# PHYTOCHEMICAL ANALYSIS OF *Ficus carica* LEAVES BY USING TECHNICAL METHODS

### NIDAA ADNAN ABU-SERAJ<sup>\*</sup>, ASEEL MOHAMMAD OMRAN, HEYAM G. AL MOUSAWI AND AMAL TALIB AL-SA'ADY

Department of Biology, College of science/University of Babylon, Hilla, Iraq [NAAS]. Department of Pharmacognosy, College of pharmacy/University of Babylon, Hilla, Iraq [AMO, HGAM].

Department Clinical Laboratory Sciences, College of Pharmacy/University of Babylon, Iraq [ATAS]. [\*For Correspondence: E-mail: seragdcnidaa@yobabylon.com]

#### Article Information

Editor(s):

(1) Dr. Ömer Kiliç, Bingol University, Turkey.
 <u>Reviewers:</u>
 (1) Vasil Atanasov, Trakia University, Bulgaria.
 (2) Siti Nor Azlina Bt Abd Rashid, Universiti Teknologi Malaysia, Malaysia.

Received: 20 February 2021 Accepted: 24 April 2021 Published: 01 May 2021

**Original Research Article** 

#### ABSTRACT

This study aimed to investigate the phytochemical components of *Ficus carica* (leaves) using Gas chromatography- Mass spectrum (GC-MS) and Fourier transform infrared spectrophotometer (FTIR) techniques. The results of GC-MS reported 55 chemical compounds in leaves. The results of the FTIR appear the presence of 30 functional groups in this plant. More of these groups were alcohols, phenols, alkanes, alkyl halides, aldehydes, carboxylic acids, aromatics, nitro compounds and amines. It contain phytochemicals which may be useful for various herbal formulation as anti-inflamatory, anti-bacterial, anti-fungal Anticancer, Antioxidant and others.

Keywords: Ficus carica; leaves; GC-Mass; FTIR.

#### **INTRODUCTION**

*Ficus caricaL.* (familly. Moraceae), generally known as fig and it is a non-evergreen plants, inborn in the eastern Mediterranean zone, Where it has been cultivated for about 7000 years[1,2].

Leaves of fig are large, alternating, bright green in color. Leaves are lobed, with about 1-5 lobes, Coarse hair from the upper surface and fine hair from the lower surfac. Moisture of leaves, 67.6%; protein, 4.3%; N-free extract, 16.4%; ash, 5.3%; fat, 1.7%; crude fiber, 4.7%; pentosans,

3.6%; carotene, bergaptene, stigmasterol, sitosterol, and tyrosine [3].

The main phytochemical compounds found in fig leaves are volatile combinations such as aldehydes, alcohols, benzyl alcohol, phenylethyl alcohol, ketone, esters, hexyl acetate, ethyl benzoate, and methyl salicylate, monoterpenes, sesquiterpenes and other combinations [4]. Also Figs are an excellent source of phenolic compounds, such as proanthocyanidins, [5].

Traditional use of its fruit, root, and leaves to treat many disease such as digestive ailments, endocrine system disease, respiratory system disease, cardiovascular disease, hypertriglyceridemia and gingivitis. In addition to, it's uses as antispasmodic and anti-inflammatory medicine [6,7]. Leaves of figs usually have been used to treat diabetes, hypoglycemic, asthma and gingivitis [8,9]. On the other hand, published studies has been reported of many medicinal effects of *F. carica* such as cancer-repression, anti-anthelmintic, anti-oxidation and antimicrobial (antibacterial and antiviral effects) [10-12].

#### MATERIALS AND METHODS

#### **Preparation of Fig Leaves**

The leaves were obtained from Hilla Governorate (Iraq), after cleaning and removal foreign things, dried at  $45^{0}$ C, then the leaves were stored in sealed container to elude the effect of moisture, and then stored at room temperature for further use.

#### **Preparation of Sample**

20 grams of the dry ground plant were taken and 100 ml of methanol were added to it in a clean beaker for 16 h in a horizontal shaker. The solution was filtered with filter paper. The filtrate was used to perform the chemical analyzes [13].

#### Analysis Phytochemicals by Gas Chromatography-Mass Spectrum (GC-MS)

The GC-MS analysis of the plant extract was made in an instrument (QP 2010 Plus SHIMADZU) under computer control at 70 eV [18;19]. Injected about 1  $\mu$ l of the methanolic solution into the GC-MS, after that the skimming accomplish in 45 minuts. When the components were detached, they entered a detector which had the ability to create an electronic signal wherever a component was distinguished. Then this signal obtained had been processed by the computer. Retention time (RT) was calculated from the injected time to elution.

The carrier gas used here is helium. Energy of the electron gun of mass detector was about 70eV. Siloxane used in the column. By the comparison of their retention directories and destruction

shapes of mass spectra with those stored on the CPU library In addition to the published literatures [14,15].

# Analysis the functional groups in the plant byFourierTransformInfraredSpectrophotometer (FTIR)

The plant part powdered sample was extracted with methanol to be treated for reading by FTIR spectroscopy (Shimadzu, IR Affinity 1, Japan), the sample was run at infrared area between 400 and 4000 nm [16,17].

#### **RESULTS AND DISCUSSION**

Chromatogram GC-MS analysis of methanol extract of Ficus carica leaves showed the presence of 55 compounds. The chemical compound, structural formula, molecular weight and exact mass were as shown in (Table 1). The spectrum profile of GC-MS showed the presence of fifty major peaks and these compounds were five variable compound and had different chemical nature such as 5-Methyl-6-phenyltetrahydro-1,3oxazine-2-thione, Cis-Bicyclo[4.2.0]octa-3,7diene , Pyrazolo[1.5-a]pyridine , 3-methyl-2phenyl , 2,3-Dihydroxy-6-nitroquinoxaline , Benzimidazole, 2-benzylsulfonyl, Trans-1-Cyano-phenylcyclopropanol , 3-Amino-7-nitro-1,2,4-benzotriazine 1-oxide , Trans-Acetoxy-1cyano-2-methyl-2-phenylcyclopropane Pyrazolidinetrione ,phenyl-,4-(phenylhydrazone) , Methylephedrine , Dispiro[2.2.2.2]deca-4,9-diene , Pentalane , 1-Benzenesulfonyl-1H-pyrrolo , and others as shown in Figs. 1-55.

The FTIR spectroscopy was used to identify the functional group of the active compounds based on the peak value in the area of infrared radiation. The results of FTIR peak values and functional groups were characterized in Table (2). Various functional groups of different compounds found in was this sample.

The absorption spectra of original leaves sample are show in Fig. 1 which give 30 peaks. The dominant peaks in leaves were observed at 719.45 to 989.48 cm<sup>-1</sup> represents Alkenes compound. The peaks at 657.73 to 688.59cm<sup>-1</sup> represents Alkyl

| Serial<br>No. | Phytochemical compound                                  | RT<br>(min ) | Exact Mass  | Chemical structure | MS fragment-ions                      | Molecular Formula |
|---------------|---------------------------------------------------------|--------------|-------------|--------------------|---------------------------------------|-------------------|
| 1-            | 5-Methyl-phenyltetrahydro-1,3-<br>oxazine-2-thione      | 3.167        | 207.071785  |                    | 57,77,91,117,132,147,163,174,207      | C4H7NO3           |
| 2-            | Cis-Bicyclo[4.2.0]octa-3,7-diene                        | 3.384        | 106.0782504 |                    | 51,65,78,91,105                       | C8H10             |
| 3-            | Pyrazolo[1.5-a]pyridine , 3-<br>methyl-2-phenyl         | 3.379        | 208.100048  |                    | 51,63,77,91,104,131,207               | C14H12N2          |
| 4-            | 2,3-Dihydroxy-6-nitroquinoxaline                        | 3.390        | 207.028006  |                    | 51,63,78,90,105,121,133,149,161,179,  | C8H5N3O4          |
| 5-            | Benzimidazole , 2-benzylsulfonyl-                       | 3.453        | 272.061949  |                    | 51,65,77,91,117,130,180,207,240,272   | C14H12N2O2S       |
| 6-            | Trans-1-Cyano-2-<br>phenylcyclopropanol                 | 4.088        | 159.068414  | с н                | 51,78,91,104,130,159                  | C10H9NO           |
| 7-            | 3-Amino-7-nitro-1,2,4-<br>benzotriazine 1-oxide         | 4.197        | 207.039239  |                    | 78,90,104,117,131,149,161,177,191,207 | C7H5N5O3          |
| 8-            | Trans-Acetoxy-1-cyano-2-methyl-<br>2-phenylcyclopropane | 4.414        | 215.094628  |                    | 51,77,91,103,118,145,155,172,187,215  | C10H12N2O         |
| 9-            | Pyrazolidinetrione ,phenyl-,4-<br>(phenylhydrazone)-    | 5.862        | 280.096025  |                    | 51,65,77,93,107,118,134,203,280       | C15H12N4O2        |

## Table (1). phytochemical compounds identified in *Ficus carica* leaves

| Serial<br>No. | Phytochemical compound                                     | RT<br>(min ) | Exact Mass  | Chemical structure | Chemical structure MS fragment-ions          |                  |
|---------------|------------------------------------------------------------|--------------|-------------|--------------------|----------------------------------------------|------------------|
| 10-           | Methylephedrine                                            | 5.925        | 179.131014  |                    | 72,77,91,105,117                             | $C_{11}H_{17}NO$ |
| 11-           | Dispiro[2.2.2.2]deca-4,9-diene                             | 6.131        | 132.093901  |                    | 52,63,77,91,103,117,132                      | C10H12           |
| 12-           | Pentalane                                                  | 6.451        | 132.093901  |                    | 54,65,78,91,104,117,131                      | C8H6             |
| 13-           | 1-Benzenesulfonyl-1H-pyrrolo                               | 6.697        | 207.035399  |                    | 51,77,97,115,125,141,207                     | C10H9NO2S        |
| 14-           | 2,6-Bis(diazo)adamantane                                   | 7.104        | 188.106196  |                    | 51,65,77,91,103,117,131                      | C10H12N4         |
| 15-           | N-Benzenesulfonylazetidin-3-one                            | 7.270        | 211.030314  |                    | 51,57,63,65,69,74,77,91,97                   | C9H9NO3S         |
| 16-           | Benzyloxymethylimine                                       | 7.876        | 135.068414  |                    | 51,57,63,65,69,73,77,79,81,85,89,91,105      | C8H9NO           |
| 17-           | 2,3-Dimethylamphetamine                                    | 7.922        | 163.1361    | N NH2              | 51,65,77,91,105,119,131,163                  | C11H17N          |
| 18-           | (+)-trans-3,4-Dimethyl-2-<br>phenyltetrahydro-1,4-thiazine | 8.305        | 207.1081705 |                    | 51,57,65,70,77,85,91,103,116,144,158,172,207 | C12H17NS         |

| Serial<br>No. | Phytochemical compound                                     | RT<br>(min ) | Exact Mass | Chemical structure  | Chemical structure         MS fragment-ions |           |
|---------------|------------------------------------------------------------|--------------|------------|---------------------|---------------------------------------------|-----------|
| 19-           | 2H-Pyran,tetrahydro-2-(2,5-<br>undecadiynyloxy)-           | 8.448        | 248.17763  |                     | 51,65,77,85,91,101,117,134,149,163,184,205  | C16H24O2  |
| 20-           | Phenylacetaldehyde N-methyl-N-<br>formylhydrazone          | 8.563        | 176.094963 |                     | 51,65,77,85,91,103,117,142,176              |           |
| 21-           | Pentanal O-benzyloxime                                     | 8.992        | 191.131014 | 54,65,79,91,107,149 |                                             | C12H17NO  |
| 22-           | Acetoacetic acid , 1-thio-, S-allyl ester                  | 9.513        | 158.040151 |                     | 54,59,69,85,125,158                         | C7H10O2S  |
| 23-           | Benzenemethanol , $\alpha$ -(1-<br>aminoeethyl)[R,(R*,R*)] | 9.598        | 151.099714 | OH<br>NH2           | 51,63,77,91,107,132                         | C9H16C1NO |
| 24-           | 2-Cyclopentene-1-thione , 2,3,4,4-<br>tetramethyl-         | 9.701        | 154.081621 | ~~~                 | 53,59,79,91,105,139,154                     | C9H14S    |
| 25-           | 6-Aza-2-thiothymine                                        | 9.810        | 143.015333 | NH NH               | 56,59,69,74,85,101,115,143                  | C4H5N3OS  |
| 26-           | Oxirane, (2-methylbutyl)-                                  | 9.930        | 114.104465 |                     | 55,69,81,85,99,114                          | C7H14O    |
| 27-           | N,N-Dimethyl-3-methoxy-4-<br>methylphenethylamine          | 9.999        | 193.146665 |                     | 58,77,91,103                                | C12H19NO  |

| Serial<br>No. | Phytochemical compound                                              | RT<br>(min) | Exact Mass | Chemical structure | MS fragment-ions                        | Molecular Formula |
|---------------|---------------------------------------------------------------------|-------------|------------|--------------------|-----------------------------------------|-------------------|
| 28-           | Benzyloxymethylimine                                                | 7.876       | 135.068414 |                    | 51,57,63,65,69,73,77,79,81,85,89,91,105 | C8H9NO            |
| 29-           | Pyrazolo[1,5-a]pyridine , 3-<br>methyl-2-phenyl-                    | 7.945       | 208.100048 |                    | 51,63,77,91,104,131,207                 | C14H12N2          |
| 31-           | 2-Phenethylamine , N-<br>dimethylaminomethylene-                    | 9.415       | 176.131349 | 5                  | 51,65,77,85,105,132,176                 | C11H16N2          |
| 32-           | Acetamide ,N-acetyl-N-propyl-                                       | 9.673       | 143.094628 |                    | 56,77,86,100,114,128,143                | C7H13NO2          |
| 33-           | 1-benzylindole                                                      | 9.713       | 207.104799 |                    | 51,65,77,91,102,116,130,152,178,207     | C15H13N           |
| 34-           | 4-Methoxy-N,α-<br>dimethylbenzenepropanamine                        | 9.793       | 193.146665 |                    | 58,65,77,91,103,121,134,147,162,178,193 | C12H19NO          |
| 35-           | Urea , 1-(phenylsulfonyl)-3-<br>propyl-2-thio-                      | 9.925       | 258.04967  |                    | 51,55,58,62,72,77,85,93,97,101,110,117  | C10H14N2O2S2      |
| 36-           | Isoxazolo[4,3-d]pyrimidin-7(6H)-<br>, one , 3-benzoyl-6-(phenylmeth | 10.611      | 331.095692 |                    | 51,65,77,91,105,117,144,170,187,198,215 |                   |
| 37-           | 4,5-Dihydro-5-methyl-4,4-<br>pentamethylene-2-phenyl-1,3-<br>oxazir | 10.949      | 257.141579 |                    | 51,56,77,105                            |                   |

| Serial<br>No. | Phytochemical compound                                           | RT<br>(min ) | Exact Mass | Chemical structure                         | Chemical structure MS fragment-ions |            |
|---------------|------------------------------------------------------------------|--------------|------------|--------------------------------------------|-------------------------------------|------------|
| 38-           | 1,2,3-Propatriol , 1-indol-4-<br>yl(ether)                       | 10.691       | 207.089543 | 57,69,77,89,97,104,116,133,146,176,189,207 |                                     | C11H13NO3  |
| 39-           | 1,6-Naphthyridin-4-amine                                         | 10.359       | 145.063997 | 52,63,79,91,105,118,145                    |                                     | C8N7N3     |
| 40-           | 2-Methoxyethyl benzoate                                          | 10.388       | 180.078644 | 51,58,63,77,91,105                         |                                     | C10H12O3   |
| 41-           | 1-(1,4-cyclohexadienyl)-2-<br>methylaminopropane                 | 11.023       | 151.1361   | NH_                                        | 51,56,58,65,67,70,74,77,89,91,96    | C10H17N    |
| 42-           | 1-(1,4-cyclohexadienyl)-2-<br>methylaminopropane                 | 11.023       | 151.1361   |                                            | 51,56,58,65,67,70,74,77,89,91,96    | C10H17N    |
| 43-           | 4,5-Dihydrooxazole-5-one, 4-<br>chloromethylene-2-phenyl-        | 11.223       | 207.008706 |                                            | 77,91,105,128,135,149,174,190,207   | C10H6C1NO2 |
| 44-           | Cyanopyrazine                                                    | 11.361       | 105.032697 | N                                          | 76,78,79,102,105                    | C5H3N3     |
| 45-           | 8-Isopropyl-5-methyl-5,6,7,8-<br>tetrahydro-2,4-quinazolinedione | 11.624       | 222.136827 | NH-<br>NH-<br>NH-                          | 77,94,122,165,179,207,222           | C12H18N2O2 |

| Serial<br>No. | Phytochemical compound                                         | RT<br>(min ) | Exact Mass | Chemical structure              | MS fragment-ions                             | Molecular Formula |
|---------------|----------------------------------------------------------------|--------------|------------|---------------------------------|----------------------------------------------|-------------------|
| 46-           | Propenoic acid ,2-benzoylamino-<br>3-(3,4-dimethoxyphenyl)-,   | 11.515       | 355.141973 |                                 | 51,77,105,134,177,204,250,274,309,355        |                   |
| 47-           | 2-Propanone, oxime                                             | 11.698       | 73.052764  | 58,73                           |                                              | C3H7NO            |
| 48-           | Oxetane, 2-ethyl-3-methyl-                                     | 10.726       | 100.088815 |                                 | 56,70,85,100                                 | C6H12O            |
| 49-           | 1,2,3-propatriol , 1-indol-4-<br>yl(ether)                     | 10.691       | 207.089543 |                                 | 57,69,77,89,97,104,116,133,146,176,189,207   | C11H13NO3         |
| 50-           | Propanenitrile ,3-(5-diethylamino-<br>1-methyl-3-pentynyloxy)- | 10.760       | 222.173213 |                                 | 58,77,86,98,110,124,152,168,193,207          | C13H22N2O         |
| 51-           | 1-Phenyl-2-(4-methylphenyl)-<br>diazene 1-oxide                | 11.149       | 212.094963 |                                 | 77,91                                        | C14H14N2O         |
| 52-           | Choroacetic acid allyl ester                                   | 11.658       | 134.013457 |                                 | 51,52,55,56,58,59,62,70,71,76,77,79,80,85,87 |                   |
| 53-           | 4-Benzyloxy-N-<br>methylamphetamine                            | 11.916       | 255.162314 |                                 | 56,58,65,77,89,91                            | C17H21NO          |
| 54-           | 2-Thiopheneacetic acid , benzyl                                | 12.334       | 232.0558   |                                 | 51,53,58,63,65,69,77,85,89,91,97,105         | C13H12O2S         |
| 55-           | Pyrazolidinetrione , phenyl -, 4-<br>(phenylhydrazone)         | 12.574       | 280.096025 | 51,65,77,93,107,118,134,203,280 |                                              | C15H12N4O2        |



Fig. 1. 5-Methyl-6phenyltetrahydro-1,3-oxazine-



Fig. 4. 2,3Dihydroxy-6 nitroquinoxaline



Fig. 7. 3Amino-7-nitro-1,2,4benzotriazine1-oxide



Fig. 2. Cis-Bicyclo[4.2.0]octa-3,7-diene



Fig. 5. Benzimidazole,2 benzylsulfonyl-



Fig. 8 .Trans-Acetoxy-1-cyanomethyl-2-phenylcyclopropane



Fig. 3. Pyrazolo[1.5a]pyridine3-methylphenyl-



Fig. 6. Trans-1-Cyano-2 phenylcyclopropanol



Fig. 9. Pyrazolidinetrione phenyl-,4-(phenylhydrazone



Fig. 10. Pentalane



Fig. 13.Benzenesulfonyl-1Hpyrrolo



Fig. 16. N-Benzenesulfonyl



Fig. 11. Dispiro[2.2.2.2]deca-4,9diene



Fig. 14. Phenyl-2-(4methylphenyl)



Fig. 17. Benzyloxymethylimine



Fig. 11. Dispiro[2.2.2.2]deca-4,9diene



Fig. 15. 2,6(diazo)adamentan



Fig. 18. Dimethylamphetamine





Fig. 19. trans-3,4-Dimethyl-2phenyltetrahydro-1,4-thiazine



Fig. 22. Pentanal Obenzyloxime



Fig. 25. 2-Cyclopentene-1 methylbutyl

Fig. 20. 2H-Pyran,tetrahydro-2-(2,5-undecadiynyloxy)



Fig. 23. Acetoacetic acid



Fig. 26. 6-Aza-2-thiothymine



Fig. 21. Phenylacetaldehyde N-methyl-N-formylhydrazone



Fig. 24. Benzenemethanol,



Fig. 27. Oxirane(2 thione , 2,3,4,4-tetramethyl





Fig. 28. Dimethyl-3-methoxy-4 -methylphenethylamine



Fig. 31. 2 Phenethylamin Ndimethylaminomethylene



Fig. 34. 4-Methoxy-N,αdimethyl Benzenepropanamine

Fig. 29. Benzyloxymethylimine

Fig. 32. Acetamide N-acetyl-N-propyl



Fig. 35. Urea, 1-

thio



Fig. 30. Pyrazolo[1,5 a]pyridine 3-methyl-2-phenyl



Fig. 33. 1-benzylindole



Fig. 36. Isoxazolo[4,3d]pyrimidin

(phenylsulfonyl) -3-propyl-2-



Fig. 37. 4,5-Dihydro-5 methyl-4,4pentamethylene



Fig. 40. 2-Methoxyethyl



Fig. 38. 1,2,3-Propatriol 1indol-4-yl(ether)



Fig. 41. 1-(1,4-cyclohexadienyl)



Fig. 42. 4,5-Dihydrooxazole



Fig. 43. Cyanopyrazine



Fig. 44. 8-Isopropyl-5-methyl



Fig. 5. Propenoic acid



Fig. 39. 1,6-Naphthyridin-4amine

207



Fig. 46. 2-Propanone, oxime



Fig. 49. Propanenitrile



Fig. 47. Oxetane , 2-ethyl-3methyl



Fig. 50. 1-Phenyl-2-(4methylphenyl)





Fig. 48. 1,2,3-propatriol



Fig. 51. choroacitic acid



Fig. 54. methylamphetamine

Fig. 55. Methcathinone

| No. | Peak(Wave  | Intensity | Area   | Type of Intensity | Bond | Type of   | Functional group | Group     |
|-----|------------|-----------|--------|-------------------|------|-----------|------------------|-----------|
|     | number) cm | -         |        |                   |      | vibration | assignment       | frequency |
| 1-  | 657.73     | 57.658    | 2.262  | Medium            | C-Br | Stretch   | Alkyl halides    | 515-690   |
| 2-  | 667.37     | 52.781    | 3.912  | Medium            | C-Br | Stretch   | Alkyl halides    | 515-690   |
| 3-  | 688.59     | 56.002    | 7.964  | Medium            | C-Br | Stretch   | Alkyl halides    | 515-690   |
| 4-  | 719.45     | 58.677    | 7.136  | Strong            | =C-H | Bending   | Alkenes          | 650-1000  |
| 5-  | 817.82     | 68.707    | 4.564  | Strong            | =C-H | Bending   | Alkenes          | 650-1000  |
| 6-  | 850.61     | 71.039    | 2.831  | Strong            | =C-H | Bending   | Alkenes          | 650-1000  |
| 7-  | 887.26     | 72.055    | 2.167  | Strong            | =C-H | Bending   | Alkenes          | 650-1000  |
| 8-  | 925.83     | 64.066    | 8.384  | Strong            | =C-H | Bending   | Alkenes          | 650-1000  |
| 9-  | 989.48     | 44.263    | 14.379 | Strong            | =C-H | Bending   | Alkenes          | 650-1000  |
| 10- | 1028.06    | 43.571    | 9.985  | Medium            | C-N  | Stretch   | Aliphatic amines | 1020-1250 |
| 11- | 1045.42    | 43.573    | 15.438 | Medium            | C-N  | Stretch   | Aliphatic amines | 1020-1250 |
| 12- | 1099.43    | 60.523    | 6.724  | Medium            | C-N  | Stretch   | Aliphatic amines | 1020-1250 |
| 13- | 1193.94    | 79.785    | 1.987  | Medium            | C-N  | Stretch   | Aliphatic amines | 1020-1250 |
| 14- | 1232.51    | 76.689    | 2.106  | Medium            | C-N  | Stretch   | Aliphatic amines | 1020-1250 |
| 15- | 1313.52    | 74.916    | 2.723  | Medium            | N-O  | Symmetric | Nitro compound   | 1290-1360 |
|     |            |           |        |                   |      | stretch   |                  |           |
| 16- | 1336.67    | 73.335    | 2.535  | Medium            | N-O  | Symmetric | Nitro compound   | 1290-1360 |
|     |            |           |        |                   |      | stretch   |                  |           |
| 17- | 1361.74    | 72.878    | 2.049  | -                 | -    | -         | Unknown          | -         |
| 18- | 1373.32    | 72.747    | 2.096  | -                 | -    | -         | Unknown          | -         |
| 19- | 1593.20    | 75.859    | 3.018  | Medium            | N-H  | Bending   | Amines           | 1580-1650 |
| 20- | 1716.65    | 82.838    | 2.535  | -                 | -    | -         | Unknown          | -         |
| 21- | 2360.87    | 80.442    | 2.333  | -                 | -    | -         | Unknown          | -         |
| 22- | 2850.79    | 80.727    | 2.824  | Medium            | C-H  | Stretch   | Alkanes          | 2850-3000 |
| 23- | 2881.65    | 80.794    | 2.299  | Medium            | C-H  | Stretch   | Alkanes          | 2850-3000 |
| 24- | 3116.97    | 73.553    | 3.427  | Medium            | O-H  | Stretch   | Carboxylic acids | 2500-3300 |
| 25- | 3234.62    | 65.872    | 2.069  | Medium            | O-H  | Stretch   | Carboxylic acids | 2500-3300 |
| 26- | 3267.41    | 64.627    | 2.528  | Medium            | O-H  | Stretch   | Carboxylic acids | 2500-3300 |
| 27- | 3288.63    | 65.010    | 2.853  | Medium            | O-H  | Stretch   | Carboxylic acids | 2500-3300 |
| 28- | 3329.14    | 65.410    | 2.093  | Medium            | N-H  | Stretch   | Amines,          | 3250-3400 |
|     |            |           |        |                   |      |           | amides           |           |
| 29- | 3379.29    | 66.883    | 4.833  | Medium            | N-H  | Stretch   | Amines,          | 3250-3400 |
|     |            |           |        |                   |      |           | amides           |           |
| 30- | 3471.87    | 76.011    | 2.428  | Strong,Sharp      | O-H  | Stretch   | Alcohol          | 3500-3700 |

 Table 2. FTIR peak values and functional groups Ficus carica leaves

halides. The peaks at 43.571 to 76.689cm<sup>-1</sup> represents aliphatic amines. The peak at 74.916 to 73.335cm<sup>-1</sup> represent nitro compounds, The peaks at 75.859cm<sup>-1</sup> represents Amines, The peaks at 80.727 to 80.794cm<sup>-1</sup> represents Alkanes, The at 73.553 to 65.010 cm<sup>-1</sup> represents peaks Carboxylic acids, the peaks at 65.410 to 66.883cm<sup>-1</sup> represents amines amides, and the peak at 76.011cm<sup>-1</sup> represent alcohol. Carboxilic antioxidants. acids used as radio. and cytoprotector [18]. Alkanes and alkenes had antimicrobial and cytotoxic effects [19].

