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Abstract: In this paper, fuzzy L-open sets due to Abd El-Monsef et al. [4] are used to introduce a new 

separation axiom and new type of function in fuzzy topological ideals spaces . Some the basic properties of fuzzy 

L-irresolute functions, as well as the connections between them, are investigated. Possible application to 

superstrings and 
 space–time are touched upon. 

 

I. Introduction. 
The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh[11]. Subsequently, 

Chang [6] defined the notion of fuzzy topology. Since then various aspects of general topology were 

investigated and carried out in fuzzy sense by several authors of this field. The  local properties of a fuzzy 

topological space, which may also be in cretin cases the properties of the whole space, are important field for 

study in fuzzy topology by introducing  the notion of fuzzy ideal and fuzzy local function [7,10 ]. In 2001, Abd 

El-Monsef et al. [4] defined  and studied the notion of fuzzy L-open set in fuzzy topological space. In the 

present paper, we introduce and characterize the notion of fuzzy L-Hausdorff spaces which is a generlization of 

some fuzzy concepts by using a fuzzy L-open sets , we also define the class of fuzzy irresolute functions via 
fuzzy topological ideals and investigate its relation to fuzzy L-Hausdorff spaces and some topological consepts.  

 

II. Terminologies. 

Throughout this paper, by (X,) we mean a fts in the sense of Chang's [ 6 ]. A fuzzy point in X with 

support Xx and value  ( 0 <   1) is denoted by x  .A fuzzy point x is said to be contained in a fuzzy set 

 in X iff   ( x ) and this will denoted by x   [8]. For a fuzzy set  in X, )(cl  , c  and )int(  will 

respectively denote closure , complement  and interior of  .The constant fuzzy sets taking values 0 and 1 on X 

are denoted by 0x ,1x , respectively. A fuzzy set  is said to be quasi- coincident with a fuzzy set , denoted by  

q  , if there exists x  X such that (x)+(x)>1[8]. Obviously, for any two fuzzy set  and , q will simply 

 q . A fuzzy set  in a fts (X,) is called a q-nbd of a fuzzy point x iff there exists a fuzzy open set  such that 

xq   [6,8]. We will denote the set of all q-nbd of x in (X, ) by N (x). A fts (X , ) is said to be a fuzzy 

extremely disconnected [1] (F.E.D in short) if the closure of every fuzzy open set in X is fuzzy open set. A 

fuzzy set  for a fts (X, ) is called fuzzy. -open [1] (resp, -open [1], preopen [ 6 ] ) iff     int(cl(int( ))) 

(resp.   cl(int(cl())),   int(cl()) ). A non-empty collection of fuzzy sets L of a set X is called a fuzzy 

ideal [ 7,9] iff (i)   L and     L (heredity), (ii) L and L     L (finite additivity) Fuzzy 

closure operator of fuzzy set  (in short cl*()) is define cl*()=  *, and *(L) be the fuzzy topology 

generated by cl* i.e. *(L)={: cl*() c = c} [10] .The fuzzy local function [10] * (L,) of a fuzzy set  is the 

union of all fuzzy points x such that if   N(x) and   L then there is at least one r  X for which (r)+ (r) 

- 1 >  (r).The fuzzy ideal of fuzzy nowhere dense sets is  X
X

n O(cl(μ:ΙμL  ))int .[ 2,3 ]. 

Definitioin2.1.Given   (X, ) be a fts with fuzzy ideal L on X , 
XI   and   is called  

i. Fuzzy *-dense in itself if 
*   [ 2 ]. 

ii. Fuzzy scattered if contains no  non empty  fuzzy dense –in –itself [4] . 

iii. Fuzzy L-open iff   int((*)) [ 4]. 

iv. Fuzzy L-closed set if its complement is fuzzy L-open set [ 4]. 

We will denote the family of all fuzzy L-open (resp.L-closed)by FLO(X)(resp.FLC(X)). 
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Definitioin2.2. [ 2 ]. A fts (X, ) is said to be fuzzy resolvble space if there is a fuzzy dense subset  
XI for 

wich 
c  is also fuzzy dense equivalently , it can be expressed as   the disjoint union of two fuzzy dense 

subsets.  

Lemma 2.1.[2]. A fts (X, ) is said to be fuzzy  maximally  irrresolvble space if it is  fuzzy dense  in –itself and 

has the property that every fuzzy dense subset of (X, )  is fuzzy open. 
   Recall that fuzzy topological spaces having the property that their fuzzy dense subsets are fuzzy open are 

called fuzzy submaximal . 

Definitioin2.3 . A fts (X, ) is said to be fuzzy  Hausdorff if for every two different fuzzy points qp,  of X, 

there exist disjoint fuzzy  open sets   and   of X such that . and    qp  

Definitioin2.3 [4 ].A function ),(),(:  YXf   with a fuzzy ideal L on X is said to be fuzzy L-

continuous if for every  , ).()(1 XFLOf    

Definition 2.2 [ 4].For a fts  (X, ) with fuzzy ideal  L on X ,  said to be compatible with L , denoted by 

,~ L if for every fuzzy set   of X , and for all fuzzy point   x   , there exists a q-nbd     of  x   

such that    rrr   1)(     hold for every   Xr   and for some L    ; then L . 

 

III. Fuzzy L-Hausdorff Space 

Definition 3.1.  A fts   ,X   with fuzzy ideals L  is called fuzzy L-Hausdorff space if for every pair of fuzzy 

singletons qp,  in X  with different supports , there exists )(, XFLO  with ,p  q  and 

XO  . 

Then we say that the points q  and  p  are fuzzy separated .  

    

The following theorem gives an equivalent definition for a fuzzy 

 L-Hausdorff Space . 

 

Theorem 3.1.A fts  ,X with fuzzy ideals L  be L-Hausdorff  iff  if for each  pair of fuzzy singletons qp,  in 

X  with different supports , there exists )(XFLOp    such that  c

pp qclp  )(  . 

 

Proof  Let  ,X with fuzzy ideals L  is fuzzy  L-Hausdorff space and fuzzy singletons qp,  with different 

supports in X  . Then there exists a fuzzy L-open set   such that   qp ,  and a fuzzy L-open set    

such that XO  .Then  cc

pp qclp   )( .Conversely ,let qp,   be two fuzzy singletons 

fuzzy qp,  in X  with different supports in X  and )(XFLO such that 

 c

pp qclp  )( .Then    
c

clq )(  which is fuzzy open, X

c Ocl  ))((  . 

Therefore  ,X with fuzzy ideal L is fuzzy L-Hausdorff. 

 

 Theorem 3.2. Every fuzzy  L-Hausdorff space is fuzzy  Hausdorff . 

Proof . Let  ,X be a fts with fuzzy ideal L is a fuzzy L-Hausdorff space. For every fuzzy L-open subset   

we have )(     cl .It is clear that   cl
 , since Lox  ; hence )(  clcl and thus 

 ,X is fuzzy  Hausdorff . 

The following example shows that the reverse of Theorem 3.2 is not generally true . 

Example 3.1. Let     1,,1, yxX  ,  be the fuzzy discrete topology on X  and  XIL  .Thus X  is 

fuzzy Hausdorff and consequently fuzzy  Hausdorff , but not fuzzy L-Hausdorff , Since XOXFLO )(  . 

Theorem 3.3. For a fts  ,X  with fuzzy ideal L we have 

i. If  ,X  is a fuzzy Hausdorff and every fuzzy open subspace is fuzzy *-dense in itself , then  ,X  

with L is a fuzzy L-Hausdorff.  
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ii. If  ,X  is fuzzy Hausdorff and L is  boundary , then   ,X with fuzzy ideal L is a fuzzy L- 

Hausdorff. 

