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Abstract
Investigation of the flow field surrounding supersonic non uniform flying body is a challenge to the aerodynamics 
 researchers. Such investigation by the traditional experimental technique in the wind tunnel is a time consuming and  costly. 
The alternative option is the CFD simulation. This work deals with prediction of the primitive variables of  supersonic flow 
over a missile body, which has a complex profile. Finite difference computational fluid dynamic methods were  adopted 
to solve the governing equations of supersonic, inviscid, compressible, and three-dimensional flow over a missile body 
with no canard. To deal with complex shape of missile, the “body fitted coordinate system” technique is considered to 
 convert the generated grid from space physical domain to 3-D computational domain. Time-marching MacCormack’s 
 explicit  technique is used to solve the set of the finite difference discretization equations. The analysis was carried out at 
1.5 Mach number. The numerical procedure adopted for this application is found to be capable to capture the shock waves 
 created over the missile body. The explicit technique required about 4000 time steps to achieve the converged solution. 
The velocity and temperature results showed a good agreement with previously published results. The same approach can 
be adopted to solve for different Mach numbers for the same missile shape. 
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Nomenclature

Symbole Description
a Speed of sound.

CFL  Courant FridrichLewysstability condition.

Cζ , Cη, Cξ,  Artificial viscosity coefficients in ξ, η, and ζ, 
directions

e  Specific internal energy per unit mass

Et  Total energy per unit volume

E, F, G  Column vector in Cartesian coordinates

E F G
- - -

, ,   Column vector in body fitted coordinates.

L Length of the missile
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Symbole Description
J  Jacobian of coordinate’s transformation.

M∞  Free stream Mach number

p∞ Free stream pressure.

Q  Flux vector.
Q  Vector of conserved variables in body  

fitted coordinates.
R Universal gas constant
Re Reynolds number
SQ1  Artificial viscosity term
T∞  Free stream temperature.
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t Time
u, v, w  Velocity components in x, y, and z directions
U, V, W  Contravariant velocity components in ξ, η, 

and ζ directions

Greek Symbols
γ Specific heat ratio
∆t Time step
ρ Density
α Angle of attack.
δ  Boundary layer thickness.
∆x ∆y ∆z  Spatial steps in physical domain.
∆ζ ∆η ∆ξ  Spatial steps in computational domain.

Subscript
I, j ,k  Node symbols indicates position in x ,y and z 

directions
∞  Conditions at free stream
o  Stagnation (total) conditions.

Superscript

n Time level t
n+1 Time level (t +∆t)

1. Introduction 
Prediction of flow field behavior is very important in the 
design of supersonic aircrafts and rockets. Not so long 
past time, the experimental measurements and the ana-
lytical methods were used to estimate the properties of 
supersonic flow over a limited number of shapes. From 
the mathematical point of view, the purpose of obtaining 
solutions to the governing equations of fluid mechan-
ics represents one of the most problems in engineering. 
In most cases, the mathematical formulations of the 
basic laws of fluid mechanics are expressed as Partial 
Differential Equations (PDEs). Second-order partial dif-
ferential equations appear frequently and, therefore, are 
of particular interest in fluid mechanics and heat trans-
fer. Generally, the governing equations of fluid mechanics 
form a set of coupled, non-linear PDEs which must be 
solved in an irregular domain subject to various initial 
and boundary conditions. For supersonic, three-dimen-
sional shaped missile, the analytical methods were failed 
due to the high non-linearity nature of the governing 
 equations. To design an aircraft or missile, thousands 

of tests were drawn in a supersonic wind tunnel which 
requires a hard and expensive work and consumes con-
siderable time domain. At the present time, design of new 
aircraft or missile needs-at least- ten-thousand to one 
-hundred thousand hours of wind tunnel time Jameson 
1989. In contrast, a numerical prediction provides similar 
result with short-time and good accuracy. Computation 
and the computer program may be changed easily to deal 
with any other sort of supersonic missile. In the numeri-
cal solution, the complication of solving the differential 
equations are overcome by replacing them with differ-
ences, calculated from a finite number of values associated 
with the computational nodes, which are distributed on a 
suitable grid over the solution domain. 

Early computational work was reported by Weaterill 
and Forsey2 where they have calculated the flow field 
around a complex aircraft configuration using multi-
block grid approach coupled with explicit finite volume 
Euler algorithm. In 1989, Jameson1 presented a review on 
the requirements for the use of numerical techniques to 
design aircrafts. He pointed out that experimental design 
is a very expensive tool, where 20000 hours of wind tunnel 
testing were expended in development of some modern 
aircrafts like F-111 and Boeing 747. For this reason, the 
CFD opens new direction to tackle with such engineering 
problems. In 1994, Jameson3 described a method which 
was used for the calculation of both 2-D and 3-D flows 
using finite difference scheme, which had been success-
fully applied to variety of flows over airplane wings. He 
concluded that near the leading edge of the wing, where 
the surface curvature was high, the best treatment was 
the curvilinear coordinate system, in which, the body 
surface coincided with a coordinate surface. The shock 
capturing in supersonic flows using CFD technique was 
carried out and reported by many researchers, e.g. Chen 
and Dehua4 and Persson et al.5. Many research results 
have been reported to solve the supersonic viscous flow 
field numerically; e.g. Cebeci6 who solved the flow around 
simple axisymetric missiles using Reynolds-average 
Navier-Stokes equation; DeSpirito et al.7 investigated 
flow around canard controlled missile and lattic fins tail 
control. Morgenstern8 simulated viscous supersonic flow 
over spiked-nosed body of revolution by solving Navier-
Stokes equations. Solving the supersonic flow assuming its 
invisid had been proven to produce accurate results and, 
with suitable grid generation technique, the shock wave 
could be captured. Wardlaw et al.9 solved Euler equations 
in supersonic speed around missile and predicted the 
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aerodynamic parameters and the velocity profile exclud-
ing the boundary layer. He used the explicit McCormack’s 
space marching technique. Goonko et al.10 presented 
numerical and analytical prediction of the supersonic 
invicid steady supersonic flow in corners formed by inter-
action wedges. They solved 3-D steady Euler equations by 
space marching approach. Pattman et al.11 used finite dif-
ference analogue of the full-potential equation to solve 
the supersonic flow around a missile body. The solution 
was carried out by NCREL ready code. In their work, grid 
points around the body surface were automatically clus-
tered near the leading edge. Scalabrin et al.12 simulated 
the supersonic flow around a multistage rocket. The 3-D 
transonic and supersonic compressible flow was modeled 
by solving Euler equations and a Taylor-Galerkin finite 
element method with artificial dissipation was employed. 
Wu et al.13 presented the results of using arc-length mesh 
generation and finite volume approach to solve Euler 
equations. The aim of their work was to improve the lift-
to-drag ratio of supersonic missiles. 

In the present study, the supersonic flow field over 
seamless missile is simulated by solving Euler equations. 
The predictor-corrector McCormack’s explicit finite 
difference method is used to predict the aerodynamic 
properties of 3-D, external compressible, inviscid super-
sonic flow. The time- marching method is chosen to treat 
the supersonic seamless missile. The paper discuses, also, 
the discretization of the resulted set of equations from 
the mathematical model and how they are converted to 
a numerical domain to be solved iteratively. The devel-
oped technique which is used to produce the grids is 
presented. An in-house code is developed to generate 
the grids and to solve the numerical model and perform 
prediction of the primitive variable covers, velocity, den-
sity, temperature, pressure, internal energy and Mach  
number. 

2. Mathematical Formulation 
The fluid within the present supersonic flow is treated as 
a non-viscous, non-heat conducting fluid, so it is desir-
able to be described by Euler equation. This is a valid 
approximation for flows at high speed (supersonic flow), 
i.e., at high Reynolds number outside the viscous region 
developing near the solid surface. The mathematical 
behavior of the Euler equation in such case is classified as 
hyperbolic in supersonic flow2. The governing equations 
derived from the conservation principles for an inviscid, 

non-heat conducting, external, compressible, unsteady, 
and three-dimensional supersonic flow are expressed 
in conservation format. By assuming non-viscous fluid, 
all the shear terms could be omitted from Navier-Stokes 
equations, getting the conservation of momentum in the 
flow field as:
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By neglecting the heat-conduction terms in the gen-
eral energy equation, the conservation of energy in the 
flow field becomes:
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While the conservation of mass within the flow field, 
represented by the continuity equation, and could be pre-
sented as:
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The grid points are generated in physical plane and 
transformed to computational plane before solving gov-
erning equations. The solution is obtained by marching 
from some initial flow field through time until a steady 
state is obtained. Prior to applying a numerical scheme to 
solve the set of five equations, it is essential to put them in 
a vector form as follows: 

 
∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=Q
t

E
x

F
y

G
z

0  (4)

where Q, E, F and G are column vectors which are defined 
as: 
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To establish a close domain of solution, the state equa-
tion will add a sixth source for interrelating the flow field 
properties and support the mathematical formational. 
The approaching air could be characterized mathemati-
cally, where, the free stream Mach number is given by: 

M RT• •= g

And assuming the working fluid, which is air, as a per-
fect gas, the equation of state reads

r•
•

•
=

p
RT

While, the total pressure and temperature are given by:
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Moreover the velocity components are defined by: - 

 u V M a• •= = ◊cos cosa a  (10-A)

 u a a• •= = ◊V M asin sin  (10-B)

Noting that, α is the angle of attack. The properties of 
air are evaluated at an altitude of, H = 1500 m, using the 
atmosphere relations14 as:

T H• = -288 16 0 0065. .

and, 
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Providing that T∞= 278.4 K, and the pressure,  
p∞= 84,643.0 Pa. At Mach number equals 1.5, the free 
stream velocity becomes 501.6 m/s.

3.  Three Dimensional Mesh 
Generation

In this work, the algebraic grid generation method is used 
to produce the computational mesh. This method gener-
ates grid points in space by means of interpolations based 
on given boundary data. Because of the non-uniform 
shape of seamless missile, a ‘body-fitted coordinate system’ 
is used. This grid generation method enables transforma-
tion of governing equations from a Cartesian system (x, y, z)  
to a general curvilinear system (ξ, η, ζ) and each vector is 
transformed from the physical space domain to the com-
putational domain15. 

3.1 Computational Domain
3-D domain is chosen over the supersonic seamless mis-
sile, which has diameter of 306 mm, and geometries 
shown in Figure 1. 

The domain is discretized to (21 × 32 × 21) elements 
in x, y, and z directions respectively. The computational 
domain is solved within boundaries of im = 21, jm = 16 
and km = 21, where: 

im = maximum number of grid nodes in x-direction.
jm = maximum number of grid nodes in y-direction.
km= maximum number of grid nodes in z-direction.

 
Missile nose 

900 mm 
8000 

mmmm 8500 

mmmm 

θ = 350 

θ = 170 

9
6

6
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Figure 1. Geometries of the seamless missile.
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3.2 Axis Transformation
The transformation of any partial differential term from 
physical domain, described in x, y, and z coordinate sys-
tem, to computational domain characterized by ξ, η, and 
ζ could be defined as following:

 x x= ( , , )x y z  (11-a)

 h h= ( , , )x y z  (11-b)

 z z= ( , , )x y z  (11-c)

The transformation procedure is very lengthy and 
complex. For more details, it is recommended to refer to16. 
By defining the Jacobian transformation, which represents 
the ratio of the volume of any element in the physical 
domain to its volume in the computational domain, as:

J
x y z z y x y z z y x y z z y

=
-ÈÎ ˘̊ - -ÈÎ ˘̊ + -ÈÎ ˘̊

1

x h z h z h x z x z z x h x h

 (12)

Then, matrices of space transformation are represent-
ing the ratio of arc length in the computational space to 
that of the physical space, and defined as follows:
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and 
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The resulted 3 dimensional discretized domain is 
shown in Figure 2. Half of the flow field is considered for 
simulation by utilizing the symmetry up and down the 
missile.  

4. Numerical Scheme 
A finite difference with axis transformation technique is 
adopted to solve the present problem, numerically. Explicit 

time-dependent solution of the 3-D Euler equations has 
been performed using MacCormack’s predictor-corrector 
finite difference technique, which is a second-order accu-
rate in both space and time. This method is very effective 
finite difference technique for viscous and inviscid super-
sonic flows, especially for unsteady flow shock capturing16. 
The terms xζ, xη, yζ, … etc., are computed numerically 
using forward approximations; for a example:

 y
y y y yi j k i j k i j k

h h h
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The time step employed is designed so that it shouldn’t 
exceed the maximum step size permitted with maintain-
ing the stability of iteration solution. In this study, the 
inviscid Courant Fridrich Lewys (CFL) stability condi-
tion is adopted, which is given by 17:
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Changing of primitive variables to fluxes is per-
formed to compute the values of flux vectors for all grid 
points at time step (n).A forward predictor version of 
MacCormack’s which is given by 16:

Figure 2. Algebraic grid generation over a 3-D supersonic 
seamless missile with mesh points (21 × 16 × 21) in x, y and 
z Cartesian coordinates considering half of the symmetrical 
domain.
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It is used inside the domain up to nodes just before the 
last boundaries. The flow parameters, such as u, v, w, M, T, 
e, ρ and p are computed at the plane (k = 1). Then they are 
computed in the domain except at the surface. The super-
script, n, in equation (16) is the time level (t), and n + 1 is 
the time level (t + dt ). In order to stabilize and improve 
the accuracy of the procedure, an artificial viscosity term 
is imposed to the predictor step. For that, a fourth-order 
artificial viscosity term,
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is added as follows:
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This in fact, an explicit artificial dissipation which is 
important since the flow field is at high Reynolds number, 
and compressible nature. The main advantage of artificial 
dissipation is to provide some mathematical dissipation 
analogous to the real viscous effects within the shock 
wave region. At this step, the contravariant velocity com-
ponents are defined and computed by:
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The contravarient velocities (U, V and W) represent 
velocity components which are perpendicular to planes 
of constant ξ, η, and ζ. Then, a corrector step is computed, 
where the values of fluxes E, F, and G are computed at 
each grid point in the intermediate level (n + 1) depend-
ing on the values of primitive variables from previous step. 

Moreover, a backward corrector version of MacCormack’s 
method which is given by 16 is then calculated and applied 
as: 
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This corrector formula is used inside the domain and, 
also a fourth-order artificial viscosity term at corrector 
step is added to Equation (19). This expression is given 
by18:  
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Once the corrector step is completed, the code re-
computed the parameters (u, v, w, T, e and M).After that, 
the following convergence criterion19 is utilized at every 
point in the flow field from one time step to the next: 

 error old=
-

£ * -r r
r

new

old
1 10 8  (21)

5. Results and Discussion 
In order to verify the results of the present work, a familiar 
case is selected for checking the efficiency of the present 
code. For comparison, the current program which is used 
to capture the shock wave and aerodynamic flow field 
parameters around a seamless missile is used to capture 
the shock wave and Mach number contours (as a selected 
case) for a double wedge with a wedge angle = 15 degree 
and a free stream Mach number equals to 2.5. The pro-
gram of the present study is capable to capture the shock 
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wave and the flow field simulation as demonstrated in 
Figure 3. 

A computer code is established to conduct the itera-
tive solution procedure of the set of governing equations 
presented in the mathematical model and explained in 
the numerical solution scheme. The explicit technique has 
required about (4000) time steps to achieve the converged 
solution (steady state solution).In the present work, the 
artificial viscosity is taken as (0.5).

The results demonstrate that the numerical scheme 
which is used in the present study successful to capture 
the shock wave, which can be noticed clearly ahead of the 
nose of the seamless missile in Figure 4. The shock wave 
is observed at a head of missile’ nose where the  incoming 

flow is supersonic, and the flow nature behind the shock 
wave near the leading missile’ nose area becomes sub-
sonic flow. The Mach number at the outer domain of the 
flow field represents the free stream value which in this 
case equals to 1.5. This figure exhibits also, that in order 
to capture the flow field around a missile precisely; a more 
grid points are required near the body surface. The cap-
tured shock wave is created due to pressure differences 
in the flow field regions. From this figure, the flow pat-
tern near the leading edge of supersonic seamless missile, 
where the incoming supersonic flow undergoing a sud-
den change in flow direction, is resulting in a continuous 
compression wave. The angle of the shock wave depends 
on the nose shape and free stream Mach number. The 

 

Figure 3. Mach number contours over a double wedge used for comparison with wedge angle = 15 degree at free stream Mach 
number = 2.5.mesh 63 × 53.

Figure 4. The Mach number contours along the missile and in z – y plane at the end of the seamless missile for free stream 
Mach number = 1.5.
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shock is observed to be detached from missile nose angle 
and flow behind the shock near the trailing edge of mis-
sile area becomes subsonic. Also, it is very important to 
refer that the clustering process is very necessary near the 
leading edge of supersonic missile in order to capture all 
the expected shock waves. This prediction gives a good 
agreement with the experimental results dealing with 
the same problem as indicated in 20. It is very useful to 
note that the predicted shock wave by the numerical solu-
tion of the present work decelerates the flow speed from 
supersonic speed up stream of the shock wave to subsonic 
flow downstream of the shock wave.

In Figure 5, a temperature contours for supersonic 
seamless missile for free stream Mach number =1.5 is 
explained. This figure indicates that the temperature dis-
tribution occurs at the region between the missile surface 
and the shock wave. Also, the temperature increases at 
the leading edge of the missile due to shock wave strength 
and is decreased gradually toward its free stream value. 
The rise in the value of temperature distribution at the 
stagnation point is due to flow nature change from super-
sonic a head of the shock wave to subsonic downstream 
of the shock wave. This change will reduce the kinetic 
energy and at the same time, this reduction gives an 
increase in internal energy and as a result increases the 
temperature. It is very important to indicate that this high 
temperature affects on the surface and the structure of 
the missiles and can cause the melting of the edges and 
corners of the missile, when the temperature exceeds the 
melting temperature point of the seamless missile body 

material. The higher temperature can be noticed at the 
edge of  three-dimensional supersonic seamless missile, 
due to shock wave effect.

Figure 6 show a pressure contours over the seamless 
missile. The pressure values increase a head of shock wave 
and then decrease toward its free stream value away from 
the shock wave. This is agreeing with 21 and 22 also, the 
pressure values are increased dramatically near the lead-
ing edge of supersonic seamless missile due to shock wave 
effects. A high pressure is detected near the nose of the 
missile. This is again due to strong shock wave which is 
predicted at the leading edge of the missile. The reason 
of this high value of the pressure can be go back due to 
large amount of friction only, since the current numerical 
scheme neglects the effect of hydrodynamic and thermal 
boundary layer which can be predicted by considering 
viscous flow around the missile rather than the inviscid 
flow which is simulated in the present work.

Figure 7 shows a density contours over a three-
 dimensional supersonic seamless missile for free stream 
Mach number =1.5. From this figure, the density values 
increase due to increase of the pressure and this is due to 
increase in shock wave strength. The high pressure val-
ues cause an increase in density values due to the same 
reason explained above and this behavior can be noticed 
in Figure 7. Normally, the increase in pressure causes a 
corresponding increase in density due to direct pro-
portionality between them through the state equation. 
Moreover, it is found in both Figure 6 and 7 that the pres-
sure and density values after the shock wave are greater 

Figure 5. The temperature distribution along the missile, and in z-y plane at the end of the seamless missile for free stream 
Mach number = 1.5.
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than the corresponding values before the shock wave. 
This means that the shock wave decelerates the flow speed 
from supersonic to subsonic speed.

6. Conclusion
An in house computer code to simulate and predict the flow 
field surrounding seamless missile has been  implemented 
and validated. Finite difference CFD methods are adopted 
to solve the governing equations of supersonic, inviscid, 

compressible, and three- dimensional flow over the mis-
sile body with no canard. The following conclusions can 
be drawn from the results of the present work:

The shock wave is observed to be detached from the 
seamless missile nose angle and flow behind the shock 
near the trailing edge becomes subsonic. The captured 
shock wave causes a high friction near a nose of the seam-
less missile. This high friction creates a high temperature, 
pressure, density and internal energy. The temperature 
gradient is high at the leading edge of the seamless mis-

Figure 6. The pressure distribution along the missile, and at z-y plane at the end of the seamless missile for free stream Mach 
number = 1.5.

Figure 7. The density distribution along the missile, and at z-y plane at the end of the seamless missile for free stream Mach 
number = 1.5.
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sile due to shock wave strength and is decreased gradually 
toward its free stream value. A high temperature field may 
be noticed near the missile nose and wings regions. The 
hydrodynamic properties of the flow field around a seam-
less missile such as pressure, temperature and density are 
increased due to shock wave effect. Also, they vary from 
higher values near the head of the missile to their free 
stream values near the outer boundary of the domain. 
The pressure and density values after the shock wave are 
greater than the corresponding values before the shock 
wave. This indicates that the shock wave decelerates the 
flow speed from supersonic to subsonic speed.

A more mesh points are required near the surface of 
the supersonic seamless missile. Moreover, the clustering 
process is found to be very significant adjacent the lead-
ing edge of supersonic missile in order to capture all the 
expected shock waves.

As continuation to the analysis of the flow surround-
ing the seamless missiles, it is recommended to run the 
code at different Mach numbers to investigate its effect 
on the flow field structure. Also, it is worth to compare 
between the cases of seamless and canard missiles. This 
will improve the understanding of the canards effect on 
the flow field surrounding the missiles. 

7. Acknowledgement
The authors acknowledge Universiti Teknologi 
PETRONAS for the technical and financial support to 
publish the research results. 

8. References
1.  Jameson A. Computational Aerodynamics for Aircraft 

Design. Science Journal. 1989; 245:361–71.
2.  Weatherill NP, Forsey CR. Grid Generation and Flow 

Calculations for Aircraft Geometries. J Aircraft. 1985; 
22:855–60.

3.  Jameson A. Iterative Solution of Sonic Flows Over Airfoils 
and Wings, Including Flows at Mach 1.0. Comm Pure Appl 
Math. 1994; 27:283–309.

4.  Chen A, Dehua J. Shock-Capturing and Related 
Numerical Methods in Computational Fluid Dynamics. 
Communications of Mathematics and Physics. 1996; 
101–10.

5.  Persson, M, Rizzi A, Pettersson K. Aerodynamics of 
Hypervelocity Missiles. Department of Aeronautics, KTH: 
1998. 5 p. Report 98–40

6.  Cebeci T. Three-Dimensional Boundary Layers on Missiles. 
NASA Technical Report. 2000. 55 p. 

7.  DeSpirito J, Vaughn ME, Washington W. CFD Investigation 
of Canard-Controlled Missile with Planar and Grid Fins 
in Supersonic Flow. AIAA Atmospheric Flight Mechanics 
Conference and Exhibit; 2002; California, U.S.A.

8.  Morgenstern JA. Three-Dimensional Supersonic Flow Over 
a Spike – Nosed Body of Revolution. J Braz Soc Mech Sci. 
2002 Nov; 24(4):271–7.

9.  Wardlaw A, Solomon J, Baltakis F. Euler Space Marching 
Methods Applied to Missiles. NASA Technical Report. 
2000. 53 p. 

10.  Goonko YP, Kudryavtsev AN, Rakhimov RD. Supersonic 
Inviscid Flows with Three-Dimensional Interaction of 
Shock Waves in Corners Formed by Intersection Wedges. 
European Congress on Computational Methods in Applied 
Science and Engineering. 2002; 79–85.

11.  Pittman JL, Miller DS, Siclari MJ. Supersonic Full-Potential 
Method Applied to Missile Bodies. NASA Technical Report. 
NASA Langley Research Center: 2002. 36 p.

12.  Scalabrin LC, Azevedo JL, Teixeira PR, Awruch AM. Three-
Dimensional Flow Simulations with the Finite Element 
Technique Over a Multi-Stage Rocket. J Braz Soc Mech Sci 
Eng. 2004; 26(2):107–16.

13.  Wu P, Yong-Gang M, Chun C. The Research Analysis of 
Aerodynamic Numerical Simulation of Grid Fin. Journal of 
Zhejiang University Science. 2005; 6A(7):741–6.

14.  Bertin JJ, Smith ML. Aerodynamics for Engineers. 3rd ed. 
London: Prentice Hall International Editions; 1998.

15.  Fox M. Supersonic Aerodynamic Characteristic of an 
Advanced F-16 Derivative Aircraft Configuration. NASA; 
1993. 22 p. Technical Paper 93–3355

16.  Hoffmann AK. Computational Fluid Dynamics for 
Engineering. University of Texas; 1989.

17.  AL-Dulaimy FM. Numerical Prediction of Supersonic 
Inviscid and Viscous Flow over Arbitrary Configurations 
[PhD thesis]. Baghdad: University of Technology; 2002.

18.  Anderson JD. Computational Fluid Dynamics: The Basic 
with Applications. U.S.A.: McGraw-Hill Book Company; 1995.

19.  Wylie CR. Advanced Engineering Mathematics. Inter national 
Student ed. U.S.A.: MacGraw -Hill Book Company; 1966.

20.  Marsden O, Bogey C, Bailly C. Higher-Order Curvilinear 
Simulations of Flows around Non-Cartesian Bodies. AIAA 
paper 2004-2813. 2004:1–15.

21.  Orensen N. 3-D Background Aerodynamics Using CFD. 
Roskilde, Denmark: Riso National Laboratory Publications; 
2002.

22.  Dietz W, Wang L, Wenren Y, Caradonna F, Steinhoff J. The 
Development of a CFD-Based Model of Dynamic Stall. 60th 
Annual Forum; 2004; Baltimore U.S.A. AHS; 2004. p. 1–17.