Medicinal plants have huge therapeutic uses and it may have fewer side effects than chemical medications. Today we need to explore more plant-based antibiotics. F. carica have large number of phytochemicals such as bioflavonoids, vitamins(vitamin B3), glycosides, enzymes anthesterin(taraxasterol),L-tyrosine, xanthotoxol, ficusin, bergapten, Phytosterol(stigmasterol, beta-Sitosterol, campesterol), beta-Carotene, calotropenvl acetate, *β*-amyrins, psoralene, Beta-Sitosterol, arabinose, rutin , Lupeol acetate, saponins, oleanolic acid, Mucilages and fatty acids [20-21]. Umbelliferone [22,23], 6-(2- methoxy-Z-vinyl)-7-methyl-pyranocoumarin and 9.19cycloarlane triterpenoid, 6-Oacyl-  $\beta$ -Dglucosyl - $\beta$ -sitosterol and calotropenyl acetate [24,25].

Gilani et al. [26] found positive tested for alkaloids, flavonoids, coumarins, saponins, sterols and terpenoids in *F. carica*. Nicotra et al. (2010) [27] show the contented of phenolic compounds was 1.86%, and the quercetin content was 0.06% in the leaves of *Ficus carica* by HPLC. *F. carica* used as hepatoprotective, hypoglycemic, hypolipedimic, anticancer, antioxidant, antimicrobial and anti-fungal [28-30].

Many studies confirmed that extract of fig leaves showed anti-inflammatory effect, that was 75.90% in acute inflammation and in chronic study it was 71.66% reduction in granuloma weight [31], and leaves extract showed anti- pyretic whichsignificant dose- dependent reduction in normal body temperature [32], also leaves aqueous extract showed hypoglycemic activity in treated versus non- treated diabetic rats [33], studies showed fig leaves extract act as anti- angiogenic by bserved that the extract dose dependently inhibited the tube formation of HUVECs [34].

#### CONCLUSION

*Ficus carica* is a native plant of Iraq. Thus the GC-MS analysis of methanolic extract of the leaves of this plant showed a highly complex profile containing approximately fifty five chemical compound. It contain phytochemicals which may be useful for various herbal formulation as anti-inflamatory, anti-bacterial, anti-fungal Anticancer, Antioxidant and others.

#### **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

#### REFERENCES

- 1. Morton J. Fruits of warm climate Julia F Morton, Miami (FL-USA). 1987;47-50.
- 2. Anonymous. The Wealth of India. Vol. IV. New Delhi: National Institute of Science and Communication. 2002;26-31.
- 3. Baby Joseph, Justin Raj S. Pharmacognostic and phytochemical properties of *Ficus carica* Linn –An overview. International Journal of PharmTech Research. 2011;3(1):08-12.
- 4. Oliveira AP, Silva LR, Pinh PG. Volatile profiling of *Ficus carica* varieties by HS-SPME and GC-IT-MS. Food Chemistry. 2010;123(2):548–557.
- 5. Vinson JA, Hao Y, Su X, Zubik L. Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry. 1998;46(9):3630–3634.
- 6. Duke MJ, Bugenschutz-godwin J. Du collier, Duke PK. Hand Book of Medicinal Herbs, CRC Press, Boca Raton, Fla, USA, 2nd edition; 2002.
- 7. Werbach M. Healing with food, harper collins, NewYork, NY, USA; 1993.
- Anonymous. The Wealth of India. Vol. IV. New Delhi: National Institute of Science and Communication. 2002;iv:26-31.
- 9. Mohan GK, Pallavi E, Kumar BR, Ramesh M, Venkatesh S. Hepatoprotective activity of *Ficus carica* Linn leaf extract against

carbon tetrachloride-induced hepatotoxicity in rats. Daru. 2007;15:162-6.

- Wang G, Wang H, Song Y, Jia C, Wang Z, Xu H. Studies on anti-HSV effect of Ficus carica leaves. Zhong Yao Cai. 2004; 27:754-6.
- Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, Altman A, Kerem Z, Flaishman MA. Antioxidant activities and anthocyanin content of fresh fruits of common fig (*Ficus carica* L.). J Agric Food Chem. 2006;54:7717-23.
- 12. Jeong MR, Cha JD, Lee YE. Antibacterial activity of Korean Fig (*Ficus carica* L.) against food poisoning bacteria. Korean J Food Cookery Sci. 2005;21:84-93.
- 13. Imad HH, Huda J, Muhanned AK, Ameera OH. Alkaloid constitution of Nerium oleander by using gas chromatographymass specroscopy (GC-MS). J. Med. Plants Res. 2015a;9(9):326-334.
- 14. Imad. H.H, Muhanned AK, Rafid HH. Xchromosome short tandem repeat, advantages and typing technology review. Afr. J. Biotechnol. 2015c;14(7):535-541.
- 15. Mohammed AJ, Imad HH, Muhanned AK. Detection of new variant "Off-ladder" at the (D12S391,D19S433 and D1S1656 loci) and Tri-allelic Pattern at the D16S539 Locus in a 21 Locus Autosomal Short Tandem Repeat Database of 400 Iraqi Individuals. Afr. J. Biotechnol. 2015; 14(5):375-399.
- 16. Al-Tameme HJ, Hameed IH, Idan SA, Hadi MY. Biochemical analysis of *Origanum vulgare* seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy. 2015;7(9):221-237.
- 17. Hussein JH, Hadi MY, Hameed IH. Study of chemical composition of *Foeniculum vulgare* using Fourier transform infrared spectrophotometer and Gas chromatography - mass spectrometry. Journal of Pharmacognosy and Phytotherapy. 2016;8(3):60-89.
- Brazhko OO, Zavgorodny MP, Kruglyak O S. Antioxidant activity of alkoxy derivatives of (quinoline-4-ylthio)

