIONS FOR FUTURE WORK

Based on the present work, the following topics are put forword for

future work.

1. Generalize the cyclic decomposition of the group SL(2,p), where p is an
odd prime (p#2).

2. Find the cyclic decomposition of the group SL(2,p?), where p is an odd
prime (p#2).

3. Find the cyclic decomposition of the group SL(2,p), where p is an odd
prime(p #2), k is even.

4. Find the cyclic decomposition of the group SL(2,2".

5. Find the cyclic decomposition of the group PSL(2,p), p # 2.

« 80 »






[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

| REFERENCES

C.W. Curtis and |. Reiner; “The Representation Theory Of
Finite Groups And Associative Algebras”, John Wiley & Sons,
NewYork —London, 1962.

H.Behravesh; “The Rational Character Table Of Special Linear
Groups”, J.Sci.l.R.Iran, Vol.9, No.2, Spring (1998) 173 — 180.

H.Behravesh; “Quasi — Permutation Representations Of
SL(n,q) And PSL(n,q)”, Glasgow.Math.J.41, (1999) 393 — 408.

I.M.lIsaacs; “Character Theory Of Finite Groups”, Academic
Press, NewYork, 1976.

J.P.Serre; “Linear Representation Of Finite Groups”, Springer-
Verlage, 1977.

K.E.Gehles; “Ordinary Characters Of Finite Special Linear
Groups”, M.Sc.Dissertation, University of St Andrews, August
2002.

L.E.Sigler; “Algebra”, Springer- Verlage, 1976.

M.S.Kirdar; “The Factor Group Of The Z-Valued Class
Function Modulo The Group Of The Generalized Characters”,
Ph.D.Thesis, University of Birmingham, 1982.

M.S.Kirdar; “On Brauer’s Proof Of The Artin Induction
Theorem”, Abhath AL-Yarmouk (Basic Sciences and
Engineering), Yarmouk University, Vol.11, No.1A, (2002) 51-54.

[10] T.M.Apostol; “Introduction To Analytic Number Theory”,

Springer-Verlage, NewYork, 1976.

[11] W.Lederman; “Introduction To Group Characters”, Cambridge

University, 1977.




J

530 (0555 G giiall 8yl Aaaall adll il G gicall Jlpa JS e gana )

8 el Al e A B e ) Mlia s F(G,Z) ool W e il mandl aae 4y

R(G) oMl 305 G 3 il Anpnall 2l Cild 4 ganll pad) 5801 5 50 ) (o
Tal) 3 e 31 A Al 25 el dlay) Al )
K(G) = cf(G,Z2) / R(G)
Ladie S (2,p) dalad) dadadll dogiiall 3 pe U Al )l 238 A& & yiic | 48

P=3,5,7,11,13,17,19




Gyl dyygdad
Rala (51 g jladl pulaill 4l
L0 glgeiill Lol

ol il | 5 30 o) J o el

CF(G,2) | R(G)

'(,&;U

,:’ - ',E"'/n 'QJ'/u_é"” ;:" '”'ra-g.]_t}'/fé.d'u_{:/zoé&

’ . ? . P .
e _ieuimto s d Lt SIlnio 10 43 29

” ,:" 4 "'/G'J'" . é)}/ ’

”»
”

W 43 G

auily Tlua Ol s

J\JJ@ Juslans) A pw daaa J)..AJJ&) ’S\:U&B)




	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf

