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Abstract—In this paper, the class of E-differentiable vector
optimization problems with both inequality and equality con-
straints is considered. The so-called vector Wolfe E-dual problem
is defined for the considered E-differentiable multiobjective pro-
gramming problem with both inequality and equality constraints
and several E-dual theorems are established under (generalized)
E-invexity hypotheses.
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I. INTRODUCTION

In the classical theory of duality, the theorems on duality
in various senses are based on convexity assumptions. Many
attempts have been made to weaken these assumptions by
introducing various generalized convexity concepts. One of
such important generalizations of the convexity notion is the
concept of invexity introduced by Hanson [14]. In the case of
differentiable scalar optimization problems. Namely, Hanson
showed that, instead of the usual convexity assumption, if
all functions are assumed to be invex (with respect to the
same function η), then the sufficient optimality conditions
and weak duality can be proved. Jeyakumar and Mond [15]
generalized Hanson’s definition to the vectorial case. They
defined V -invexity of differentiable vector-valued functions
which preserve the sufficient optimality conditions and duality
results as in the scalar case and avoid the major difficulty of
verifying that the inequality holds for the same function η
for invex functions in multiobjective programming problems.
Ben-Isreal and Mond [6] have defined quasi-invex function as
a generalization of invex functions. Luc and Malivert [17] have
extended the study of invexity to set-valued maps and vector
optimization problems with set-valued data. Bazaraa et al. [7]
have studied necessary conditions for optimality in a non-
linear vector optimization problem. Jeyakumar [16] defined
generalized invexity for nonsmooth scalar-valued functions,
established an equivalence of saddle points and optima, and
studied duality results for nonsmooth problems. The concept of
invexity for multiobjective nonlinear programming problems

have been introduced and studied extensively in the literature
(see, for example, [6], [9], [10], [13], [14], [17], and others).

Recently, the concepts of E-convex sets and E-convex
functions were introduced by Youness [22]. This kind of
generalized convexity is based on the effect of an operator
E : Rn → Rn on the sets and the domains of functions. How-
ever, some results and proofs presented by Youness [22] were
incorrect as it was pointed out by Yang [21]. Further, Megahed
et al. [19] presented the concept of an E-differentiable convex
function which transforms a (not necessarily) differentiable
convex function to a differentiable function based on the effect
of an operator E : Rn → Rn.

Later, Abdulaleem [1] introduced a new concept of gen-
eralized convexity as a generalization of the notion of E-
differentiable E-convexity. Namely, he defined the concept of
E-differentiable E-invexity in the case of (not necessarily) dif-
ferentiable vector optimization problems with E-differentiable
functions.

In this paper, a class of nonconvex E-differentiable vector
optimization problems with both inequality and equality con-
straints is considered in which the involved functions are E-
invex. For such a (not necessarily differentiable) multiobjective
programming problem, its Wolfe vector E-dual problem is
defined. Then, several Wolfe E-duality results are established
between the considered E-differentiable multicriteria opti-
mization problem and its vector E-dual under appropriate E-
invexity hypotheses.

II. PRELIMINARIES

Let Rn be the n-dimensional Euclidean space and Rn
+ be its

nonnegative orthant. The following convention for equalities
and inequalities will be used in the paper. For any vectors
x = (x1, x2, ..., xn)

T and y = (y1, y2, ..., yn)
T in Rn, we

define:

1) x = y if and only if xi = yi for all i = 1, 2, ..., n;
2) x > y if and only if xi > yi for all i = 1, 2, ..., n;
3) x = y if and only if xi = yi for all i = 1, 2, ..., n;
4) x ≥ y if and only if x = y and x 6= y.
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Definition 1: [1] Let E : Rn → Rn. A set M ⊆ Rn is said
to be an E-invex set if and only if there exists a vector-valued
function η : M ×M → Rn such that the relation

E (u) + λη (E (x) , E (u)) ∈M

holds for all x, u ∈M and any λ ∈ [0, 1].
Remark 2: If η is a vector-valued function defined by

η(z, y) = z− y, then the definition of an E-invex set reduces
to the definition of an E-convex set (see Youness [9]).

Remark 3: If E(a) ≡ a, then the definition of an E-invex
set with respect to the function η reduces to the definition of
an invex set with respect to η (see Mohan and Neogy [22]).

Definition 4: [8] Let E : Rn → Rn and f : M → R
be a (not necessarily) differentiable function at a given point
u ∈ M . It is said that f is an E-differentiable function at u
if and only if f ◦ E is a differentiable function at u (in the
usual sense) and, moreover,

(f ◦ E) (x) = (f ◦ E) (u) +∇ (f ◦ E) (u) (x− u)

+θ (u, x− u) ‖x− u‖ , (1)

where θ (u, x− u)→ 0 as x→ u.
Definition 5: [1] Let E : Rn → Rn, M ⊆ Rn be a

nonempty open E-invex set with respect to the vector-valued
function η : Rn × Rn → Rn and f : Rn → Rk be an
E-differentiable function on M . It is said that f is a vector-
valued E-invex function with respect to η at u on M if, for
all x ∈M ,

fi(E(x))−fi(E(u)) = ∇fi(E(u))η(E(x), E(u)), i = 1, ..., k.
(2)

If inequalities (2) hold for any u ∈M , then f is E-invex with
respect to η on M .

Remark 6: From Definition 5, there are the following special
cases:

a) If f is a differentiable function and E(x) ≡ x (E is an
identity map), then the definition of an E-invex function
reduces to the definition of an invex function introduced
by Hanson [14].

b) If η : Rn × Rn → Rn is defined by η(x, u) = x − u,
then we obtain the definition of an E-differentiable E-
convex vector-valued function introduced by Megahed
et al. [8].

c) If f is differentiable, E(x) = x and η(x, u) = x − u,
then the definition of an E-invex function reduces to
the definition of a differentiable convex vector-valued
function.

d) If f is differentiable and η(x, u) = x−u, then we obtain
the definition of a differentiable E-convex function
introduced by Youness [9].

Definition 7: [1] Let E : Rn → Rn, M ⊆ Rn be an
open E-invex set with respect to the vector-valued function
η : Rn ×Rn → Rn and f : Rn → Rk be an E-differentiable

function on M . It is said that f is a vector-valued strictly E-
invex function with respect to η at u on M if, for all x ∈M
with E(x) 6= E(u), the inequalities

fi(E(x))−fi(E(u)) > ∇fi(E(u))η(E(x), E(u)), i = 1, ..., k,
(3)

hold. If inequalities (3) are fulfilled for any u ∈ M (E(x) 6=
E(u)), then f is strictly E-invex with respect to η on M .

Definition 8: [1] Let E : Rn → Rn, M ⊆ Rn be an
open E-invex set with respect to the vector-valued function
η : Rn ×Rn → Rn and f : Rn → Rk be an E-differentiable
function on M . It is said that f is a vector-valued pseudo E-
invex function with respect to η at u on M if, for all x ∈M
and i = 1, ..., k,

fi(E(x)) < fi(E(u)) =⇒ ∇fi(E(u))η(E(x), E(u)) < 0.
(4)

If (4) holds for any u ∈ M , then f is pseudo E-invex with
respect to η on M .

Definition 9: [1] Let E : Rn → Rn, M ⊆ Rn be an
open E-invex set with respect to the vector-valued function
η : Rn ×Rn → Rn and f : Rn → Rk be an E-differentiable
function on M . It is said that f is a vector-valued quasi E-
invex function with respect to η at u on M if, for all x ∈M
and i = 1, ..., k,

fi(E(x))− fi(E(u)) 5 0⇒ ∇fi(E(u))η(E(x), E(u)) 5 0.
(5)

If (5) holds for any u ∈ M , then f is quasi E-invex with
respect to η on M .

In this paper, we consider the following (not necessarily
differentiable) multiobjective programming problem (VP) with
both inequality and equality constraints:

minimize f(x) = (f1 (x) , ..., fp (x))

subject to gj(x) 5 0, j ∈ J = {1, ...,m} ,

ht(x) = 0, t ∈ T = {1, ..., q} ,

x ∈ Rn,

(VP)

where fi : Rn → R, i ∈ I = {1, ..., p}, gj : Rn → R,
j ∈ J , ht : Rn → R, t ∈ T , are real-valued functions defined
on Rn. We shall write g := (g1, ..., gm) : Rn → Rm and
h := (h1, ..., hq) : Rn → Rq for convenience.

For the purpose of simplifying our presentation, we intro-
duce some notations which will be used frequently throughout
this paper. Let

Ω := {x ∈ Rn : gj(x) 5 0, j ∈ J ,

ht(x) = 0, t ∈ T}

be the set of all feasible solutions of (VP). Further let us denote
by J (x) the set of inequality constraint indices that are active
at a feasible solution x, that is, J (x) = {j ∈ J : gj(x) = 0}.

For such multicriterion optimization problems, the follow-
ing concepts of (weak) Pareto optimal solutions are defined as
follows:
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Definition 10: A feasible point x is said to be a weak Pareto
(weakly efficient) solution for (VP) if and only if there exists
no other feasible point x such that

f(x) < f(x).

Definition 11: A feasible point x is said to be a Pareto
(efficient) solution for (VP) if and only if there exists no other
feasible point x such that

f(x) ≤ f(x).

Let E : Rn → Rn be a given one-to-one and onto operator.
Throughout the paper, we shall assume that the functions con-
stituting the considered multiobjective programming problem
(VP) are E-differentiable at any feasible solution.

Now, for the considered multiobjective programming prob-
lem (VP), we define its associated differentiable vector opti-
mization problem as follows:

minimize f(E(x)) = (f1(E(x)), ..., fp(E(x)))

subject to gj(E(x)) 5 0, j ∈ J = {1, ...,m} ,

ht(E(x)) = 0, t ∈ T = {1, ..., q} ,

x ∈ Rn.

(VPE)

We call the problem (VPE) an E-vector optimization problem
associated to (VP). Let

ΩE := {x ∈ Rn : gj(E(x)) 5 0, j ∈ J ,

ht(E(x)) = 0, t ∈ T}

be the set of all feasible solutions of (VPE). Since the
functions constituting the problem (VP) are assumed to be E-
differentiable at any feasible solution of (VP), by Definition 4,
the functions constituting the E-vector optimization problem
(VPE) are differentiable (in the usual sense) at any its feasible
solution. Further, by JE (x), the set of inequality constraint
indices that are active at a feasible solution x in (VPE), that
is, JE (x) = {j ∈ J : (gj ◦ E) (x) = 0} .

Now, we give the definitions of a weak Pareto (weakly
efficient) solution and a Pareto (efficient) solution of the vector
optimization problem (VPE), which are, at the same time,
a weak E-Pareto solution (weakly E-efficient solution) and
an E-Pareto solution (E-efficient solution) of the considered
multiobjective programming problem (VP).

Definition 12: A feasible point E(x) is said to be a weak
E-Pareto solution (weakly E-efficient solution) of (VP) if and
only if there exists no other feasible point E(x) such that

f(E(x)) < f(E(x)).

Definition 13: A feasible point E(x) is said to be an E-
Pareto solution (E-efficient solution) of (VP) if and only if
there exists no other feasible point E(x) such that

f(E(x)) ≤ f(E(x)).

Lemma 14: [3] Let E : Rn → Rn be a one-to-one and onto.
Then E (ΩE) = Ω.

Lemma 15: [3] Let E : Rn → Rn be a one-to-one and
onto and z ∈ ΩE be a weak Pareto (Pareto) solution of
the constrained E-vector optimization problem (VPE). Then
E (z) is a weak E-Pareto solution (E-Pareto solution) of
the considered E-differentiable multiobjective programming
problem (VP).

Lemma 16: [3] Let z ∈ ΩE be a weak Pareto (Pareto)
solution of the E-vector optimization problem (VPE). Then
E (z) is a weak Pareto solution (Pareto solution) of the
considered multiobjective programming problem (VP).

Definition 17: The tangent cone (also called contingent cone
or Bouligand cone) of ΩE at x ∈ clΩE is defined by

TΩE
(x) = {d ∈ Rn : ∃{dn}⊂Rndn → d, ∃{tn}⊂Rtn ↓ 0

s.t. x+ tndn ∈ ΩE}.

Definition 18: For the constrained E-vector optimization
problem (VPE), the E-linearized cone at x ∈ ΩE , denoted by
LE (x), is defined by

LE (x) = {d ∈ Rn : ∇gj (E (x)) d 5 0, j ∈ JE (x) ,

∇ht (E (x)) d = 0, t ∈ T}.

Now, we present the E-Guignard constraint qualification
which were derived for E-differentiable multiobjective pro-
gramming problems with both inequality and equality con-
straints by Abdulaleem [1].

Definition 19: [1] It is said that the so-called E-Guignard
constraint qualification (GCQE) holds at x ∈ ΩE for the dif-
ferentiable constrained E-vector optimization problem (VPE)
with both inequality and equality constraints if

cl conv TΩE
(x) = LE (x) . (6)

Now, we present the Karush-Kuhn-Tucker necessary opti-
mality conditions for x ∈ ΩE to be a weak Pareto solution of
the E-vector optimization problem (VPE). These conditions
are, at the same time, the E-Karush-Kuhn-Tucker necessary
optimality conditions for E(x) ∈ Ω to be a weak E-Pareto
solution of the considered E-differentiable multiobjective pro-
gramming problem (VP).

Theorem 20: [1] (E-Karush-Kuhn-Tucker necessary opti-
mality conditions). Let x ∈ ΩE be a weak Pareto solution of
the E-vector optimization problem (VPE) (and, thus, E (x) be
a weak E-Pareto solution of the considered multiobjective pro-
gramming problem (VP)). Further, f , g, h be E-differentiable
at x and the E-Guignard constraint qualification be satisfied
at x. Then there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ξ ∈ Rs such that
p∑

k=1

λk∇fk (E(x))+
m∑
j=1

µj∇gj (E(x))+
s∑

t=1

ξt∇ht (E(x)) = 0,

(7)
µjgj (E(x)) = 0, j ∈ J (E (x)) , (8)

λ ≥ 0, µ = 0. (9)
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III. VECTOR WOLFE E-DUALITY RESULTS

In this section, a vector dual problem in the sense of Wolfe
is considered for the class of E-invex vector optimization
problems with inequality and equality constraints. Let E :
Rn → Rn be a given one-to-one and onto operator. Consider
the following dual problem in the sense of Wolfe related to
the considered vector optimization problem (VP):

maximize f(E(y)) +

[ m∑
j=1

µjgj(E(y)) +

q∑
t=1

ξtht(E(y))

]
e

s.t.
p∑

i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇ (gj ◦ E) (y)

+

q∑
t=1

ξt∇ (ht ◦ E) (y) = 0, (WDE)

λ ∈ Rp, λ ≥ 0, λe = 1, e = (1, 1, ..., 1)T ∈ Rp,

µ ∈ Rm, µ = 0, ξ ∈ Rq ,

where all functions are defined in the similar way as for
the considered vector optimization problem (VP) and e =
(1, ..., 1) ∈ Rp. Further, let

ΓE =

{
(y, λ, µ, ξ) ∈ Rn ×Rp ×Rm ×Rq :

p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇(gj ◦ E)(y)

+

q∑
t=1

ξt∇(ht ◦ E)(y) = 0, λ ≥ 0, λe = 1, µ = 0

}
.

be the set of all feasible solutions of the problem (WDE).
Further, YE = {y ∈ X : (y, λ, µ, ξ) ∈ ΓE}. We call the
vector dual problem (WDE) Wolfe vector E-dual problem or
vector E-dual problem in the sense of Wolfe.

Now, under E-invexity hypotheses, we prove duality results
between the E-vector problems (VPE) and (WDE) and, thus,
E-duality results between the problems (VP) and (WDE).

Theorem 21: (Wolfe weak duality between (VPE) and
(WDE)). Let z and (y, λ, µ, ξ) be any feasible solutions of
the problems (VPE) and (WDE), respectively. Further, assume
that at least one of the following hypotheses is fulfilled:

A) each objective function fi, i ∈ I , is E-invex at y on
ΩE ∪ YE , each constraint function gj , j ∈ J , is an E-
invex function at y on ΩE ∪ YE , the functions ht, t ∈
T+ (E (y)) and the functions −ht, t ∈ T− (E (y)), are
E-invex at y on ΩE ∪ YE .

B) f(E(y))+

[∑m
j=1 µjgj(E(y))+

∑q
t=1 ξtht(E(y))

]
e is

pseudo E-invex at y on ΩE ∪ YE , µj (gj ◦ E) (y) is
quasi E-invex at y on ΩE ∪YE , ξt (ht ◦ E) (y) is quasi
E-invex at y on ΩE ∪ YE .

Then

f(E(z)) ≮ f(E(y)) +

[ m∑
j=1

µjgj(E(y)) +

q∑
t=1

ξtht(E(y))

]
e.

(10)
Proof. Let z and (y, λ, µ, ξ) be any feasible solutions of the

problems (VPE) and (WDE), respectively.
The proof of this theorem under hypothesis A). By means

of contradiction, suppose that

f(E(z)) < f(E(y)) +

[ m∑
j=1

µjgj(E(y)) +

q∑
t=1

ξtht(E(y))

]
e

Thus,

f(E(z)) < f(E(y))+

[ m∑
j=1

µjgj(E(y))+

q∑
t=1

ξtht(E(y))

]
, i ∈ I.

(11)
Multiplying by λi and then adding both sides of the above
inequalities and taking that

∑p
i=1 λi = 1, we get the inequality

p∑
i=1

λi (fi ◦ E) (z) <

p∑
i=1

λi (fi ◦ E) (y) +
m∑
j=1

µj (gj ◦ E) (y)

+

q∑
t=1

ξt (ht ◦ E) (y)

holds. From the feasibility of z for the problem (VPE), it
follows that
p∑

i=1

λi (fi ◦ E) (z) +
m∑
j=1

µj (gj ◦ E) (z) +

q∑
t=1

ξt (ht ◦ E) (z)

<

p∑
i=1

λi (fi ◦ E) (y)+
m∑
j=1

µj (gj ◦ E) (y)+

q∑
t=1

ξt (ht ◦ E) (y).

(12)

m∑
j=1

µj (gj ◦ E) (z) 5
m∑
j=1

µj (gj ◦ E) (y), (13)

q∑
t=1

ξt (ht ◦ E) (z) =

q∑
t=1

ξt (ht ◦ E) (y). (14)

By assumption, z and (y, λ, µ, ξ) are feasible solutions for the
problems (VPE) and (WDE), respectively. Since the functions
fi, i ∈ I , gj , j ∈ J , ht, t ∈ T+, −ht, t ∈ T−, are E-invex
on ΩE ∪ YE , by Definition 5, the inequalities

(fi ◦ E) (z)− (fi ◦ E) (y) =

∇ (fi ◦ E) (y) η (E (z) , E (y)) , i ∈ I , (15)

(gj ◦ E) (z)− (gj ◦ E) (y) =

∇ (gj ◦ E) (y) η (E (z) , E (y)) , j ∈ JE (y) , (16)

(ht ◦ E) (z)− (ht ◦ E) (y) =

∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T+ (E (y)) , (17)

− (ht ◦ E) (z) + (ht ◦ E) (y) =
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−∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T− (E (y)) (18)

hold, respectively. Multiplying inequalities (15)-(18) by the
corresponding Lagrange multiplier and then adding both sides
of the resulting inequalities, we obtain that the inequality

p∑
i=1

λi (fi ◦ E) (z)−
p∑

i=1

λi (fi ◦ E) (y) +
m∑
j=1

µi (gj ◦ E) (z)

−
m∑
j=1

µi (gj ◦ E) (y)+

q∑
t=1

ξi (ht ◦ E) (z)−
q∑

t=1

ξi (ht ◦ E) (y)

=

[ p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µi∇ (gj ◦ E) (y) +

q∑
t=1

ξi∇ (ht ◦ E) (y)

]
η (E (z) , E (y))

holds. Thus, by (12), it follows that the inequality[ p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µi∇ (gj ◦ E) (y)

+

q∑
t=1

ξi∇ (ht ◦ E) (y)

]
η (E (z) , E (y)) < 0 (19)

holds, contradicts the first constraint of the vector Wolfe E-
dual problem (WDE). This means that the proof of the Wolfe
weak duality theorem between the E-vector optimization
problems (VPE) and (WDE) is completed under hypothesis
A).

The proof of this theorem under hypothesis B). We proceed
by contradiction. Suppose, contrary to the result, that (11)

holds. Since the function (f ◦ E) (·) +

[
µj (gj ◦ E) (·) +

ξt (ht ◦ E) (·)
]
e is pseudo E-invex at y on ΩE ∪ YE , by

Definition 8, the inequality
p∑

i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µj∇ (gj ◦ E) (y)

+

q∑
t=1

ξt∇ (ht ◦ E) (y) < 0 (20)

holds. From z ∈ ΩE and (y, λ, µ, ξ) ∈ ΓE , the relations (13)
and (14) are fulfilled. Since µj (gj ◦ E) (y) and ξt (ht ◦ E) (y)
are quasi E-invex at y on ΩE ∪ YE , by the foregoing above
relations, Definition 9 implies that the inequalities

m∑
j=1

µj∇ (gj ◦ E) (y)η (E (z) , E (y)) 5 0, (21)

q∑
t=1

ξt∇ (ht ◦ E) (y)η (E (z) , E (y)) 5 0. (22)

hold, respectively. Combining (20), (21) and (22), it follows
that the inequality (19) is fulfilled, contradicting the first

constraint of the vector Wolfe E-dual problem (WDE). This
means that the proof of the Wolfe weak duality theorem be-
tween the E-vector optimization problems (VPE) and (WDE)
is completed under hypothesis B).

Theorem 22: (Wolfe weak E-duality between (VP) and
(WDE)). Let E (z) and (y, λ, µ, ξ) be any feasible solutions of
the problems (VP) and (WDE), respectively. Further, assume
that all hypotheses of Theorem 21 are fulfilled. Then, Wolfe
weak E-duality between (VP) and (WDE) holds, that is,

f(E(z)) ≮ f(E(y)) +

[ m∑
j=1

µjgj(E(y)) +

q∑
t=1

ξtht(E(y))

]
e.

Proof. Let E (z) and (y, λ, µ, ξ) be any feasible solutions of
the problems (VP) and (WDE), respectively. Then, by Lemma
14. it follows that z is any feasible solution of (VPE). Since
all hypotheses of Theorem 21 are fulfilled, the Wolfe weak
E-duality theorem between the problems (VP) and (WDE)
follows directly form Theorem 21.

If some stronger E-invexity hypotheses are imposed on the
functions constituting the considered E-differentiable multiob-
jective programming problem, then the stronger result is true.

Theorem 23: (Wolfe weak duality between (VPE) and
(WDE)). Let z and (y, λ, µ, ξ) be any feasible solutions of
the problems (VPE) and (WDE), respectively. Further, assume
that at least one of the following hypotheses is fulfilled:

A) each objective function fi, i ∈ I , is strictly E-invex at
y on ΩE ∪ YE , each constraint function gj , j ∈ J , is
an E-invex function at y on ΩE ∪ YE , the functions ht,
t ∈ T+ (E (y)) and the functions −ht, t ∈ T− (E (y)),
are E-invex at y on ΩE ∪ YE .

B) f(E(y))+

[∑m
j=1 µjgj(E(y))+

∑q
t=1 ξtht(E(y))

]
e is

strictly pseudo E-invex at y on ΩE∪YE , µj (gj ◦ E) (y)
is quasi E-invex at y on ΩE∪YE , ξt (ht ◦ E) (y) is quasi
E-invex at y on ΩE ∪ YE .

Then

(f ◦ E) (z) � f(E(y))+

[ m∑
j=1

µjgj(E(y))+

q∑
t=1

ξtht(E(y))

]
e.

(23)
Theorem 24: (Wolfe weak E-duality between (VP) and

(WDE)). Let E (z) and (y, λ, µ, ξ) be any feasible solutions of
the problems (VP) and (WDE), respectively. Further, assume
that all hypotheses of Theorem 23 are fulfilled. Then, Wolfe
weak E-duality between (VP) and (WDE) holds, that is,

(f ◦ E) (z) � f(E(y))+

[ m∑
j=1

µjgj(E(y))+

q∑
t=1

ξtht(E(y))

]
e.

Theorem 25: (Wolfe strong duality between (VPE) and
(WDE) and also strong E-duality between (VP) and (WDE)).
Let x ∈ ΩE be a (weak) Pareto solution of the E-vector
optimization problem (VP) and the E-Guignard constraint
qualification (GCQE) be satisfied at x.Then there exist λ ∈
Rp, µ ∈ Rm, ξ ∈ Rq such that (x, λ, µ, ξ) is feasible for
the problem (WDE) and the objective functions of (VPE)
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and (WDE) are equal at these points. If also all hypotheses
of the weak duality theorem (Theorem 21 or Theorem 23)
are satisfied, then (x, λ, µ, ξ) is a (weak) efficient solution of
maximum type for the problem (WDE).
In other words, if, E (x) ∈ Ω is a (weak) E-Pareto solu-
tion of the multiobjective programming problem (VP), then(
x, λ, µ, ξ

)
is a (weak) efficient solution of a maximum type

in the dual problem (WDE) in the sense of Wolfe. This means
that the strong Wolfe E-duality holds between the problems
(VP) and (WDE).

Proof. Since x ∈ ΩE is a weak Pareto solution of the
problem (VPE) and the E-Guignard constraint qualification
(GCQE) is satisfied at x, by Theorem 20, there exist λ ∈ Rp,
λ 6= 0, µ ∈ Rm, µ = 0, ξ ∈ Rq , ξ = 0 such that

(
x, λ, µ, ξ

)
is a feasible solution of the problem (WDE). This means that
the objective functions of (VPE) and (WDE) are equal. If we
assume that all hypotheses of Wolfe weak duality (Theorem 21
or Theorem 23) are fulfilled,

(
x, λ, µ, ξ

)
is a weakly efficient

solution of a maximum type in the dual problem (WDE) in
the sense of Wolfe.

Moreover, we have by Lemma 14, that E (x) ∈ Ω. Since
x ∈ ΩE is a weak Pareto solution of the problem (VPE), by
Lemma 16, it follows that E (x) is a weak E-Pareto solution in
the problem (VP). Then, by the strong duality between (VPE)
and (WDE), we conclude that also the Wolfe strong E-duality
holds between the problems (VP) and (WDE). This means that
if E (x) ∈ Ω is a (weak) E-Pareto solution of the problem
(VP), there exist λ ∈ Rp, µ ∈ Rm, µ = 0, ξ ∈ Rq such that(
x, λ, µ, ξ

)
is a weakly efficient solution of a maximum type

in the Wolfe vector dual problem (WDE).
Theorem 26: (Wolfe converse duality between (VPE) and

(WDE)). Let
(
x, λ, µ, ξ

)
be a (weak) efficient solution of a

maximum type in the vector E-Wolfe dual problem (WDE)
such that x ∈ ΩE . Moreover, assume that the objective
functions fi, i ∈ I , are (E-invex) strictly E-invex at x on
ΩE ∪ YE , the constraint functions gj , j ∈ J , are E-invex
at x on ΩE ∪ YE , the functions ht, t ∈ T+ (E (x)) and the
functions −ht, t ∈ T− (E (x)), are E-invex at x on ΩE ∪YE .
Then x is a (weak) Pareto solution of the problem (VPE).

Proof. Let
(
x, λ, µ, ξ

)
be a (weakly) efficient solution of

a maximum type in Wolfe E-dual problem (WDE) such that
x ∈ ΩE . By means of contradiction, we suppose that there
exists x̃ ∈ ΩE such that

(f ◦ E) (x̃) < (f ◦ E) (x) (24)

holds. By the feasibility of
(
x, λ, µ, ξ

)
in the problem (WDE).

Hence, by the E-Karush-Kuhn-Tucker necessary optimality
conditions, we get

(f ◦ E) (x̃) +

[ m∑
j=1

µj (gj ◦ E) (x̃) +

q∑
t=1

ξt (ht ◦ E) (x̃)

]
e <

(f ◦ E) (x) +

[ m∑
j=1

µj (gj ◦ E) (x) +

q∑
t=1

ξt (ht ◦ E) (x)

]
e.

(25)

Since λi ≥ 0, i ∈ I , then (25) yields
p∑

i=1

λi (fi ◦ E) (x̃) +

[ m∑
j=1

µj (gj ◦ E) (x̃)+

q∑
t=1

ξt (ht ◦ E) (x̃)

] p∑
i=1

λi <

p∑
i=1

λi (fi ◦ E) (x)+

[ m∑
j=1

µj (gj ◦ E) (x) +

q∑
t=1

ξt (ht ◦ E) (x)

] p∑
i=1

λi. (26)

From the feasibility of
(
x, λ, µ, ξ

)
in the problem (WDE), we

have
∑p

i=1 λi = 1. Then, the inequality above implies
p∑

i=1

λi (fi ◦ E) (x̃) +

[ m∑
j=1

µj (gj ◦ E) (x̃)+

q∑
t=1

ξt (ht ◦ E) (x̃)

]
<

p∑
i=1

λi (fi ◦ E) (x)+

[ m∑
j=1

µj (gj ◦ E) (x) +

q∑
t=1

ξt (ht ◦ E) (x)

]
. (27)

Since the functions fi, i ∈ I , gj , j ∈ J , ht, t ∈ T+, −ht,
t ∈ T−, are E-invex at x on ΩE ∪ YE , by Definition 5, the
following inequalities

fi (E (x̃))− fi (E (x)) =

∇fi (E (x)) η (E (x̃) , E (x)) , i ∈ I , (28)

gj (E (x̃))− gj (E (x)) =

∇gj (E (x)) η (E (x̃) , E (x)) , j ∈ JE (x) , (29)

ht (E (x̃))− ht (E (x)) =

∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T+ (E (x)) , (30)

−ht (E (x̃)) + ht (E (x)) =

−∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T− (E (x)) (31)

hold, respectively. Multiplying inequalities (28)-(31) by the
corresponding Lagrange multiplier, respectively, we obtain that
the inequality

λifi (E (x̃))− λifi (E (x)) =

λi∇fi (E (x)) η (E (x̃) , E (x)) , i ∈ I , (32)

µjgj (E (x̃))− µjgj (E (x)) =

µj∇gj (E (x)) η (E (x̃) , E (x)) , j ∈ JE (x) , (33)

ξtht (E (x̃))− ξtht (E (x)) =

ξt∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T+ (E (x)) , (34)

−ξtht (E (x̃)) + ξtht (E (x)) =

−ξt∇ht (E (x)) η (E (x̃) , E (x)) , t ∈ T− (E (x)) (35)
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hold, respectively. Then adding both sides of (32)-(35), we
obtain that the inequality∑p

i=1 λifi(E (x̃))−
∑p

i=1 λifi(E (x)) +
∑m

j=1 µjgj(E (x̃))−∑m
j=1 µjgj(E (x)) +

∑q
t=1 ξtht(E (x̃))−

∑q
t=1 ξtht(E (x)) =[∑p

k=1 λk∇fk(E (x)) +
∑m

j=1 µj∇gj(E (x))

+
∑q

t=1 ξt∇ht(E (x))

]
η (E (x̃) , E (x))

(36)
holds. Thus, By (27) and (36), we obtain the following
inequality[∑p

i=1 λi∇fi(E (x)) +
∑m

j=1 µj∇gj(E (x))+∑q
t=1 ξt∇ht(E (x))

]
η (E (x̃) , E (x)) < 0,

(37)

contradicting the feasibility of
(
x, λ, µ, ξ

)
in (WDE). This

means that the proof of the converse duality theorem between
the E-vector optimization problems (VPE) and (WDE) is
completed.

Theorem 27: (Wolfe converse E-duality between (VP) and
(WDE)). Let

(
x, λ, µ, ξ

)
be a (weakly) efficient solution of a

maximum type in Wolfe vector dual problem (WDE). Further,
assume that all hypotheses of Theorem 26 are fulfilled. Then
E(x) ∈ Ω is a (weak) E-Pareto solution of the problem (VP).

Proof. The proof of this theorem follows directly from
Lemma 16 and Theorem 26.

Theorem 28: (Wolfe restricted converse duality between
(VPE) and (WDE)). Let x and

(
y, λ, µ, ξ

)
be feasible solutions

for the problems (VPE) and (WDE), respectively, such that

(f ◦ E) (x) < (f ◦ E) (y) +

[ m∑
j=1

µj (gj ◦ E) (y)+

q∑
t=1

ξt (ht ◦ E) (y)

]
e. (≤) (38)

Moreover, assume that the objective functions fi, i ∈ I , are
(E-invex) strictly E-invex at y on ΩE ∪ YE , the constraint
functions gj , j ∈ J , are E-invex at y on ΩE∪YE , the functions
ht, t ∈ T+ (E (y)) and functions −ht, t ∈ T− (E (y)), are E-
invex at y on ΩE∪YE . Then x = y, that is, x is a (weak) Pareto
solution of the problem (VPE) and

(
y, λ, µ, ξ

)
is a (weak)

efficient point of maximum type for the problem (WDE).
Proof. Note that, by (38), it follows that

