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The set of all Z – valued class functions of a finite group  

 

G form an abelian group cf(G,Z) under point wise addition. 

 

Inside this group we have a subgroup of Z – valued generalized  

 

characters of G denoted by R(G). 

 

The problem of finding the cyclic decomposition of the  

 

factor group K(G) = cf(G,Z) / R(G) has been considered in this  

 

thesis for G = the special linear finite group SL(2,p) where  

 

p = 3, 5, 7, 11, 13, 17, and 19. 



 

 

C Set of complex numbers. 

Q Set of rational numbers. 

Z Set of integers numbers. 

GL(n,F) Group of invertible n × n matrices over the field F. 

Cn Cyclic group of order n. 

Sn Symmetric group of n symbols. 

Zn Cyclic group of order n. 

Tr Trace of the matrix. 

χ Character of the representation T. 

 ,  Inner product of the characters χ and ρ. 

< X > Cyclic group generated by X. 

× Direct product. 

Ker χ Kernel of χ. 

  Normal subgroup. 

χ↑
G
 Induced character. 

Cg Conjugacy class of the element g. 

≡ G Character table of G. 

≡*G Rational valued character table of G. 

det(≡*G) Determinant of the matrix ≡*G. 

K(G) Factor group cf(G,Z) / R(G). 

Г Galois group. 

  Direct sum. 

  Tensor  product. 

SL(n,F) 
Group of invertible n × n matrices with determinant 

1 over the field F. 

SZ(n,F) Center of SL(n,F). 

CG(g) Centralizer of g.in G. 

NG(x) Normalizer of x in G 

(j,n) Greatest common divisor. 



 

 

Order of the group G.
 

|G| 
Order of the element g. o(g) 
Not divide. | 

Not equivalent. ~ 

Index of H over G. [G: H] 

F – {0}. F
*
 

Exponent of the group G. exp(G) 

Eular totient function to the number n. Ф(n) 

Möbius function to the number n. µ(n) 

characteristic of the field F. char(F) 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

The importance of representation and character theory for the study 

of the groups stems on the one hand from the fact that should it be 

necessary to present a concrete description of a group , this can be 

achieved with a matrix representation. On the other hand, group 

theory benefits mainly from the use of representations and 

characters, when these approaches are employed as an additional 

means to analyse the structure of a group. Moreover representation 

and character theory provide varied applications, not only in other 

branches of mathematics but also in physics and chemistry. 

 

In this thesis our focus will lie on the cyclic decomposition of 

K(SL(n,p)) the factor of Z – valued class functions of the considered 

group SL(2,p), p = 3, 5, 7, 11, 13, 17, and 19 module the group of the 

generalized characters of the same group. The problem of the 

determination of the cyclic decomposition of K(G) has been considered 

for many groups and been solved completely for G = Sn, Dn, and 

elementary abelian groups but for the special linear finite groups it seems 

to be untouched 

 

In chapter 1   The foundations of representation theory are described 

and illustrated by a number of definitions and basic examples (section 

1.2), the notion of a character of a finite group is deduced and considered 

 



 

in detail in (section 1.3). Again great importance is attached to the 

description of examples to illustrate these concepts, we use that for 

constructing the ordinary character table of SL(n,p
k
) where p is prime and 

p ≠ 2 in chapter 2. In (section 1.4) we develop the theory necessary to 

understand the contents of a character table. In (section 1.5) we introduce 

some important definitions of the abelian group and describe the 

character table of this group. In (section 1.6) we describe an additional 

and very important method which constructs characters of a group from 

characters of an arbitrary subgroup, this method is used to find some of 

the irreducible characters of the special linear finite groups in chapter 2. 

In (section 1.7) we study the factor group K(G) also the section includes 

fundamental concepts and the order of this group. 

 

chapter 2   Is devoted to the some members and an important class of a 

group the special linear finite groups. After describing important features 

of this group and investigating their conjugacy classes (section 2.2) we 

move on to constructing the ordinary character table of SL(n,p
k
) where p 

is prime and p ≠ 2. Great care is taken to illustrate each step and a 

number of additional calculations (section 2.3). 

 

In chapter 3   This chapter covers the study of the character table of 

the irreducible rational representations of SL(2,p
k
), p is an odd prime, 

k > 0 and odd by using the character table and the Schur indices (section 

3.2), then we introduce the diagonalization of the matrix (≡*SL(2,p)) 

which gives us the cyclic decomposition of K(SL(2,p)), where p = 3, 5, 7, 

11, 13, 17, and 19 (section 3.3). 
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1.1. INTRODUCTION: 

In this chapter, some definitions and basic concepts of representation theory, 

character theory, the characters of finite abelian group, induced characters and 

factor group are introduced. 

 

 

1.2. REPRESENTATION THEORY: 

This section introduces some important definitions of the representation 

theory of finite groups. 

 

 

DEFINITION (1.2.1): 

The set of all n×n non-singular matrices over the field F this set forms a 

group under the operation of matrix multiplication. This group is called the 

general linear group of dimension n over the field F, denoted by GL(n,F). See [1]. 

 

 

DEFINITION (1.2.2): 

Let V be a vector space over the field F and let GL(V) denote the group of 

all linear isomorphisms of V onto itself. 
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A representation of a group G with representation space V is a 

homomorphism t: g → t(g) of G into GL(V). See [1]. 

 

 

DEFINITION (1.2.3): 

A matrix representation of a group G is a homomorphism T: g → T(g) of G 

into GL(n,F), where n is called the degree of the matrix representation. See [1]. 

 

 

EXAMPLE (1.1): 

Consider the symmetric group S3 of order 6, define T: S3→ GL(3,C) ,as 

follows: 

  T(1) = 
















100

010

001

 T(12) = 
















100

001

010

 T(13) = 
















001

010

100

 

 

T(23) = 
















010

100

001

 

 

T(123) =
















001

100

010

 

 

T(132) =
















010

001

100

 

It is easy to show that T is a matrix representation of S3of degree 3. 

 

 

DEFINITION (1.2.4): 

Two representations t and ť with representation spaces V and M 

respectively are said to be equivalent if there exists an isomorphism ƒ of V onto 

M such that for all g  G, ť(g) ƒ = ƒ t(g). 
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Similarly, two matrix representations T1 and T2 are equivalent if they have 

the same degree, say n, and if there exists a fixed invertible matrix A  GL(n,F) 

such that for all g  G,     T2 (g) =A
-1

 T1 (g) A. See [1]. 

 

 

EXAMPLE (1.2): 

Consider two representation of degree 2 of the symmetric group  

 

S3 = < r, c: r
2 
= c

3 
= 1, rc = c

2
r > = {1, (12), (13), (23), (123), (132)}, 

 

where r = (12), c = (123). Let T1: S3 → GL(2,C) and T2: S3 → GL(2,C) such 

that: 

T1((12)) = 












01

10
 T1((123)) = 









 11

10
 

 

T2((12)) = 








01

10
 

 

T2((123)) = 












11

10
 

T1 and T2 are homomorphism, Then T1 and T2 are matrix representations, also 

there exists an invertible matrix A = 








10

01
 in GL(2,C) such that  

T1(x) = A
-1

 T2(x) A,  x  S3 

Hence T1 and T2 are equivalent. 

 

 

DEFINITION (1.2.5): 

Let T be a representation of a group G such that T(g) = 1,  g  G. Then t 

is called the linear trivial representation. See [1]. 
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DEFINITION (1.2.6): 

A matrix representation T of a group G is called reducible representation if 

it is equivalent to a matrix representation of the form 

 










)(0

*)(

2

1

xT

xT
,  x  G 

 

where T1 and T2 are representations of G, whose degree is less than the degree of 

T. 

A reducible representation T is called completely reducible if it is equivalent 

to a matrix representation of the form  

 










)(0

0)(

2

1

xT

xT
,  x  G 

 

If T is not reducible then T is said to be an irreducible representation. See [11]. 

 

 

EXAMPLE (1.3): 

In symmetric group S3 define T: S3 → GL(2,C) such that 

 

































npermutatiooddisxif

npermutatioevenisxif

xT

10

01

10

01

)(  

 

Then T is a matrix representation on S3. 
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Also there exists a non-singular matrix A = 








10

11
 in GL(2,C) such that 

3

2

11

)(0

*)(
)( Sx

xT

xT
AxTA 










 

Therefore T is reducible. 

 

 

1.3.  CHARACTER THEORY: 

This section introduces some important definitions and basic concepts of the 

character theory of finite groups. 

 

 

DEFINITION (1.3.1): 

Let T be a matrix representation of a finite group G over the field F. 

The character χ of T is the mapping χ: G → F defined by  

χ (g) = Tr (T(g))  g  G, where Tr (T(g)) refers to the trace of the matrix T(g). 

 

The characters of degree 1 are called linear characters. See [4]. 

 

 

EXAMPLE (1.4): 

In symmetric group S3 = < r, c | r
2
 = c

3
 = 1, rc = c

2
r >, define the 

representation T: S3 → GL(2,C) such that:  

 

r → 








01

10
 ,        c → 













20

0




 ,                 where ω = e

2πi/3
 

The character χ of T is: χ(r) = 0, χ(c) = ω + ω
2
 = -1. 
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DEFINITION (1.3.2): 

The function 1G, with constant value 1 on G, is a linear character, it is 

called the principle or sometimes (unit or trivial) character of G. 

 

The character afforded by irreducible representation is called irreducible 

Character, otherwise it is called compound Character. See [4]. 

 

 

EXAMPLE (1.5): 

Linear characters are irreducible character. 

 

 

PROPOSITION (1.3.3): 

If χ is the character of a representation T of degree n, we have: 

i. χ (1) = n. 

ii. χ (s 1 ) =  (s)    for s  G    (where the bar denotes the complex conjugate) 

 

PROOF:  See [5]. 

 

 

LEMMA (1.3.4): 

Let χт be the character of a representation T of a group G of degree n, if T 

and T
"
 are representations of G, then  χт  χт" = χт + χт". 

 

PROOF:  See [6]. 

The matrix of  T  T
"
 is 









"0

0

T

T
. Hence  tr(T  T

" 
) = tr(T) + tr(T

" 
). 
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LEMMA (1.3.5): 

Let χ is the character of a group G and suppose char(F) | |G|. Then there 

exist irreducible characters χ1, … , χk  of G such that χ = χ1+ … + χk. 

 

PROOF:  See [6]. 

 

 

DEFINITION (1.3.6): 

A class function on a group G is a function f: G → C which is constant on 

conjugacy classes, that is f (x 1 y x) = f (y)    x, y G. 

 

If all values of f are in Ζ, then it is called Ζ-valued class function. See [4]. 

 

 

LEMMA (1.3.7): 

Characters of a group G are class function. 

 

PROOF:  See [4]. 

Let ρ be matrix representation and χ character of ρ  

χ (x 1 y x) = Tr ρ(x 1 y x) = Tr ρ(x 1 ).Tr ρ(y).Tr ρ(x) = Tr ρ(y) = χ(y). 

 

 

DEFINITION (1.3.8): 

Let χ and ψ be characters of the group G. The inner product is defined as  





Gg

gg
G

)()(
1

, 1  …(1.1) 

See [4]. 



Chapter one                                                                          Preliminaries 

 

 

 
                                                                                             « 8 » 

EXAMPLE (1.6): 

Let G = C3 = {1, a, a
2
} and suppose that ,   are characters of a group G 

define from G into C as follows: 

 

 

 

 

 

)1(
3

1
)1)1(112(

3

1
, ii  , 

2))1()1(22(
3

1
,  ii  

 

 

THEOREM (1.3.9): 

Let χ and ψ be characters of two non-isomorphic irreducible representation 

of a group G. Then we have  

i. 0,  . 

ii. .1,   

 

PROOF:  See [5]. 

 

 

Corollary (1.3.10): 

If χ1, … , χk are irreducible characters of a group G, and χ is any character 

of G, then                                



k

i

ii

1

,   

PROOF:  See [6]. 

 1 a a
2 

 1 1 1 

 2 i  -1 
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Corollary (1.3.11): 

If χ1, … , χk are irreducible characters of a group G, and 



k

i

iin
1

 , and 





k

i

iim
1

  are any two characters of G, then  





k

i

ii mn
1

,  

PROOF:  See [6]. 

 

 

THEOREM (1.3.12): 

Let T and S be representations of G with characters χ and . Then T and S 

are equivalent if and only if they have the same character. 

 

PROOF:  See [4]. 

 

 

PROPOSITION (1.3.13): 

Let χ be a character of G. Then χ is irreducible if and only if .1,   

 

PROOF:  See [4]. 

 

 

PROPOSITION (1.3.14): 

If 1, … , k are all irreducible characters of G, then 



k

i

i G
1

2
)1( . 

This is a convenient criterion for the irreducibility of a character. 

PROOF:  See [4]. 
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THEOREM (1.3.15): 

Sum and product of characters are character. 

where if we suppose χ and ψ are characters of a group G, then  

1. The sum of characters is defined by  

(χ + ψ)(g) = χ(g) + ψ(g)               for g  G 

2. The multiplication of characters is defined by  

(χ .ψ)(g) = χ(g) . ψ(g)               for g  G 

 

PROOF:  See [4]. 

 

 

THEOREM (1.3.16): 

The number n of distinct irreducible characters of G is equal to the number 

of its conjugacy classes. 

 

PROOF:  See [5]. 

 

 

PROPOSITION (1.3.17): 

The degres ni satisfy the relations 

1. Gn
k

i

i 
1

2

. 

2. If  1 ≠ g  G, we have     



K

I

ii gn
1

0)( . 

 

PROOF:  See [5]. 
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THEOREM (1.3.18): 

Let 1, … , k be all the irreducible characters of a group G and let g1,…, gk 

be the representation of the conjugacy classes  C1, … , Ck of G. Then we have: 

 

1. The row orthogonality relation: 

 




k

G

ji

gC

gg

1 )(

)()(

 

 
 =  δij        for all  i, j = 1, 2, …, k 

2. The column orthogonality relation: 

 




k

i

ii gg
1

)()(    =  δαβ )( gCG         for all  α, β = 1, 2, …, k 

where CG(gα) denote the centralizer of gα in G ,    δij = 








jiif

jiif

0

1
. 

 

PROOF:  See [6]. 

 

 

EXAMPLE (1.7): 

Consider the characters of a group S3 as follows, where the conjugacy 

classes of this group are: 

C1 = {1}, C2 = {(12), (13), (23)}, C3 = {(123), (132)}  
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1)24(
6

1
))1)(1(20.0.32.2.1(

6

1
, 33    

0)22(
6

1
)1).1(2)1.(0.31.2.1(

6

1
, 23   





3

1

32 0)1.(01).1(1.1)()(
t

tt CC   





3

1

22 20.0)1).(1(1.1)()(
t

tt CC    

 

 

DEFINITION (1.3.19): 

Let χ be the character of the representation T of degree n, define the kernel 

of χ to be    ker χ = ker T. See [4]. 

 

 

LEMMA (1.3.20): 

If χ be a character of G, then Ker χ = {g  G: χ (g) = χ (1)} 

 

PROOF:  See [4]. 

 

 

Cg C1 C2 C3 

| Cg | 1 3 2 

χ1 1 1 1 

χ2 1 -1 1 

χ3 2 0 -1 
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Corollary (1.3.21): 

If GH  , then H = ∩ { Ker χi: H ≤ Ker χi }. 

 

PROOF:  See [6]. 

 

 

1.4.  THE CHARACTER TABLE : 

The complete information about the characters of a group G is conveniently 

displayed in a character table, which lists the values of the k irreducible 

characters for all elements of G. Since the character is constant on each of the 

conjugacy classes Cα, (1 ≤   k), thus it is sufficient to record the values 

 

χi (g), i=1, 2, …, k , if  gα  Cα 

 

Table (1.1) presents a typical character table, the body of the table is a k by k 

square matrix whose rows correspond to the different characters while each 

column contains the values of all irreducible characters for a particular 

conjugacy classes, denoting the number of elements in Cα by hα we have the 

class equation h1 + h2 + … + hk= |G|, and the degree of the k distinct 

representations of G over C by  ni, i= 1, 2, …., k. 

 

The size of the centralizer CG (Cα) = |G| / hα= mα, although they are not 

properly speaking, a part of the table. See [1]. 
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TABLE (1.1) 

 

 

EXAMPLE (1.9): 

The group S3 has three conjugacy classes, namely 

C1 = {1}, C2 = {(12), (13), (23)}, C3 = {(123), (132)} 

Therefore S 3  has three irreducible representations, they are: 

  

1. ρ1 ( g ) = 1              g  S3 

 

2. ρ2 ( g ) = 




 npermutatiooddanisxif

npermutatioevenanisxif

1

1
 

 

3.         ρ3 (1) = 








10

01
  ρ3 (12) = 









01

10
 ρ3 (13) = 







 

10

11
 

 

     ρ3 (23) = 








 11

01
 

 

ρ3 (123) = 








 11

10
 

 

ρ3 (132) = 






 

01

11
 

 

Cα C1 C2 . . . Cα . . . Ck 

|Cα| h1 h2 . . . hα . . . hk 

|CG(Cα)| m1 m2 . . . mα . . . mk 

χ1 1 1 … 1 … 1 

χ2 n2 χ2(g2) … χ2(gα) … χ2(gk) 

χ3 n3 χ3(g2) … χ3(gα) … χ3(gk) 

            

χk n k χk(g2) … χk(gα) … χk(gk) 
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Then the character table of S3 is: 

 

 

 

 

 

                       ≡ S3=     

 

 

 

We check that 

n1
2
 + n2

2
+ n3

2
 = 1

2
 + 1

2
 + 2

2
 = 6 

which confirms that we have indeed found all the irreducible characters of S3. 

 

 

1.5.  CHARACTERS OF FINITE ABELIAN GROUP: 

In this section we introduce some important definitions of the abelian group 

and describe the character table of this group. 

 

 

DEFINITION (1.5.1): 

A group G is called abelian group if every pair of elements commutes, that 

is, if  xy = yx    for all x, y in G. See [10]. 

 

 

DEFINITION (1.5.2): 

A group G is called finite group if G is a finite set. In this case the number 

of elements in G is called the order of G and is denoted by |G|. This amount to 

Cα C1 C2 C3 

|Cα| 1 3 2 

|CG(Cα)| 6 2 3 

χ1 1 1 1 

χ2 1 -1 1 

χ3 2 0 -1 
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saying that each conjugace class of G consists of single element, also that each 

function on G is a class function. See [10]. 

 

 

THEOREM (1.5.3): 

A finite abelian group G of order n has exactly n distinct characters.  

 

PROOF:  See [10]. 

 

 

1.5.4  The Character Table Of  Finite Abelian Group : 

For a finite abelian group G of order n a complete information about the 

irreducible characters of G is displayed in a table called the character table of G. 

We list the elements of G in the 1
st
 row, we put 

 

χi(x
j
) = χi

j
  , 1≤ i ≤ n , 1≤ j ≤ n-1 

 

 

 

 

 

 

             ≡ G =     

 

 

 

TABLE (1.2) 

 

Cα 1 x x
2 

. . . x
n-1

 

|Cα| 1 1 1 . . . 1 

|CG(Cα)| n n n . . . n 

χ1 1 1 1 … 1 

χ2 1 (χ2)
1
 (χ2)

2
 … (χ2)

n-1
 

      

χn 1 (χn)
1
 (χn)

2
 … (χn)

n-1
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If G = Zn, the cyclic group of order n, and let ω = ℮
2 π i ⁄ n

 be a primitive  

n-th root of  unity then the general formula of the character  table of  Zn is: 

 

 

 

 

 

             ≡ Zn =     

 

 

 

 

TABLE (1.3) 

See [4]. 

 

 

EXAMPLE (1.10): 

The group Z5 consists the elements 1, z, z
2
, z

3
, z

4
, (z

5
 = 1). 

Let ω = ℮
2 π i ⁄ 5

. Then the character table of Z5 is: 

 

 

 

 

 

                 ≡ Z5 =     

 

 

Cα 1 z z
2
 . . . z

n-1
 

|Cα| 1 1 1 . . . 1 

|CG(Cα)| n n n . . . n 

χ1 1 1 1 … 1 

χ2 1 ω ω2 … ω
n-1

 

χ3 1 ω2
 ω4

 … ω
n-2

 

           

χn 1 ω
n-1

 ω
n-2 … ω 

Cα 1 z z
2
 z

3
 z

4
 

|Cα| 1 1 1 1 1 

|CG(Cα)| 5 5 5 5 5 

χ1 1 1 1 1 1 

χ2 1 ω ω2 ω3
 ω4

 

χ3 1 ω2
 ω4

 ω ω3
 

χ4 1 ω3
 ω ω4

 ω2
 

χ5 1 ω4
 ω3 ω2

 ω 
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For the general case of a finite abelian group G of order n, can be written G 

as a direct product of a cyclic subgroups ,say 

G=<Z1> × <Z2>× … ×<Zm> 

where Zμ is of order nμ and n = n1.n2 . . . nm. 

An arbitrary element x є G is then uniquely expressed as x = z1

a1
 z2

a2
…zm

am
 

where the exponents are subject to the conditions      0 ≤ aμ ≤ nμ    (μ =1, 2, …, m) 

In order to construct the irreducible characters of G, we choose for each μ an  

nμ-th root of unity 

ξμ=  
)/2(  nri

e                   where rμ is any integer satisfying 

 

0 ≤ rμ ≤ nμ,( μ =1, 2, …, m) …(1.2) 

 

Corresponding to each m-tuple [r] = [r1, r2, …, rm ] 

We define the function 

χ [r](x) = 



m

nrai

e 1

)/2(





 
…(1.3) 

 

Then there are nm–tuples satisfying (1.2), since distinct m–tuples correspond to 

distinct functions, then all n irreducible characters of G are obtained by (1.3). 

See [4]. 

 

 

EXAMPLE (1.11): 

The characters of G = Z2× Z3 can be found by applying (1.3), r = [r1,r2] and 

| G | = 2 × 3 = 6.  

Let ω = ℮
2 π i ⁄ 3

, then the character table of G is: 



Chapter one                                                                          Preliminaries 

 

 

 
                                                                                             « 19 » 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6. INDUCED CHARACTERS: 

In this section we describe an additional and very important method which 

constructs characters of a group from characters of an arbitrary subgroup  

 

 

DEFINITION (1.6.1): 

Let H be a subgroup of a group G, and φ be a class function of H. Then 

φ↑
G
, the induced class function on G, is given by  





Gx

xgx
H

g )(
1

)( 1  

where φ˚ is defined by : 

φ˚(h) = φ(h)            if      h  H  

and                                   

                                         φ˚(h) = 0                 if      h  H 

Cα (1,1) (x,1) (1,y) (x,y) (1,y
2
) (x,y

2
) 

|Cα| 1 1 1 1 1 1 

|CG(Cα)| 6 6 6 6 6 6 

χ[0,0] 1 1 1 1 1 1 

χ[1,0] 1 -1 1 -1 1 -1 

χ[0,1] 1 1 ω ω ω2 ω2 

χ[1,1] 1 -1 ω -ω ω2 -ω2 

χ[0,2] 1 1 ω2   ω2 ω ω 

χ[1,2] 1 -1 ω2 -ω2 ω -ω 
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Clearly φ↑
G
 is a class function on G and φ↑

G
(1) = [G:H] φ(1). 

 

Then the character of the induced representation is called induced character 

and can be rewritten as: 

 

where      φ↑
G
(Cα) = 0       if    Cα  H. See [4]. 

 

 

EXAMPLE (1.12): 

The three conjugacy classes of the symmetric group S3, are: 

 

C1 = {1}, C 2 = {(12), (13), (23)}, C3 = {(123), (132)} 

 

To calculate the induced characters of S3 from the unit characters of the  

cyclic subgroups Ci, i = 1, 2, 3, by using the formula (1.4). 

 

The partitions to the order of S3 equal 3, they are 1
3
, 12, 3, while the orders  

of the three classes of S3 are 1, 3, 2, and the orders of the centralizer are 6, 2, 3 

respectively. Thus: 

 

1- (13
):       1C1↑

S3 = [S3: C1] χ1 (1) = 6 (1) = 6 

 

112 C1↑
S3 = 13 C1↑

S3 = 0.           since (12)  (1
3
), and (123)  1

3
. 

 

Φ1(x) = ( 6    0    0 ) 

 













CgH

GG g
CC

CC
C )(

)(

)(
)(  

 

…(1.4) 
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2- (12):      1C2↑
S3 =  1

2

6
 = 3. 

 

112 C2↑
S3 =  1

2

2
 = 1 

 

13 C2↑
S3 = 0.           since (123)  (12). 

 

Φ2(x) = ( 3    1    0 ) 

 

3- (3):      1C3↑
S3 =  1

3

6
 = 2. 

 

112 C3↑
S3 = 0.           since (12)  (3) 

 

13 C3↑
S3 = 11

3

3
  = 2 

 

Φ3(x) = ( 2    0    2 ) 

 

We declare that in this table: 

 

 

 

 

 

 

 

Cα 1
3
 12 3 

|Cα| 1 3 2 

|CG(Cα)| 6 2 3 

Φ1 6 0 0 

Φ2 3 1 0 

Φ3 2 0 2 
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Corollary (1.6.2): 

Let H be a subgroup of G, and φ be a character of H. Then φ↑
G
 is a character 

of G. 

 

PROOF:  See [4]. 

 

 

1.7.  THE FACTOR GROUP K(G): 

In this section we will study the factor group K(G) of a group G, also this 

section includes fundamental concepts and the order of K(G). 

 

 

DEFINITION (1.7.1): 

A rational valued character θ of G is a character whose values are in Z, that 

is θ(x)  Z for all x  G. See [7]. 

 

 

DEFINITION (1.7.2): 

Two elements of G are said to be Q-conjugate if the cyclic subgroups they 

generate are conjugate in G, this defines an equivalence relation on G, its classes 

are called the Q-classes of G. See [7]. 

 

Let G be a finite group and let 1, 2, …, k be its distinct irreducible 

characters, A class function on G is a character if and only if it is a linear 

combination  of the i،s with non-negative integer coefficients. We will denote 

by R+

(G) the set of all these functions, the group generated by R+(G) is called the 

group of the generalized characters of G and denoted by R(G). We have  



Chapter one                                                                          Preliminaries 

 

 

 
                                                                                             « 23 » 

R(G) = Z1  Z2  …  Zk 

An element of R(G)is called a virtual character. Since the product of two 

characters is character, R(G) is a subring of the ring cf(G) of C-valued class 

functions on G. 

 

Let cf (G,Z) be the group of all Z-valued class functions of G which are 

constant on Q-classes, and let )(GR be the intersection of cf (G,Z) with R(G) )(GR is 

a ring of Z-valued generalized characters of G. 

 

Let εm be a complex primitive m-th root of unity. We know that the Galois 

group Gal(F(εm) / F) is a subgroup of the multiplicative group (Z / mZ)
*
 of 

invertible elements of Z / mZ. More precisely, if ζ  Gal(F(εm) / F), there exists 

a unique element  t  (Z / mZ)
*
 such that  

 

ζ(εm) = ε
t
m        if ε

m
 = 1 

 

We denote by ΓF the image of Gal(F(εm) / F) in (Z / mZ)
*
, and if  t  ΓF, we 

let ζt denote the corresponding element of Gal(F(εm) / F). 

 

Take as ground field F the field Q of rational numbers. The Galois group of 

Q(εm) over Q is the group denoted by Γ. See [8]. 

 

 

THEOREM (1.7.3):  

We have Γ = (Z / mZ)
*
. 

 

PROOF:  See [5]. 
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PROPOSITION (1.7.4): 

The characters Ф1, Ф2, …, Фh form a basis of )(GR  and their number is 

equal to the number of conjugacy classes of cyclic subgroups of a group G, 

where 





)/)(( QQGal

ii

i




 

 

and i are the irreducible C-characters of G. 

 

PROOF:  See [8]. 

 

 

LEMMA (1.7.5): 

The factor group K(G) has a finite exponent equal to the order of G. 

 

PROOF:  See [8]. 

 

 

DEFINITION (1.7.6): 

Let M be a matrix with entries in a principal domain R. A k- minor of M is 

the determinant of a k by k submatrix preserving row and column order. See [7]. 

 

 

DEFINITION (1.7.7): 

A k-th determinant divisor of a matrix M is the greatest common divisor of 

all the k-minors of M, and is denoted by D
k
(M). See [7]. 
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THEOREM (1.7.8): 

Let M, P, Q be matrices with entries in a principal domain R. Let P and Q 

be invertible matrices. Then Dk(Q M P
-1

) = Dk(M). 

 

PROOF:  See [7]. 

 

 

THEOREM (1.7.9): 

Let M be an m × n matrix with entries in a principal domain R. Then there 

exist matrices P, Q, D such that: 

1. P and Q are invertible. 

2. Q M P
-1

 =D. 

3. D is diagonal matrix. 

4. If we denote Dii by di then there exists a natural number  r, 0 ≤ r ≤ min(m,n)  

such that j > r implies dj = 0 and j ≤ r implies dj ≠ 0 and 1 ≤ j < r implies dj 

divides dj+1. 

 

PROOF:  See [7]. 

 

 

DEFINITION (1.7.10): 

Let M be a matrix with entries in a principal domain R, be equivalent to a 

matrix D = diag { d1, d2, …, dr, 0, …, 0 } such that dj / dj+1 for 1 ≤ j < r, we call D 

the invariant factor matrix of M and d
1
 , d

2 
, …, d

r 
the invariant factors of M. See [7]. 
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THEOREM (1.7.11): 

If M be a matrix with entries in a principal domain R, then the invariant 

factors are unique (modulo unit multiples). 

 

PROOF:  See [7]. 

 

 

THEOREM (1.7.12): 

Let M be a finitely generated module over a principal domain R, then M is 

the direct sum of cyclic submodules with annihilating ideals  

< d1 >, < d2 >, …, < dm >, dj / dj+1 for j = 1, 2, …, m–1. 

 

PROOF:  See [7]. 

 

 

Suppose cf(G,Z) is of rank r , and let (≡
*
G) denote the r × r matrix whose 

rows correspond to the Фj’s and columns correspond to the Γ– classes of G. The 

matrix expresses the )(GR  basis in terms of the cf(G,Z) = Z
r
 basis (≡

*
G) hence, 

by theorem(1.7.9), we can find two matrices P and Q with determinant ± 1 such 

that Q (≡
*
G) P-1

 = diag { d1, d2, …, dr }, 

 

di = ± Di(≡
*
G) / Di-1(≡

*
G) 

 

This yields a new basis for R(G) and cf(G,Z), { v1, v2, …, vr } and  

{u1, u2, …, ur} respectively with the property vj = dj uj. 

Hence by theorem (1.7.12) the Z–module K(G) is the direct sum of cyclic 

submodules with annihilating ideals < d1 >, < d2 >, …, < dr >. 
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THEOREM (1.7.13): 

K(G) = 
r

i 1
 Z

id , where di = ± Di(≡
*
G) / Di-1(≡

*
G). 

 

PROOF:  See [8]. 

 

 

THEOREM (1.7.14): 

|K(G)| = det(≡
*
G). 

 

PROOF:  See [8]. 

 

 

THEOREM (1.7.15): 

Let {xi}, 1≤ i ≤ t be the set of representatives of Γ– classes of G and assume 

each xi contains ni classes of G, then 

2/1

1 )(
)(




















i

i
t

i x

gn
GK

 

 

PROOF:  See [8]. 

  

 

LEMMA (1.7.16): [8] 

If A and B are two matrices of degree n and m respectively, then  

det(A  B) = (det(A))
m. (det(B))

n
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LEMMA (1.7.17):  See [8] 

Let A and B are two non–singular matrices of degree n and m respectively 

over a principal domain R, and let 

  P1 A Q1 = D(A) = diag { d1(A), d2(A), …, dn(A) }, 

P2 B Q2 = D(B) = diag { d1(B), d2(B), …, dm(B) } 

Be the invariant factor matrices of A and B then  

(P1  P2) (A  B) (Q1  Q2) = D(A)  D(B), 

And from this the invariant factor matrix of A  B can be written down. 

 

Let H and L be P1and P2 –groups respectively, where P1and P2 are distinct 

primes. We know that 

≡ (H × L) = ≡ (H)  ≡ (L) 

since gcd (P1,P2) = 1, we have  

≡* (H × L) = ≡*(H)  ≡* (L) 

 

We consider the case where G is a cyclic P–group, for the cyclic group of 

prime order, all the non principal irreducible characters are Γ–conjugate. 

Hence 

(≡
*
G) = 









 11

11

p
 = A 

det(A) = P = |K(G)| = exp(K(G)) 

 

 

THEOREM (1.7.18): 

Let G be a cyclic P–group. Then  

K(G) = Zp. 

PROOF:  See [8]. 
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THEOREM (1.7.19): 

Let G be a cyclic group of order P
n
. Then  

K(G) = 
n

i 1
 Z iP  

PROOF:  See [8]. 

 

 

EXAMPLE (1.13): 

The rational valued character of Z2 and Z3 are  

(≡
*
 Z2) = 









11

11
 and (≡

*
 Z3) = 









12

11
 

Let 

P1 = 








10

11
 , P2 = 









01

12
 , Q1 = 









11

01
 and Q2 = 







 

01

11
 

 

Then 

P1 (≡
*
Z2) Q1 = 









10

02
, P2 (≡

*
Z3) Q2 = 







 

10

03
 

 

By lemma (1.7.17), we obtain 

 

(P1  P2) ((≡
*
Z2)  (≡

*
Z3)) (Q1  Q2) = 

























1000

0200

0030

0006

 

 

Hence 

K(Z2 × Z3) = Z6  Z3  Z2  Z1. 
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--- 
 

 

2.1.  INTRODUCTION: 

This chapter concerns some members of an important class of groups: 

the finite linear groups. Important features are described and the conjugacy 

classes of this group is investigated. We develop character tables for some of 

the finite special linear group. 

 

 

2.2.  THE GROUPS SL(n, p
k
):  

In chapter one we already met the general linear group, i.e the group of 

invertible n×n matrices over a field F denoted by GL(n,F). The determinant of 

these matrices is a homomorphism from GL(n,F) into F
*
 and we denote the 

kernel of this homomorphism by SL(n,F),the special linear group. Thus 

SL(n,F) is the subgroup of GL(n,F) which contains all matrices of determinant 

one. 

In this chapter we are interested in finite special linear group, and we 

choose F to be finite, we consider the case when n=2 and F = p
k
, where p  is 

prime, p  ≠ 2, k is natural number. 
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THEOREM (2.2.1): 

The order of SL(2,p
k
) is | SL(2,p

k
) | = p

k
 ( p

2k
 – 1). 

PROOF:  See [6] 

SL(2,p
k
) = 

















1,,,: 32414321

43

21
xxxxandFxxxx

xx

xx
 

We now count the elements of SL(2,p
k
) by considering two cases, the sum of 

which will give the required result. 

Case I: x3 = 0 

Then x1x4 – x2x3 = x1x4 = 1. Thus, if we fix x1 ≠ 0, then x4 is determined as the 

multiplicative inverse of x1. Hence there are p
k
–1 choices for x1and non for 

x4.On the other hand x2 can be chosen arbitrarily, i.e. kp  choices for x2 In total 

we have counted p
k
 (p

k
 – 1) elements for case I. 

Case II: x3 ≠ 0 

From x1x4 – x2x3 = 1 we deduce x2 = (x1x4 – 1) / x3. Now we have p
k
 – 1 choices 

for x3. We may choose x1 and x4 arbitrarily and x2 is then determined. Hence we 

have p
k
 choices for x1, p

k
 choices for x4 and non for x2  

Case II cover p
2k

 (p
k
 – 1) element of SL(2,p

k
). 

 

 

EXAMPLE (2.1): 

The order of SL(2,3) is | SL(2,3) | = 3 (3
2
 – 1) = 3 (8) = 24. 

Case I gives    3 (3 – 1) = 6 elements. 

Case II gives   3
2
 (3 – 1) = 18 elements. 

 





























































































































































































































02

12
,

01

22
,

21

20
,

22

10
,

11

20
,

12

10
,

02

11
,

01

21
,

01

20
,

02

10
,

21

11
,

11

12

,
12

22
,

22

21
,

20

22
,

22

02
,

10

21
,

12

01
,

20

12
,

21

02
,

10

11
,

01

01
,

20

02
,

10

01

)3,2(SL
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PROPOSITION (2.2.2): 

The centre of SL(2,p
k
) is SZ(2,p

k
), where SZ(2,p

k
) denotes the subgroup of  

SL(2,p
k
)  of all matrices αI, α  F, such that α

2
 = 1,  

for p ≠ 2  α {-1,1}. See [6]. 

 

 

THEOREM (2.2.3): 

G=SL(2,p
k
) has exactly p

k
 + 4 conjugacy classes : 

 

1, z, c, d, zc, zd, a, a
2
, …, 2

3kp

a , b, b
2
, …, 2

1kp

b
 

 

Let: 

 v be the generator of the cyclic multiplicative group F
*
, 

 1 ≤ ℓ ≤ (p
k
 – 3)/2, 

 1 ≤ m ≤ (p
k
 – 1)/2. 

 

Thus this conjugacy classes is satisfied  
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TABLE (2.1) 

 

PROOF:  See [6] 

Step 1:    C1, Cz, Cc, Cd, Czc, Czd, are as described in table (2.1) 

Clearly, the elements 1 and z = -1 both form a conjugacy class of their 

own, since they lie in the center of G. We have | G | = p
k
 (p

2k
 – 1), and hence the 

first two rows of the table. 

To find the conjugacy classes of c, d, zc and zd we consider an arbitrary 

element g = G
xx

xx









43

21  and its inverse   g
-1

 = 












13

24

xx

xx
. Then 

 

g  G Notation Cg | Cg | | CG(g) | 










10

01
 1 C1 1 p

k
 (p

2k
 – 1) 














10

01
 z Cz 1 p

k
 (p

2k
-1) 










11

01
 c Cc (p

2k
 – 1)/2 2p

k
 










1

01


 d Cd (p

2k
 – 1)/2 2p

k
 














11

01
 zc Czc (p

2k
 – 1)/2 2p

k
 














1

01


 zd Czd (p

2k
 – 1)/2 2p

k
 















 







0

0
 a

ℓ 
Ca

 ℓ  p
k
 (p

k
 + 1) p

k
 – 1 

Element of 

order(p
k
+1)

m 

b
m 

Cb
 m

 
p

k
 (p

k
 – 1) p

k
 + 1 



Chapter Two                                                   The Finite Special Linear Groups 

 

 

 
                                                                                             « 34 » 

--- 
 

 

g
-1

cg = 


















21

2

1

2

221

1

1

xxx

xxx
 …(2.1) 

 

From (2.1) we deduce that zc cannot be conjugate to c, since for this we would 

need x2 = 0 and then 1 = -1, a contradiction. 

A similar argument shows that d ~ zd  

The elements d and zd cannot be conjugate to c either. In this case it would 

follow that x1
2
 = ± v.If, however v is a square in F

*
, it will not generate all of F

*
, 

for | F | = p
k
 is odd. Hence, Cc, Cd, Czc and Czd are all distinct. 

 

To find the size of these conjugacy classes we examine the sizes of the 

centralizers of c, d, zc and zd. We use the element c again as an example. 

By (2.1) the following must hold for g to be in CG(c): 

 

1- x1 x2 = 1, - x2
2 
= 0, x1

2
 = 1 x1 =  1, x2 = 0. 

 

So x3 can be chosen arbitrarily and x4 is determined as the multiplicative inverse 

of x1, i.e. x4 = x1.Thus  

















 1,,:

0
)(

2

131

13

1
xFxx

xx

x
cCG , 

 

which is a set of size 2p
k
. It turn out that the sizes of the centralizers of d, zc and 

zd are exactly the same as |CG(c)|. The next four rows of the table follow. 
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PROOF:  Step 2:  

(i) The order of 














10

0




a  is p

k
 – 1. 

(ii) If y  a with | y | > 2, then CG(y) = a. 

(iii) If y is conjugate to a power y
r
 in G, then y

r
  { y, y

-1
}. 

(iv) The Ca
 ℓ are as described in the table. (2.1). 

 

(i) Clearly, since v generates F
*
, we have | v | =| F

 
| = p

k
 – 1 and so 

| a | = p
k
 – 1. 

(ii) Assume that ya, i.e y = a
ℓ
 for some ℓ, < 1 ≤ ℓ ≤ p

k
 – 1 and assume that y  

has order greater than two. If 






















0

0
y  > 2, then | v

 ℓ
 | > 2. Hence v

 ℓ
 ≠ v

 - ℓ
, 

and so y is a diagonal matrix which is not a scalar multiple of the identity. 

 

We now want to find the elements of the centralizer of y in G. The element  

y is a power of a, and thus it commutes with all other power of a,  

i.e a  CG(y). Suppose there is some other g G, ga, that commutes with y 

 

i.e   















































43

21

43

21

0

0

0

0

xx

xx

xx

xx
















 


















































43

21

43

21

xx

xx

xx

xx
 

 

For g a this is the case if and only if v
 ℓ 

= v
 - ℓ

, which contradicts our initial 

assumption that | y | > 2.Thus a = CG(y). 

 

(iii)   Consider the normalizer of y in G, NG(y). Then g G lies in NG(y)  

if and only if g
-1

cg is diagonal. For g = 








43

21

xx

xx
 this means that  



Chapter Two                                                   The Finite Special Linear Groups 

 

 

 
                                                                                             « 36 » 

--- 
 


































41323131

424232411

xxxxxxxx

xxxxxxxx
gyg  

 

has to be diagonal. Thus we have x2x4 = 0 and x1x3 = 0, because v
 ℓ
 ≠ v

 - ℓ
. Since 

g is assumed to be invertible, we are left with two cases: x2 = x3 = 0 or  

x1 = x4=0.Then NG(y) is the following set: 










































*,:
0

0
,

0

0

11
F








. 

 

In other words, NG(y) =   






 

01

10
,yCG . We observe that NG(y) contains all 

the power of y and that [NG(y) : CG(y)] = 2. Thus the cojugacy class of y in 

NG(y) has size 2, i.e. it contains only one element other than y. It is easy to 

check that if g = 






 

01

10
, then g

-1
yg = y

-1
. Hence if y is conjugate to a power y

r
 

in NG(y), then y
r
  { y, y

-1
 }. As NG(y) contains all the powers of y in G, the 

result follows. 

 

(iv)    First consider a
ℓ
 for 1≤ ℓ ≤ (p

k
 – 3)/2 .In this case | a

ℓ
 | > 2 and (iii) tells us 

that the only powers of a
ℓ
 conjugate to it are a

ℓ
 and a

- ℓ
. Now  

a
- ℓ

 =  )1( kpa and.(p
k
 + 1) / 2 ≤ (p

k
 – 1) - ℓ ≤ p

k
 – 2. We deduce that the 

conjugacy classes of a 
ℓ
 are all distinct for 1≤ ℓ ≤ (p

k
 – 3)/2.The size of these 

conjugacy classes is |G| / |CG(a
ℓ
)| and by (i) and (ii), we have )1(  kk

a
ppC  . 

 

Now we examine the remaining powers of a.For ℓ = (p
k
 – 1) / 2 we have  

| a
ℓ
 |= 2. Also, 12/)1( kpa , since 12/)1( kp . We deduce za

kp  2/)1( . 

 

Clearly, for ℓ = p
k
 – 1, a

ℓ
 = 1 and we have cover all powers of a. 
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PROOF:  Step 3:  

 

(i) G contains an element, b say, of order. p
k
 + 1. 

(ii) If y  b  with | y | > 2, then CG(y) = b. 

(iii) If y is a conjugate to a power y
r
 in G, then y

r
  { y, y

-1
}. 

(iv) The Cb
 m are as described in the table (2.1). 

 

We will omit the proofs of (i)-(iii), since they do not provide insights which 

could be helpful for the construction of the character table of SL(2,p
k
), and we 

omit the proof of (iv) since it is practically identical to the one in the proof of 

(iv) in step2. 

 

Now to show that the number of conjugacy classes is p
k
 + 4 and that these 

conjugacy classes are all disjoint. If we add up the elements contained in those 

conjugacy classes we get: 

 

)1()1(
2

1
)1(

2

3

2

1
411 2

2










 kkkk
k

kk
kk

pppp
p

pp
pp

. 

 

As p
k
 (p

2k
 – 1) = | G |, so this theorem gives all conjugacy classes of SL(2,p

k
). 

 

 

EXAMPLE (2.2): 

To compute the conjugacy classes of the group G = SL(2,5). 

 

| G | = | SL(2,5) | = 5(5
2
 – 1) = 5 (24) = 120. 

 

This group has exactly 5 + 4 = 9 conjugacy classes. 
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v = 2,    1 ≤ ℓ ≤ 1,    1 ≤ m ≤ 2 

 

So these conjugacy classes are: 

 

1, z, c, d, zc, zd, a, b, b
2 

 

We can table these conjugacy classes as a table (2.1): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g  G Notation Cg | Cg | | CG(g) | 










10

01
 1 C1 1 120 










40

04
 z Cz 1 120 










11

01
 c Cc 12 10 










12

01
 d Cd 12 10 










44

04
 zc Czc 12 10 










43

04
 zd Czd 12 10 










30

02
 a Ca 30 4 










34

23
 b Cb 20 6 










24

22
 b

2 
Cb

2 20 6 
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2.3.  IRREDUCIBLE CHARACTERS OF SL(2,pk
), p≠2 

In this section we are able to construct the irreducible characters of this 

group since we know the conjugacy classes of SL(2,p
k
). 

 

 

THEOREM (2.3.1):  

Let
2/)1()1( 

kp , let ρ  C be a (p
k
 − 1)-th root of unity and σ  C be a  

(p
k
 + 1)-th root of unity. Note that the character values for Czc and Czd can be 

derived from the following relations for all irreducible characters χ of SL(2,p
k
): 

 

)(
)1(

)(
)( c

z
zc 




  , )(

)1(

)(
)( d

z
zd 




   

 

Then the ordinary character table for G = SL(2,p
k
), p≠ 2 is: 
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TABLE (2.2) 

 

            For   1 ≤ i ≤ (p
k
 – 3)/2, 1 ≤ j ≤ (p

k
 – 1)/2, 1 ≤ ℓ ≤ (p

k
 – 3)/2, 1 ≤ m ≤ (p

k
 – 1)/2.  

 

            Columns for zc and zd are missing in this table.These values are computed from the relations: 

 

 

Cg 1 z c d a
ℓ 

b
m 

| Cg | 1 1 (p
2k

 – 1)/2 (p
2k

 – 1)/2 p
k
 (p

k
 + 1) p

k
 (p

k
 – 1) 

| CG(g) | p
k
 (p

2k
 – 1) p

k
 (p

2k
 – 1) 2p

k
 2p

k
 p

k
 – 1 p

k
 + 1 

1G 1 1 1 1 1 1 

ψ p
k
 p

k
 0 0 1 -1 

χi (p
k
 + 1) (-1)

i
(p

k
 + 1) 1 1 ρ

iℓ
 + ρ

-iℓ
 0 

θj (p
k
 – 1) (-1)

 j
(p

k
 – 1) -1 -1 0 -(σ

 jm
 + σ

 -jm
) 

ξ1 (p
k
 + 1)/2 ε(p

k
 + 1)/2 )1(

2

1 kp  )1(
2

1 kp  (-1)
ℓ 

0 

ξ2 (p
k
 + 1)/2 ε(p

k
 + 1)/2 )1(

2

1 kp  )1(
2

1 kp  (-1)
ℓ
 0 

η1 (p
k
 – 1)/2 -ε(p

k
 – 1)/2 )1(

2

1 kp  )1(
2

1 kp  0 (-1)
m+1 

η2 (p
k
 – 1)/2 -ε(p

k
 – 1)/2 )1(

2

1 kp  )1(
2

1 kp  0 (-1)
m+1

 

)(
)1(

)(
)(,)(

)1(

)(
)( d

z
zdc

z
zc 
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PROOF:  See [6] 

Step 1:    1G, ψ, χ1, … , χ( 2/)3kp  are irreducible characters of G=SL(2,p
k
) are 

described in the table (2.2). 

Clearly, 1G is the linear trivial character. To construct the remaining 

characters of this step of the proof, we use the technique of induced characters 

as described in chapter one . 

Consider the following subgroup of G: 

H = 




























FxFx
xx

x
3

*

11

13

1
,:

0
. 

 

To examine the structure of H further, we, in turn, consider a subgroup S of H: 

S = 
















Fx

x
3

3

:
1

01
. 

 

Thus S = p
k
, S  H, H = Sa and S  a = 1. Then H = S  a  = p

k
 (p

k
 – 1). 

Define linear characters for H by: 

 

λi: 
ti

t

t






















0
 

…(2.2) 

 

where β  F, ρ  C is a (p
k
 – 1)-th root of and 0 ≤ i ≤ p

k
 – 1.We observe that,  

S  Ker λi, and that Hpk 101



 , the linear trivial character of H. 

Let λi
" 
= λi for g  H and λi

"
= 0 for g  H. We use formula (1.4) to derive the 

induced characters λi↑
G
of G: 

 

λi↑
G
(g) 

 

 gCy

i

g

y
C

HG
)(

: "
  

…(2.3) 
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To compute the actual values of λi↑
G
(g) it is useful to know which of the  

elements of each conjugacy class Cg lie in the subgroup H, since they can be 

ignored otherwise. Let Fs
*
 be the set of non-zero squares in F, then  

| Fs
*
 | = ( p

k
 – 1) / 2.We will now consider Cc and Ca

 ℓ in detail. From (2.1) we 

derive for Cc and  











43

21

xx

xx
g . 

0..,0
1

1
2

2

2

21

2

1

2

2211 

















 xeixH

xxx

xxx
cgg , thus 



















*
:

1

01
sc FHC 


 . 

For Ca
 ℓ we have from the proof of step 2 (iii) in theorem (2.2.3) that 

 



































41323131

424232411

xxxxxxxx

xxxxxxxx
gag . 

 

For 1≤ ℓ ≤ (p
k
 – 3)/2 we have seen that v

 ℓ
 ≠ v

 - ℓ
, and hence 

g
-1

 a
 ℓ
 g  H  x2 x4 = 0 

 

1) Let x2 = 0. Then 





























4131

411

)(

0

xxxx

xx
gag  , where x1x4 = 1, since  

g has determinant  1. 

 

2) Let x4 = 0. Then


































3231

321

)(

0

xxxx

xx
gag , where x2x3 = -1, since  

g has determinant  1 

 

Hence 













































FHC

a









:

0
,

0









 . 
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Clearly, we have | Ca
 ℓ ∩ H | = 2p

k
, since   can be chosen arbitrarily and  

v
 ℓ
 ≠ v

 - ℓ
. In a similar way to the above the following can be deduced: 

 























*
:

1

01
szc FHC 


 , 

 



















*
:

1

01
sd FHC 


 , 

 























*
:

1

01
szd FHC 


 . 

 

We have | Cc ∩ H | = | Czc ∩ H | = | Cd ∩ H | = | Czd ∩ H | = ( p
k
 – 1) / 2. If we 

sum all the elements of H over all the conjugacy classes we get: 

 

Hppp
pp kkk

kk







 )1(2
2

3

2

1
411 . 

 

Thus we have already accounted for all elements of H, and hence no element of 

the conjugacy classes Cb
 m can lie in H. 

 

Now with [G:H]= p
k
 + 1 and using (2.2) and (2.3) we can compute λi↑

G
(g) for 

g  G: 

 

 

 

g | Cg | λi
"
(g) for g є (Cg ∩ H) | Cg ∩ H | λi↑

G
(g) 
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TABLE (2.3) 

 

Note that 12/)1( kp , since p
k
 – 1 is even. 

 

(*)   For 





























FHCa

a





:

0
)( 1 


  we have λi

" 
( a

 ℓ
 ) = ρiℓ

 and  

|( Ca
 ℓ ∩ H)1| =p

k
 

 

For






























FHCa
a





:

0
)( 2 


   we have λi

" 
( a

 ℓ
 ) = ρ -iℓ

 and 

|( Ca
 ℓ ∩ H)2| =p

k
. 

 

Examining this table we see that not all of the computed characters λi↑
G
  

are distinct: 
 )1()( ipi k    , since the roots of unity occur in conjugate 

pairs. 

 

Hence for (p
k
 + 1)/2 ≤ i ≤ (p

k
 – 1) we get the same values for ρ

iℓ
 + ρ

-iℓ
 as in the 

cases of 1 ≤ i ≤ (p
k
 – 3) /2. Thus we only need to consider λi↑

G
 for  

0 ≤ i ≤ (p
k
 – 1)/2. For these values of i let χi= λi↑

G
. 

1 1 1 1 (p
k
 + 1) 

z 1 ipi k

)1(2/)1(   1 (-1)
i
(p

k
 + 1) 

c (p
2k

 – 1)/2 1 (p
k
 – 1)/2 1 

zc (p
2k

 – 1)/2 ipi k

)1(2/)1(   (p
k
 – 1)/2 (-1)

i 

d (p
2k

 – 1)/2 1 (p
k
 – 1)/2 1 

zd (p
2k

 – 1)/2 ipi k

)1(2/)1(   (p
k
 – 1)/2 (-1)

i
 

a
ℓ p

k
(p

k
 + 1) (*) 2 p

k
 ρ

iℓ
 + ρ

-iℓ
 

b
m p

k
(p

k
 – 1) - 0 0 
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The next task is to investigate whether the characters χ0, … , χ( 2/)1kp  

are irreducible. We have seen that a suitable irreducibility criterion is the value 

of the direct product of a character with itself
 
 (proposition 1.3.13). 

 

Now, using formula (1.1), we have 














 1

2

1
1

2

1
)1(1)1(1

)1(

1
,

22
22

200

kk
kk

kk

pp
pp

pp
  

 

24)1(.
2

3
1

2

1
1

2

1 22














 kk

kkk

pp
ppp

 

 

Thus χ0 is reducible, i.e., by (lemma 1.3.5), the sum of irreducible characters of 

G. From (corollary 1.3.10) we know how to calculate the multiplicities of the 

constituents of χ0. It is straightforward to check that 0,1G = 1. 

 

We can deduce from (corollary 1.3.11) and 0,0 = 2 that χ0 is the sum  

of the linear trivial character and one further irreducible character of G, ψ say, 

also with multiplicity 1. The degree of χ0 is p
k
 + 1, and so deg(ψ) must be p

k
. 

The values ψ(g) can be computed using ψ(g) = χ0(g) – 1G(g). 

 

 

 

 

Now we examine the characters χi for 1 ≤ i ≤ (p
k
 – 3)/2. In these cases  

















 1

2

1
1

2

1
1

2

1
)1(1)1(1

)1(

1
,

222
22

2

kkk
kk

kkii

ppp
pp

pp
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1)1(1
2

1 2/)3(

1

2
2










 







kp
iikk

k

pp
p



   

 

The only term in this calculation which yields some difficulty is 







2/)3(

1

2
kp

ii



   We use: 

 

  

















 
2/)3(

1

2/)3(

1

2/)3(

1

2
2/)3(

1

2
2

2

k k kkp p p
i

p
iii

  





   

 

 









2/)3(

1

2/)3(

1

2222/)3(

k kp p
iikp

 

   

 

Now the sum of the roots of unity ρ
i
 is zero, independently of the value of i, 

i.e. 0)1()3(2   ipipii kk

   for all i. Consequently, 





2/)1(

1

2 0

kp
i



  

Hence 







2/)3(

1

2

1
2

2 1)(

k k
p p

i
i



  .Similarly, 




 
2/)3(

1

2 1

kp
i



 . 

 

Thus we have shown that the characters χ1, … , χ( 2/)3kp
  
are irreducible. 

In step 2 of this proof we will consider the remaining character 2/)1( kp
 . 

 

 

PROOF: 

Step 2:    
2/)1(1 ,,

kp
   are irreducible characters of G = SL(2,p

k
) as described 

in the table of theorem(2.3.1). 
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As in the first step of this proof we use an induced character to derive  

the required irreducible characters. In this case let L be the subgroup of G 

generated by the element b, L = b. Then define the following linear characters 

for L: 

φj : b
t
 → σ 

jt
 (2.4) 

 

where σ is defined as the (2
k
 + 1)-th root of unity, 1≤ j ≤ (p

k
 + 1). 

 

Again, let φj"(g) = φ (g) if g  L and φj"(g) = 0 if g  L. From step 3 (i)  

of theorem (2.2.3) we have | L | = p
k
 + 1. Clearly, the only elements of those in 

G that lie in L are 1, and b. Thus, using (2.3) and (2.4) as in step 1, we can 

derive the following table for the induced characters φj↑
G
: 

 

 

TABLE (2.4) 

(*) We saw in step 3 (iii) of theorem (2.2.3) that the only powers of b
m
 

conjugate to b
m
 are {b

m
, b

-m
}. Thus these two elements of Cb

 m are the only ones 

that lie in L. 

 

g | Cg | φj"(g)for gє(Cg∩ H) | Cg ∩ H | φj↑
G
(g) 

1 1 1 1 p
k
(p

k
 – 1) 

z 1 jpj k

)1(2/)1(   1 (-1) 
j
 p

k
(p

k
 – 1) 

c (p
2k

 – 1)/2 - 0 0 

zc (p
2k

 – 1)/2 - 0 0 

d (p
2k

 – 1)/2 - 0 0 

zd (p
2k

 – 1)/2 - 0 0 

a
ℓ 

p
k
(p

k
 + 1) - 0 0 

b
m p

k
(p

k
 – 1) σ 

jm
 2(*) σ 

jm
 + σ

 -
 
jm
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The characters φj↑
G
 are not irreducible, since deg(φj↑

G
) = p

k
(p

k
 – 1) and 

| p
k
(p

k
 – 1)|

2
 > |G|, which contradicts proposition (1.3.14). 

 

To construct irreducible characters we use a trick: for 1 ≤ j ≤ (p
k
 + 1)/2, 

let θj = ψ λj↑
G

 – λj↑
G

 – φj↑
G
. As all terms in this expression are characters, θj is 

again a character. 

 

The values for θj are easy to compute and are listed in the following table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE (2.5) 

 

To see whether the characters θj are 

irreducible, we examine once more the inner 

product j,j. A similar calculation as the one in step 1 of this proof shows that 

for 1 ≤ j ≤ (p
k
 – 1)/2, j,j = 1 and the θj are irreducible characters of G. 

Again, 
2/)1( kp

 will be considered in the next step of this proof. 

 

g θj (g) 

1 p
k
 – 1 

z (-1) 
j
 p

k
 – 1 

c -1 

zc (-1)
 j+1

 

d -1 

zd (-1)
 j +1

 

a
ℓ 0 

b
m -σ 

jm
 - σ

 -
 
jm
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PROOF: 

Step 3 :    The irreducible characters of G = SL(2,p
k
) are  

1G, ψ, χ1, … ,
  
χ ( 2/)3kp , 

2/)1(1 ,,
kp

  and 
 
ξ1, ξ2, η1, η2 

as described in the table of theorem (2.3.1). 

An easy calculation shows that 2/)1(2/)1(
,

 kk pp
 = 2. Thus we conclude as in 

step 1 that 2/)1( kp
 is the sum of two irreducible characters, ξ1 and ξ2 say, both 

with multiplicity 1. We have the following values for 2/)1( kp
 = ξ1 + ξ2 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE (2.6) 

 

 

where 
2/)1()1( 

kp . We also know that tr (A + B) 

= tr (A) + tr (B), and so  

 

(ξ1 + ξ2) (g) = ξ1(g) + ξ2(g) 

g ξ1 + ξ2(g) 

1 p
k
 + 1 

z ε p
k
 + 1 

c 1 

zc ε 

d 1 

zd ε 

a
ℓ 2(-1)

ℓ
 

b
m 0 
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Similarly, 2/)1(2/)1(
,

 kk pp
  = 2. Let 212/)1(

 
kp

say, where η1 and  

η2 are irreducible characters of G: 

 

 

 

 

 

 

 

 

 

 

 

TABLE (2.7) 

 

Again, (η1 + η2)(g) = η1(g) + η2(g). 

 

Counting the irreducible characters that we have found so far we get p
k
 + 4  

characters, which are precisely the number we need, because G has p
k
 + 4 

conjugacy classes (theorem 1.3.16). However, we will still need to show that 

these irreducible characters are all distinct. Since we know the values of  

1G, ψ, χ i, θj and (ξ1 + ξ2), (η1+ η2), we can compute the inner products among 

them. 

For example, using formula (1), we have: 

 

11
2

1
11

2

1
1)1(1)1(

)1(

1
1,)(

22

221 


 








kk
kk

kkG

pp
pp

pp
  

g η1 + η2(g) 

1 p
k
 – 1 

z ε p
k
 – 1 

c -1 

zc ε 

d -1 

zd ε 

a
ℓ 0 

b
m 2(-1)

m+1
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01)1(2)1(1
2

1
1

2

1 2/)3(

1

22


















kp
kk

kk

pp
pp



  

 

Similarly, all these inner products are zero. Hence all these characters are 

distinct, except possibly the ξi and ηi , i = 1, 2. However, as we can see from the 

tables ξ1 (z) + ξ2 (z) = ε (ξ1 (1) + ξ2(1)), which forces ξi (z) = ε ξi(1) , whereas 

ηi (z) = - ε ηi (1). Thus the ξi and ηi are different. 

 

To complete the table of theorem (2.3.1) it remains to determine the values  

of ξ1, ξ2, η1and η2. We assume that ε = +1, i.e. that p
k
 ≡ 1 (mod 4). The proof in 

the case of ε = -1 is in large parts very similar and, therefore, omitted. 

 

If ε = +1, then ξi (z) = ξi(1) and ηi (z) = -ηi(1), i = 1, 2. Consequently, from 

lemma (1.3.20) we have that ker ηi does not contain z, but  ker ξi does. We 

also see that, for N G, the irreducible characters of G/N are all those 

irreducible characters of G whose kernels contain N (proof Corollary 

1.3.21).Using this information and (lemma 1.3.20) we deduce that for N = z 

the irreducible characters of G/N = SL(2,p
k
) / z = PSL(2,p

k
) are 

 

1G, ψ, χ 2 , … , χ 2/)5( kp , 
2/)1(2 ,,

kp
   and ξ1, ξ2. 

 

 

By proposition (1.3.14) the sum of the squares of the degrees of these characters 

must equal  |G/N| = p
k
 (p

2k
 – 1) / 2, i.e. 
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2

1
)1()1(

2

)1(
)1()1()1(

4

1
)1(

4

5
1

2

2

2

1

2
2

2

2

1

222













k

kk
k

k
k

k
k

p

pp
p

p
p

p
p





 

 

Together with equation ξ1 (1) + ξ2(1) = p
k
 + 1we conclude that  

ξ1 (1) + ξ2(1) = ( p
k
 + 1) / 2. From this it follows directly that 

ξi (1) = ξi(z) = ( p
k
 + 1) / 2., i = 1, 2. 

 

To find the remaining values of ξ1 and ξ2 we use the column  

orthogonality relations (theorem 1.3.18 (2)) for the elements z g in G/N: 

 

         

     

      2

2

2

1

2

2/)1(

2

4

2

2

2

2/)5(

2

4

2

2

22

/ 1

gzgzgz

gzgzgz

gzgzgzgzgzC

k

k

p

p

GNG



















  
…(2.5) 

 

 

The only irreducible characters of G/N which are not fully known are ξ1 and ξ2 

and we will use (2.5) to deduce the values for ξ1
2 + ξ2

2
. Since we also know the 

values of 
2/)1(21 

 kp
 , these two equations combined and the comments in 

the proof of (Corollary 1.3.21) will enable us to complete the table for ξ1 and ξ2 . 

 

 

 

To be able to use (2.5) in the way described, we need to determine  
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 CG/N ( z g)  for z g  G/N. Thus we consider how the sizes of the conjugacy 

classes of G/N differ from the ones in G: if z gCg, then the size of the 

conjugate class remains unchanged, i.e.  Cz g  =  Cg , and so  

 CG/N ( z g)  =  G/N  /  Cz g  = (1 / 2)  G  /  Cg  = (1 / 2)  CG(g)  

whereas, if z g  Cg, then  CG/N ( z g)  =  CG(g)  and  Cz g  = (1 / 2)  Cg . 

 

From theorem (2.2.3) we have that c ~ zc and d ~ zd, and hence z c  Cc 

and z d  Cd. We also see that the only powers of a
ℓ
 conjugate to a

ℓ
 are  

{ a
ℓ
 , a

 - ℓ
 }. Now za

kp  2/)1(
 and 

   )1( kpaa . Thus 

 aaazaazaa
kk pp 2/)1()1(~   . 

Thus for ℓ  ( p
k
 – 1) / 4, z a

ℓ
  a

C , and for ℓ = ( p
k
 – 1) / 4, z a

ℓ
  a

C . 

A similar argument for the elements b
m
 shows that z b

m
  mb

C . 

The orthogonality relation (2.5) for z c, for example, leads to: 

 

   

   
2

1

1
4

1
1

4

5
01

2

2

2

1

2

2

2

1












k

kk
k

p
czcz

czcz
pp

p





 

 

One can show that for p
k
 ≡ 1 (mod 4) all ordinary characters of G = SL(2,p

k
) are 

real. Thus  ξ1 
 2
 +  ξ2 

 2
 = ξ1

2 + ξ2
2
. 

 

Using the comments in the proof of (Corollary 1.3.21) we deduce from  

 

 

   
2

1
)()(

2

2

2

1

2

2

2

1




kp
czczcc   
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and 

    1)()()()( 212121  cccczcz   

that 

)1(
2

1
)(1

kpc  and )1(
2

1
)(2

kpc  . 

 

The signs of the square roots must be chosen such that the row  

orthogonality relation hold. To ensure this we can use, for example, the 

equations ξi,1G = 0, i = 1, 2. The values of ξi for the elements d, a
ℓ
 and b

m
 are 

derived correspondingly and we can use ξi (c) = ξi(zc) and ξi (d) = ξi(zd) to find 

ξi(zc) and ξi(zd). 

 

The rows for the characters η1 and η2 are filled in a very similar way as  

the ones of ξ1 and ξ2: the characters η1 and η2 are now the only characters of G 

not fully known and we use proposition (1.3.14) as above to deduce the values 

of η1(1) and η2(1). The remaining values are again computed by using first the 

column and then the row orthogonality relations in combination with  

ηi(g) = - ηi(zg) for g = 1, c, d, i = 1, 2. This finishes the proof of theorem (2.3.1). 

 

 

EXAMPLE (2.3): 

To compute the ordinary character table for SL(2,7). 

| SL(2,7) | = 7(7
2
 – 1) = 7 (48) = 336 

ε =-1, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3, 1 ≤ ℓ ≤ 2, 1 ≤ m ≤ 3, 

 

 

ρ  C is a primitive 6-th root of unity, to find the 6-th roots of unity in C: 
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5,,1,06

2

 keer

k

i



  

 

1)0(sin)0(cos0

0  iei , 
2

3

2

1
)60(sin)60(cos3

1 iie
i





 , 

 

,
2

3

2

1
)120(sin)120(cos3

2

2 iie
i





  

 

1)180(sin)180(cos3  iei , 

 

,
2

3

2

1
)240(sin)240(cos3

4

4 iie
i





  

 

2

3

2

1
)300(sin)300(cos3

5

5 iie
i





  

 

ρ 
1
 + ρ 

-1
 = ρ1 + ρ5 =1, ρ 

2
 + ρ 

-2
 = ρ2 + ρ4 =-1, ρ 

4
 + ρ 

-4
 = ρ4 + ρ2 =-1 

 

σ  C  is a primitive  8-th root of unity, to find the  8-th roots of unity in C: 

 

7,,1,08

2

 keer

k

i



  

 

10

0  ie , 

 

2

1

2

1
4

1 ie
i





 , 

 

ie
i

 2
2



 , 

 

2

1

2

1
4

3

3 ie
i





 , 

 

14   ie , 

 

2

1

2

1
4

5

5 ie
i





 , 

 

ie
i

 2

3

6



 , 

 

2

1

2

1
4

7

7 ie
i
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σ 
1
 + σ 

-1
 = σ1 + σ7 = 2 , σ 

2
 + σ 

-2
 = σ2 + σ6 =0, σ 

3
 + σ 

-3
 = σ3 + σ5 =- 2 , 

 

σ 
4
 + σ 

-4
 = σ4 + σ4 =-2, σ 

6
 + σ 

-6
 = σ6 + σ2 =0,( σ 

9
 + σ 

-9
)mod 8 = σ 

1
 + σ 

-1
 = 2 , 

 

 

This group has 7 + 4 = 11 conjugacy classes: 

 

1 = 








10

01
, z = 









60

06
, c = 









10

11
, d = 









13

01
, zc = 









66

06
, zd = 









64

06
, 










50

03
a , 

 











40

02
2a , 










31

60
b , 










13

46
2b , 










01

64
3b  

 

 

The orders of these conjugacy classes are: 

 

o( z ) = 2, o( c ) = o( d ) = 7, o( zc ) = o( zd ) = 14, o( a ) = 6, o( a
2
 ) = 3, 

 

o( b ) = o( b
3
 ) = 8, o( b

2
 ) = 4 

 

The ordinary character table for SL(2,7) is: 
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Cg 1 z c d zc zd a a
2
 b b

2
 b

3
 

| Cg | 1 1 24 24 24 24 56 56 42 42 42 

| CG(g) 

| 
336 336 14 14 14 14 6 6 8 8 8 

1G 1 1 1 1 1 1 1 1 1 1 1 

ψ 7 7 0 0 0 0 1 1 -1 -1 -1 

χ1 8 -8 1 1 -1 -1 1 -1 0 0 0 

χ2 8 8 1 1 1 1 -1 -1 0 0 0 

θ1 6 -6 -1 -1 1 1 0 0 - 2  0 2  

θ2 6 6 -1 -1 -1 -1 0 0 0 2 0 

θ3 6 -6 -1 -1 1 1 0 0 2  0 - 2  

ξ1 4 -4 )71(
2

1
  )71(

2

1
  )71(

2

1
  )71(

2

1
  -1 1 0 0 0 

ξ2 4 -4 )71(
2

1
  )71(

2

1
  )71(

2

1
  )71(

2

1
  -1 1 0 0 0 

η1 3 3 )71(
2

1
  )71(

2

1
  )71(

2

1
  )71(

2

1
  0 0 1 -1 1 

η2 3 3 )71(
2

1
  )71(

2

1
  )71(

2

1
  )71(

2

1
  0 0 1 -1 1 
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3.1.  INTRODUCTION: 

This chapter is devoted to study the character table of the irreducible 

rational representations of SL(2,p
k
), p is an odd prime, k > 0 and odd, then 

we introduce the diagonalization of the matrix (≡*SL(2,p)) which gives us 

the cyclic decomposition of K(SL(2,p)), where k = 1, and p = 3, 5, 7, 11, 13, 

17,and 19. 

 

 

3.2 .THE CHARACTER TABLE OF IRREDUCIBLE  

RATIONAL REPRESENTATIONS OF SL(n, p
k
): 

In this section we will give the character table of the irreducible rational 

representations of SL(2,p
k
), p is an odd prime, k > 0 and odd by using the 

character table and the Schur indices of SL(2,p
k
). 

 

 

THEOREM (3.2.1):  See [2] 

Let G = SL(2,p
k
), then the Schur indices of the irreducible characters of 

G over the rational numbers Q are as follows: 
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 p
k
 ≡ 1 mod 4 p

k
 ≡ 3 mod 4 

1G 1 1 

ψ 1 1 

χi 
2 (i odd) 2 (i odd) 

1 (i even) 1 (i even) 

θj 
2 (j odd) 2 (j odd) 

1 (j even) 1 (j even) 

ξ1 1 1 

ξ2 1 1 

η1 2 1 

η2 2 1 
 

TABLE (3.1) 

 

 

LEMMA (3.2.2): 

Let ζ be a primitive n-th root of unity. Then ζ + ζ
-1

 is rational if and only 

if n = 1, 2, 3, 4, 6. The values which occur are as follows:  

 

 

 

TABLE (3.2) 

 

PROOF:  See [2]. 

The result is clear for n = 1 or 2 so that we may assume that n 3. 

As x
2
 – (ζ + ζ

-1
) x + 1 = (x – ζ ) ( x – ζ

-1
), the index (Q(ζ):Q(ζ + ζ

-1
)) = 2 

unless ζ  Q, that is, unless n =1or 2.It follows that ζ + ζ
-1

  Q if and only if  

Ф(n) = (Q( ζ ):Q) =2. 

Examination of the possibilities shows that Ф (n) = 2 if and only if 

n = 3, 4 or 6. 

Recall that Ф(n) is the Eular totient function which is defined by the number 

of positive integers not exceeding n which are relatively prime to n. 

n 1 2 3 4 6 

ζ + ζ
-1

 2 -2 -1 0 1 
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Corollary (3.2.3): 

Let ζ be a primitive n-th root of unity and m  Z. If ζ + ζ
-1

  Q, then so 

is ζ
m
 + ζ

-m
. 

 

PROOF:  See [3]. 

This follows from lemma (3.2.2). 

 

 

Corollary (3.2.4): 

Let ζ be a primitive n-th root of unity, let 1 ≤ j ≤ n. Then ζ
j
 + ζ

-j
 is 

rational if and only if  .
5

6
,

3

4
,

2

3
,6,4,3,2, jjjjjjjjn   

 

PROOF:  See [2]. 

Let (j,n) denote the greatest common divisor of j and n. Write j = a (j,n) and  

n = b (j, n) so that a and b are coprime and .10 
b

a
 

As ζ 
j
 is a primitive b-th root of unity, lemma (3.2.2) shows that ζ

j
 + ζ

-j
 is 

rational if and only if b = 1, 2, 3, 4 or 6. For these values of b, the 

corresponding possibilities for 
b

a
 are 

6

5

6

1
,

4

3
,

4

1
,

3

2
,

3

1
,

2

1
,1 and . As n

b

a
j  , the 

result follows. 

 

 

LEMMA (3.2.5): 

Let σ be a primitive (p
k 

+ 1) -th root of unity where p is odd prime. 

Suppose that p
k
 ≡ 7(mod 8) and that

2

1
,,3,1




kp
j   then σ 

j
 + σ 

-j
 is not 

rational. 
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PROOF:  See [3]. 

Suppose that σ 
j
 + σ 

-j
  Q. As 

2

1
1




kp
j , Corollary (3.2.4) implies that 

d

p
j

k 1
  for d = 3, 4 or 6, by hypothesis , 8 / (p

k 
+ 1) so that 

d

pk 1
 is even 

for d = 3, 4 or 6. This contradicts the assumption that j is odd. 

 

 

LEMMA (3.2.6): 

Let ζ be a primitive (p
k 
+ 1)-th root of unity where p is odd prime. If  

p
k
 ≡ 3(mod 8) and ℓ is a positive integer, then 


4

1

4

1 






kk pp

  is rational. 

 

PROOF:  See [3]. 

This follows from Corollary (3.2.4) and Corollary (3.2.3). 

 

 

 

Corollary (3.2.7): 

Let ζ be a primitive n-th root of unity and n ≠ 2. Then  

(Q( ζ ):Q( ζ + ζ
-1

) = 2 and (Q( ζ + ζ
-1

):Q) 
2

1
 Ф(n). 

 

PROOF:  See [2]. 

This follows from the fact that (x – ζ ) ( x – ζ
-1

) = x
2
 – (ζ + ζ

-1
) x + 1 and  

(Q( ζ ):Q) = Ф(n). 
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LEMMA (3.2.8): 

Let ζ be a primitive n-th root of unity, i  Z and di = (i,n). If n > 2di, 

then  

(Q( ζ
i
 + ζ

-i
):Q) )(

2

1

id

n
 . 

PROOF:  See [2]. 

 

 

Corollary (3.2.9): 

Let ζ be a primitive n-th root of unity and 1 ≤ i ≤
2

n
. Then  

(Q( ζ
i
 + ζ

-i
):Q) )(

2

1

id

n
 . 

where di = (i,n) 

 

PROOF:  See [2]. 

This follows from lemma (3.2.8). 

 

 

 

Let M be a field of characteristic zero and let K be a subfield of M. 

suppose that M is a finite and normal extension of K with Galois group 

Г = Г (M:K). For any a  M define the trace 

 

TrM→K(a) .





a  
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LEMMA (3.2.10): 

Let K ≤ L ≤ M be fields and let M be a finite and normal extension of 

K. Then: 

TrL→K(TrM→L(x)) = TrM→K(x)                        where x  M. 

 

PROOF:  See [2]. 

 

 

LEMMA (3.2.11): 

Let ζ be a primitive n-th root of unity, i  Z and di = (i,n). and let  

n ≠ di, 2di.Then: 

).()(
i

ii

d

n

i




 




 

 

where Гi = Г(Q( ζ
i
 + ζ

-i
):Q) and µ is the Möbius function. 

 

Recall that µ function defined by: 

 

















.,)1(

1/0

11

)(

21

2

primesdistinctareppppnif

asomefornaif

nif

n

iK

K 



See [9] 

PROOF:  See [2]. 
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LEMMA (3.2.12): 

Let ζ be a primitive n-th root of unity, i  Z and di = (i,n). and let  

n ≠ di, 2di.Let Г = Г(Q( ζ + ζ
-1

):Q). Then 

 

).(

)(

)(
)(

i

i

ii

d

n

d

n

n















 

 

PROOF:  See [2]. 

 

 

Corollary (3.2.13): 

Let ζ be a primitive n-th root of unity and 1 ≤ i ≤
2

n
. Let  

Г = Г(Q( ζ + ζ
-1

):Q). Then 

).(

)(

)(
)(

i

i

ii

d

n

d

n

n















 

 

where di = (i,n). 

 

PROOF:  See [2]. 

 

 

LEMMA (3.2.14): 

Let χ be a rational valued character of G and let x, y є G with  

< x > = < y >. Then χ(x) = χ(y). 

 

PROOF:  See [4]. 
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LEMMA (3.2.15): 

Let G = SL(2,p
k
), where p is an odd prime. Then < c > = < d > if and 

only if k is odd. 

 

PROOF:  See [2]. 

 

 

NOTATION:  

Let G = SL(2,p
k
) for some prime p ≠ 2, e and e´ denote divisors of p

k
 – 1 

such that 
2

1


kp
e  and 

2

1


kp
e , f and f ´denote divisors of p

k
 + 1 such that 

2

1


kp
f  and 

2

1


kp
f , ρe is a primitive (

e

pk 1
)-th root of unity , σf is a 

primitive (
f

pk 1
)-th root of unity, 1, z, c, d, a, b are as in theorem (2.2.3), ε, 

ρ and σ are as in theorem (2.3.1). 

 

 






otherwise

eveniskif
kB

2

1
)(  

 



 


otherwise

pif
pE

k

k

2

4mod31
)(  

 

)
1

(
2

1
)(

e

p
eA

k 
  

 

)
1

(
2

1
)(

f

p
fC

k 
  

 

τ1(e,e´) = )
1

(

)
1

(

)
1

(

)(
ee

p

ee

p
e

p
k

k

k

e

e

e

e
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by lemma (3.2.11) where Г = Г(Q(χe):Q). [Note that Г = Г(Q( ρe + ρe
-1

):Q)]. 

 

τ2(f,f ´) = )
1

(

)
1

(

)
1

(

)(
1

ff

p

ff

p

f

p
k

k

k

f

f

f

f



















  


 

 

where Г1 = Г(Q(θf):Q). [Note that Г = Г(Q( σf + σf
-1

):Q)]. 

 

χi, θj are irreducible characters of G as in theorem (2.3.1). Then 



i , 

where Г = Г(Q(χi):Q), and 
 1


 j , where Г1 = Г(Q(θj):Q), are rational valued 

characters of G. 

 

χe 






ieB )(  where e = (i,p

k
 – 1). 

θj 



1

)(



 jfB  where f = (i,p

k
 + 1). 

 

ξ´ and η´ denote the irreducible characters of the rational representations of 

G arising from ξ1 (or ξ2) and η1 (or η2) respectively where k is odd. 

 

Also we know that the column for the class zc is obtained from the relation 

)(
)1(

)(
)( c

z
zc 




  where χ is an irreducible character of G. 

 

So the character table of rational representations of SL(2,p
k
), p an odd prime, 

k odd is described in table (3.3). See [2]. 
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TABLE (3.3) 

Cg 1 z c zc a 
e´ b 

f ´ 

| Cg | 1 1 (p
2k

 – 1)/2 (p
2k

 – 1)/2 p
k
 (p

k
 + 1) p

k
 (p

k
 – 1) 

| CG(g) | p
k
 (p

2k
 – 1) p

k
 (p

2k
 – 1) 2p

k
 2p

k
 p

k
 – 1 p

k
 + 1 

1G 1 1 1 1 1 1 

ψ p
k
 p

k
 0 0 1 -1 

χe (p
k
 + 1)A(e)B(e) (-1)

e
 (p

k
 + 1)A(e)B(e) A(e)B(e) (-1)

e
 A(e)B(e) B(e)τ1(e,e´) 0 

θf (p
k
 – 1) C( f )B( f ) (-1)

f
 (p

k
 – 1) C( f )B( f ) -C( f )B( f ) -(-1)

f
 C( f )B( f ) 0 - B(e)τ2( f, f

  ´ 
) 

ζ1 + ζ2 (p
k
 + 1) ε (p

k
 + 1) 1 ε 2)1( e  0 

η1 + η1 (p
k
 – 1)E( p

k
 ) -ε (p

k
 – 1)E( p

k
 ) -1 ε 0 )(2)1( 1' kf pE  
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EXAMPLE (3.1): 

To find the character table of rational representations of SL(2,5). e and  

e´ are divisors of 4 which are 1, 2, 4, such that e < 2, and e´ < 2, so e = e´=1, f 

and f ´ are divisors of 6 which are 1, 2, 3, 6, such that f < 3, and f ´ < 3, so 

f = f ´ = 1, 2, 

ε = 1, from that: 

the conjugacy classes are 1, z, c, zc, a, b, and b
2

 

the characters are 1G, ψ, χ1, θ1, θ2, ξ1 + ξ2 = ξ´, and η1 + η2 = η´ 

 

1)4(
2

1
)1( A , 2)1( B , τ1(1,1) 0)4(

)4(

)4(





  , 1)1( C , 

 

τ2(1,1) 1)6(
)6(

)6(





  , τ2(1,2) 1)1(

2

6
)

2

6
(

)
2

6
(

)6(





  , 1)2(

2

1
)

2

6
(

2

1
)2( C , 

1)2( B , τ2(2,1) 1)3(
)3(

)3(





  , we find τ2(2,2) by (lemma 3.2.12) and 

(corollary 3.2.13) so τ2(2,1) = 1)3(
)3(

)3(





  , 2)5( E . 

by Schur indices(theorem 3.2.1) we divide χ1, θ1,and η´ by 2, and others by 1 

The character table of rational representation of SL(2,5) is: 

 

 

 

 

 

 

 

 

Cg 1 z c zc a b b
2
 

| Cg | 1 1 12 12 30 20 20 

| CG(g) | 120 120 10 10 4 6 6 

1G 1 1 1 1 1 1 1 

ψ 5 5 0 0 1 -1 -1 

χ1 6 -6 1 -1 0 0 0 

θ1 4 -4 -1 1 0 -1 1 

θ2 4 4 -1 -1 0 1 1 

ξ´ 6 6 1 1
 

-2 0 0 

η´ 4 -4 -1 1 0 2 -2 
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3.3.  THE CYCLIC DECOMPOSITION OF K(SL(2,p)) 

= 3, 5, 7, 11, 13, 17, AND 19 p HEREW 

 

In this section we will introduce the diagonalization of the matrix  

(≡*SL(2,p)) by row and column operations with the condition (when we 

multiply row or column by a number the number must be integer).which gives 

us the cyclic decomposition of K(SL(2,p)), where p = 3, 5, 7, 11, 13, 17, and 19. 

 

If we suppose that the diagonalization of the matrix (≡*SL(2,p)) is 

 























nm

m

m

m

0000

0000

0000

0000

3

2

1


 

 

Then the cyclic decomposition for the group K(SL(2,p)) is: 

 

K(SL(2,p)) = Z 1m   Z 2m   Z 3m   …  Z nm  

 

 

EXAMPLE (3.2): 

To find the cyclic decomposition of the group K(SL(2,3)). 