carboxylic acids. Ukr Biochem. J. 2015; 87(2):95-102.

- 19. Santos SF, Novales MG. Essential oils from aromatic herbs as antimicrobial agents. Curr Opin Biotechnol. 2011Apr; 23(2):136-141.
- Gilani AH, Mehmood MH, Janbaz KH, Khan AU, Saeed SA. Ethnopharmacological studies on antispasmodic and antiplatelet activities of *Ficus carica*. J. Ethnopharmacol. 2008; 119:1-5.
- 21. Vaya,J., and Mahmood, S., Flavonoid content in leaf extracts of the fig (*Ficus carica* L.), carob (*Ceratonia siliqua* L.) and pistachio (*Pistacia lentiscus* L). Biofactors. 2006;28:169-75.
- 22. Seong-Kuk k, Dong-Ok C, Hee-Jong C. Purification and identification of antimicrobial substances in phenolic fraction of fig leaves. Han'guk Nonghwa Hakhoechi. 1995;38:293-296.
- 23. Louis P, Patrick P, Andre M, Jean-Marie B, F, Jean-Paul R. Bergapten content in fig leaves. Annales des Falsifications de l'Expertise Chimiqui et Toxicologique. 2000;93:427-435.
- 24. Shai R, Yoel K, Ruth R, Michael S, Raphael M. Suppressors of cancer cell proliferation from fig (*Ficus carica*) resin: Isolation and structure elucidation. J. Nat Prod. 2001;64:993-996.
- 25. Saeed MA, Sabir AW. Irritant potential of triterpenoids from *Ficus carica* leaves. Fitoterapia. 2002;73:417-420.
- 26. Gilani A, Mehmood MH, Janbaz KH, Khan A, Saeed SA. Ethnopharmacological studies on antispasmodic and antiplatelet activities of *Ficus carica*. Journal of Ethnopharmacology. 2008;119:1–5.
- 27. Nicotra G, Vicentini S, Mazzolari A. *Ficus carica* Research and development of a dry extract. Nutra Foods. 2010;9(3):27-30.
- 28. Gond NY, Khadabadi SS. Hepatoprotective activity of *Ficus carica* leaf extract on rifampicininduced hepatic damage in rats. Indian Journal of Pharmaceutical Sciences. 2008,70(3):364-366.
- 29. Perez C, Domínguez E, Ramiro JM, Romero A, Campillo JE, Torres MD. A study on the glycaemic balance in

streptozotocin-diabetic ratstreated with an aqueous extract of *Ficus carica* (fig tree) leaves. Phytotherapy Research. 1998;10(1): 82-83

- Farzad Asadi, Malihe Pourkabir, Robin Maclaren, Ali Shahriar. Alterations to lipid parameters in response to fig tree (*Ficus carica*) leaf extract in chicken liver slices. Turk. J. Vet. Anim. Sci. 2006;30:315-318.
- Patil VV, Patil VR. Evaluation of antiinflammatory activity of *Ficus carica* Linn. leaves. Indian J Nat Prod Resour. 2011;2:151-5.
- 32. Khodarahmi GA, Ghasemi N, Hassanzadeh F, Safaie M. Cytotoxic effects of different

extracts and latex of *Ficus carica* L. on HeLa cell Line. Iran J Pharm Res. 2011;10(2):273-7.

- 33. Perez C, Domínguez E, Ramiro JM, Romero A, Campillo JE, Torres MD. A study on the glycaemic balance in streptozotocin-diabetic rats treated with an aqueous extract of *Ficus carica* (fig tree) leaves. Phytother Res. 1998; 10:82-3.
- 34. Ghambarali Z, Bidmeshkipouri A, Akrami H, Azdbakht M, RabziaIndian A. Ethanolic extract of Ficus carica leave suppresses angiogenesis by regulating VEGF-A and integrin  $\beta$ 3 mRNA expression in human umbilical vein endothelial cells. J Physiol Pharmacol. 2014;58:407-15.

© Copyright International Knowledge Press. All rights reserved.