(fi ◦ E) (x) < (fi ◦ E) (y) +
m∑
j=1

µj (gj ◦ E) (y)+

q∑
t=1

ξt (ht ◦ E) (y), i ∈ I . (39)

Multiplying each inequality (39) by λi, i ∈ I, and then adding
both sides of the resulting inequalities, we get

p∑
i=1

λi (f ◦ E) (x) <

p∑
i=1

λi (f ◦ E) (y)+

[ m∑
j=1

µj (gj ◦ E) (y) +

q∑
t=1

ξt (ht ◦ E) (y)

] p∑
i=1

λi. (40)

Since
∑p

i=1 λi = 1, (40) implies
p∑

i=1

λi (fi ◦ E) (x) <

p∑
i=1

λi (fi ◦ E) (y)+

m∑
j=1

µj (gj ◦ E) (y) +

q∑
t=1

ξt (ht ◦ E) (y). (41)

Now, we proceed by contradiction. Suppose, contrary to the
result, that x 6= y. By assumption, the functions fi, i ∈ I , gj ,
j ∈ J(E(y)), ht, t ∈ T+ (E (y)), and −ht, t ∈ T− (E (y))
are E-invex at y on ΩE ∪ Y . Then, by Definition 5, the
inequalities

(fi ◦ E) (x)− (fi ◦ E) (y) =

∇ (fi ◦ E) (y) η (E (x) , E (y)) , i ∈ I , (42)

(gj ◦ E) (x)− (gj ◦ E) (y) =

∇ (gj ◦ E) (y) η (E (x) , E (y)) , j ∈ J (E (y)) , (43)

(ht ◦ E) (x)− (ht ◦ E) (y) =

∇ (ht ◦ E) (y) η (E (x) , E (y)) , t ∈ T+ (E (y)) , (44)

− (ht ◦ E) (x) + (ht ◦ E) (y) =

−∇ (ht ◦ E) (y) η (E (x) , E (y)) , t ∈ T− (E (y)) (45)

hold, respectively. Multiplying inequalities (42)-(45) by the
corresponding Lagrange multipliers and then adding both sides
of the resulting inequalities, we get
p∑

i=1

λi (fi ◦ E) (x)−
p∑

i=1

λi (fi ◦ E) (y) +
m∑
j=1

µi (gj ◦ E) (x)

−
m∑
j=1

µi (gj ◦ E) (y)+

q∑
t=1

ξi (ht ◦ E) (x)−
q∑

t=1

ξi (ht ◦ E) (y) =

[ p∑
i=1

λi∇ (fi ◦ E) (y) +
m∑
j=1

µi∇ (gj ◦ E) (y) +

q∑
t=1

ξi∇ (ht ◦ E) (y)

]
η (E (x) , E (y)) (46)

By (46) and the first constraint of (WDE), it follows that
p∑

i=1

λi (fi ◦ E) (x) +
m∑
j=1

µj (gj ◦ E) (x) +

q∑
t=1

ξt (ht ◦ E) (x)

=
p∑

i=1

λi (fi ◦ E) (y)+
m∑
j=1

µj (gj ◦ E) (y)+

q∑
t=1

ξt (ht ◦ E) (y).

Hence, by x ∈ ΩE , we get that the following inequality
p∑

i=1

λi (fi ◦ E) (x) =
p∑

i=1

λi (fi ◦ E) (y)+
m∑
j=1

µj (gj ◦ E) (y)+
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q∑
t=1

ξt (ht ◦ E) (y). (47)

holds, contradicting (41). Then, x = y and this means, by
weak duality (Theorem 21 or Theorem 23) that x is a weak
Pareto solution of the problem (VPE) and

(
y, λ, µ, ξ

)
is a weak

efficient solution of maximum type for the problem (WDE).
Thus, the proof of this theorem is completed.

Theorem 29: (Wolfe restricted converse E-duality between
(VP) and (WDE)). Let

(
y, λ, µ, ξ

)
be a feasible solution of the

problem (WDE). Further, assume that there exist E (x) ∈ Ω
such that x = y. If all hypotheses of Theorem 28 are fulfilled,
then E (x) is an E-Pareto solution of the problem (VP) and(
y, λ, µ, ξ

)
is a weakly efficient solution of maximum type for

the problem (WDE).
Proof. The proof of this theorem follows directly from

Lemma 16 and Theorem 28.

IV. CONCLUDING REMARKS

In this paper, the class of E-differentiable vector optimiza-
tion problems with both inequality and equality constraints
has been considered. For such (not necessarily) differentiable
vector optimization problems. The so-called vector Wolfe
E-dual problem has been defined for the considered E-
differentiable E-invexity multiobjective programming problem
with both inequality and equality constraints and several E-
dual theorems have been established under (generalized) E-
invexity hypotheses.

However, some interesting topics for further research re-
main. It would be of interest to investigate whether it is
possible to prove similar results for other classes of E-
differentiable vector optimization problems. We shall inves-
tigate these questions in subsequent papers.
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