 

The character table of rational representations of SL(2,3) is : 
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The diagonalization of the matrix (≡*SL(2,3)) is: 

 































10000

01000

00200

00060

000024

 

 

Then the cyclic decomposition for the group K(SL(2,3)) is: 

 

K(SL(2,3)) = Z24  Z6  Z2  Z1 Z1 

 

 

EXAMPLE (3.3): 

To find the cyclic decomposition of the group K(SL(2,5)). 

 

The character table of rational representations of SL(2,5) is : 

 

 

 

Cg 1 z c zc b 

| Cg | 1 1 4 4 6 

| CG(g) | 24 24 6 6 4 

1G 1 1 1 1 1 

ψ 3 3 0 0 -1 

θ1 2 -2 -1 1 0 

ξ1 + ξ2 4 -4 1 -1 0 

η1 + η2 2 2 -1 -1 2 
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The diagonalization of the matrix (≡*SL(2,5)) is: 

 

































2000000

0100000

0010000

0001000

0000200

00000300

000000120

 

 

Then the cyclic decomposition for the group K(SL(2,5)) is: 

 

K(SL(2,5)) = Z120  Z30  Z2  Z1  Z1  Z1  Z2 

 

 

 

 

Cg 1 z c zc a b b
2
 

| Cg | 1 1 12 12 30 20 20 

| CG(g) | 120 120 10 10 4 6 6 

1G 1 1 1 1 1 1 1 

ψ 5 5 0 0 1 -1 -1 

χ1 6 -6 1 -1 0 0 0 

θ1 4 -4 -1 1 0 -1 1 

θ2 4 4 -1 -1 0 1 1 

ξ´ 6 6 1 1
 

-2 0 0 

η´ 4 -4 -1 1 0 2 -2 
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EXAMPLE (3.4): 

To find the cyclic decomposition of the group K(SL(2,7)). 

 

The character table of rational representations of SL(2,7) is : 

 

 

 

 

 

 

 

 

 

 

 

 

The diagonalization of the matrix (≡*SL(2,7)) is: 

 









































20000000

01000000

00200000

00010000

00001000

00000200

000000840

0000000336

 

 

 

Cg 1 z c zc a a
2
 b b

2
 

| Cg | 1 1 24 24 56 56 42 42 

| CG(g) | 336 336 14 14 6 6 8 8 

1G 1 1 1 1 1 1 1 1 

ψ 7 7 0 0 1 1 -1 -1 

χ1 8 -8 1 -1 1 -1 0 0 

χ2 8 8 1 1 -1 -1 0 0 

θ1 12 -12 -2 2 0 0 0 0 

θ2 6 6 -1 -1 0 0 0 2 

ξ1 + ξ2 8 -8 1 -1
 

-2 2 0 0 

η1 + η2 6 6 -1 -1 0 0 2 -2 
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Then the cyclic decomposition for the group K(SL(2,7)) is: 

 

K(SL(2,7)) = Z336  Z84  Z2  Z1  Z1  Z2  Z1  Z2 

 

 

EXAMPLE (3.5): 

To find the cyclic decomposition of the group K(SL(2,11)). 

 

The character table of rational representations of SL(2,11) is : 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagonalization of the matrix (≡*SL(2,11)) is: 

 

 

 

 

Cg 1 z  c zc a a
2
 b b

2
 b

3
 b

4
 

| Cg | 1 1 60 60 132 132 110 110 110 110 

| CG(g)| 1320 1320 22 22 10 10 12 12 12 12 

1G 1 1 1 1 1 1 1 1 1 1 

ψ 11 11 0 0 1 1 -1 -1 -1 -1 

χ1 24 -24 2 -2 1 -1 0 0 0 0 

χ2 24 24 2 2 -1 -1 0 0 0 0 

θ1 20 -20 -2 2 0 0 0 -2 0 2 

θ2 10 10 -1 -1 0 0 -1 1 2 1 

θ3 10 -10 -1 1 0 0 0 2 0 -2 

θ4 10 10 -1 -1 0 0 1 1 -2 1 

ξ1 + ξ2 12 -12 1 -1 -2 2 0 0 0 0 

η1 + η2 10 10 -1 -1 0 0 2 -2 2 -2 



Chapter Three                                          The Cyclic Decomposition of K(SL(2,P)) 

 
 

                                                                                         »     74 » 
 

 

















































1000000000

0200000000

0060000000

0002000000

0000200000

0000010000

0000001000

0000000200

000000003300

0000000001320

 

 

Then the cyclic decomposition for the group K(SL(2,11)) is: 

 

K(SL(2,11)) = Z1320  Z330  Z2  Z1  Z1  Z2  Z2  Z6  

 Z2  Z1 

 

 

EXAMPLE (3.6): 

To find the cyclic decomposition of the group K(SL(2,13)). 

 

The character table of rational representations of SL(2,13) is : 
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The diagonalization of the matrix (≡*SL(2,13)) is: 

 



















































1000000000

0200000000

0040000000

0006000000

0000200000

0000010000

0000001000

0000000100

000000005460

0000000002184

 

 

Then the cyclic decomposition for the group K(SL(2,13)) is: 

 

K(SL(2,13)) = Z2184  Z546  Z1  Z1  Z1  Z2  Z6  Z4   

Z2  Z1 

Cg 1 z  c zc a a
2
 a

3
 a

4
 b b

2
 

| Cg | 1 1 84 84 182 182 182 182 156 156 

| CG(g)| 2184 2184 26 26 12 12 12 12 14 14 

1G 1 1 1 1 1 1 1 1 1 1 

ψ 13 13 0 0 1 1 1 1 -1 -1 

χ1 28 -28 2 -2 0 2 0 -2 0 0 

χ2 14 14 1 1 1 -1 -2 -1 0 0 

χ3 14 -14 1 -1 0 -2 0 2 0 0 

χ4 14 14 1 1 -1 -1 2 -1 0 0 

θ1 36 -36 -3 3 0 0 0 0 -1 1 

θ2 36 36 -3 -3 0 0 0 0 1 1 

ξ1 + ξ2 14 14 1 1 -2 2 -2 2 0 0 

η1 + η2 12 -12 -1 1 0 0 0 0 2 -2 
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EXAMPLE (3.7): 

To find the cyclic decomposition of the group K(SL(2,17)). 

The character table of rational representations of SL(2,17) is : 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagonalization of the matrix (≡*SL(2,17)) is: 

 















































60000000000

03000000000

00200000000

00010000000

00002000000

00000400000

00000010000

00000001000

00000000200

00000000012240

00000000004896

 

Cg 1 z  c zc a a
2
 a

4
 b b

2
 b

3
 b

6
 

| Cg | 1 1 144 144 306 306 306 272 272 272 272 

| CG(g)| 4896 4896 34 34 16 16 16 18 18 18 18 

1G 1 1 1 1 1 1 1 1 1 1 1 

ψ 17 17 0 0 1 1 1 -1 -1 -1 -1 

χ1 72 -72 4 -4 0 0 0 0 0 0 0 

χ2 36 36 2 2 0 0 -4 0 0 0 0 

χ4 18 18 1 1 0 -2 2 0 0 0 0 

θ1 48 -48 -3 3 0 0 0 0 0 -3 3 

θ2 48 48 -3 -3 0 0 0 0 0 3 3 

θ3 16 -16 -1 1 0 0 0 -1 1 2 -2 

θ6 16 16 -1 -1 0 0 0 1 1 -2 -2 

ξ1 + ξ2 18 18 1 1 -2 2 2 0 0 0 0 

η1 + η2 16 -16 -1 1 0 0 0 2 -2 2 -2 
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Then the cyclic decomposition for the group K(SL(2,17)) is: 

 

K(SL(2,17)) = Z4896  Z1224  Z2  Z1  Z1  Z4  Z2  Z1  Z2   

Z3  Z6 

 

 

EXAMPLE (3.8): 

To find the cyclic decomposition of the group K(SL(2,19)). 

 

The character table of rational representations of SL(2,19) is : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cg 1 z  c zc a a
2
 a

3
 a

6
 b b

2
 b

4
 

| Cg | 1 1 180 180 380 380 380 380 342 342 342 

| CG(g)| 6840 6840 38 38 18 18 18 18 20 20 20 

1G 1 1 1 1 1 1 1 1 1 1 1 

ψ 19 19 0 0 1 1 1 1 -1 -1 -1 

χ1 60 -60 3 -3 0 0 3 -3 0 0 0 

χ2 60 60 3 3 0 0 -3 -3 0 0 0 

χ3 20 -20 1 -1 1 -1 -2 2 0 0 0 

χ6 20 20 1 1 -1 -1 2 2 0 0 0 

θ1 72 -72 -4 4 0 0 0 0 0 -2 2 

θ2 72 72 -4 -4 0 0 0 0 0 2 2 

θ4 18 -18 -1 1 0 0 0 0 0 2 -2 

ξ1 + ξ2 20 -20 1 -1 -2 2 -2 2 0 0 0 

η1 + η2 18 18 -1 -1 0 0 0 0 2 -2 -2 



Chapter Three                                          The Cyclic Decomposition of K(SL(2,P)) 

 
 

                                                                                         »     78 » 
 

 

The diagonalization of the matrix (≡*SL(2,19)) is: 

 



















































40000000000

02000000000

00100000000

00010000000

00002000000

00000600000

00000010000

00000003000

00000000200

00000000017100

00000000006840

 

 

 

Then the cyclic decomposition for the group K(SL(2,19)) is: 

 

K(SL(2,19)) = Z6840  Z1710  Z2  Z3  Z1  Z6  Z2 Z1 Z1   

 Z2  Z4 
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ONCLUSIONSC 4. 3. 
 

The diagonalization of the matrix (≡*SL(2,p)) is 

 























nm

m

m

m

0000

0000

0000

0000

3

2

1


 

 

Also the cyclic decomposition for the group K(SL(2,p)) is: 

 

K(SL(2,p)) = Z 1m   Z 2m   Z 3m   …  Z nm  

 

This as result some conclusions can be considered: 

1. m1 =  SL(2,p) . 

2. m2 =  SL(2,p)  / 4. 

3. We don’t find a similar approach to other elements. 
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ORKWUTURE FOR FUGGESTIONS S 5. 3. 
 

Based on the present work, the following topics are put forword for  

future work. 

1. Generalize the cyclic decomposition of the group SL(2,p), where p is an  

odd prime ( p  2 ). 

2. Find the cyclic decomposition of the group SL(2,p
2
), where p is an odd 

prime ( p  2 ). 

3. Find the cyclic decomposition of the group SL(2,p
k
), where p is an odd 

prime( p  2 ), k is even. 

4. Find the cyclic decomposition of the group SL(2,2
n
). 

5. Find the cyclic decomposition of the group PSL(2,p
k
), p  2. 
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 تكىن زمرة  Gمجمىعت كم دوال انصفىف راث انقيم انصحيحت  نهسمرة انمنتهيت  ان

 

 وهنانك زمرة جسئيت مه تهك انسمرة   cf(G,Z)ويرمس نها بانرمس  انجمع اننقطي  معابذانيت 

 

 .R(G)ويرمس نها بانرمس  Gهي زمرة انشىاخص انعمىميت راث انقيم انصحيحت نهسمرة 

 

 ان مسأنت ايجاد انتجسئت انذائريت نسمرة انقسمت 

 

K(G) = cf(G,Z) / R(G) 

 

 عنذما  SL(2,p)نهسمرة انمنتهيت انخطيت انخاصت قذ اعتبرث في هزه انرسانت 

 

P = 3, 5, 7, 11, 13, 17, 19 



 جمهوريـة العـراق
 وزارة التعليم العالي و البحث العلمي

 الجامعـة التكنولوجيـة
 

 

 

 

 نتائج حول الزمرة الكسرية

CF(G,Z) / R(G) 
 

 الةــــرس
 

 مقدمة إلــى قسن العـلون التطبيقيـة في الجامعـة التـكهولوجية

 عـلونتير ووي جزء من متطلبات هيـل درجة ماجس

 الرياضيــــات التطبيقيـــة فــي 

 
 

 بل الطالبةق نــم
 

 نيران صباح جاسم

 
 رافــبإش

 

 محمد سردار اسماعيل قيردارلدكـتور الاستاذ ا
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