Proof  

i. Obvious, since for every fuzzy open set 
XI we have )(*intint   cl .For 

note that 
   since  is fuzzy *-dense- in-itself . 

ii. Clear from the definition and the fact that 
   Note that if L  , J  are two fuzzy ideal on X and 

JL  , then )()( LJ     and the following result holds  

Theorem 3.4.If if L  , J  are two fuzzy ideal on X and JL  , then ),,,(),,( LXFJOJXFLO   so 

that  ,X  with fuzzy ideal L is fuzzy J Hausdorff.  

Proof .Obvious 

Theorem 3.5  . Let  ,X be a fts with fuzzy ideal L is a fuzzy L-Hausdorff space and 
XI .Then  

i. If   is fuzzy open, then   is fuzzy L- Hausdorff space . 

ii. If   is fuzzy is  -open, then   is fuzzy  -Hausdorff. 

Proof . 

i. Follows directly from Lemma2.1 [3 ]  and the fact that for a fts  ,X  with fuzzy ideal L, if 

  and   be a subspace of  ,X  then    
  . 

ii. Since every L-open set is fuzzy  -open and the intersection of a fuzzy  -open and fuzzy  -open 

set is fuzzy   -open in fuzzy   -open set, the theorem is clear . 

Thereom3.6.Let  with fuzzy ideal be fts with the following property if    are two fuzzy singletons with different 

supports, then there exist such fuzzy Hausdorff space Y and fuzzy L-contiuaus function that .Then is fuzzy 

 L-Hausdorff . 

Proof . Obvious  

 

IV. Fuzzy L- irresolute functions 

Definition 4.1. A function     ,,: YXf   with fuzzy ideal L on X is called fuzzy L- irresolute if 

  )(1 XFLOf    )(. XFLCresp for every )(YFLO  )(. YFLCresp . 

Theorem 4.1 .  if a function     ,,: YXf   with fuzzy ideal L on X is fuzzy L- irresolute then for any 

fuzzy L-open set  Y  we have      .11    clffcl  

Proof Since  )()int(   cl  this implies      .11    clffcl  and since f  is fuzzy L- 

irresolute the theorem is proved . 

Theorem 4.2.  For a function     ,,: YXf   with fuzzy ideal L  and J on X and Y  respectively .The 

following  the following are equivalent  

i. f  fuzzy L- irresolute ; 

ii. the inverse image of each fuzzy L-closed in   ,Y  with fuzzy ideal  J is fuzzy L-closed in  ,X  with 

fuzzy ideal L; 

iii. containing )( pf  such that .)(  f  

Proof . The proof is obvious and thus omitted . 

 

Theorem 4.3. Let  f  be a one –to-one  fuzzy L- irresolute map from fts  ,X  with fuzzy ideal L into a fts 

 ,Y  with fuzzy ideal J . If   ,Y  is  fuzzy L- Hausdorff , then   ,X  with fuzzy ideal L is fuzzy L- 

Hausdorff . 

Proof Let qp,  be a pair of fuzzy singletons in X with different supports .Then )()( qfpf   and moreover 

)( and )( qfpf are fuzzy L-separated in  ,Y  by fuzzy L-open sets   and  , respectively . the disjoint 

fuzzy sets )( and )( 11   ff are fuzzy L-open ,since f  is fuzzy L- irresolute  and contain qp,  , 

respectively. Then , we have that  ,X  is fuzzy L- Hausdorff  
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Theorem 4.4. Let      ,,: YXf   and     ,,: Yg  be two functions ,where KndJL   a  ,  

are fuzzy ideals on   and ,  ,  respectively .Then fg   is fuzzy L-irresolute , if both  g and  f are 

fuzzy L-irresolute. 
Proof . obvious. 

  

Theorem 4.5 .  Let     ,,: YXf    where JL, are  fuzzy ideals on X and Y respectively. Then 

i. If  f  is fuzzy L-irresolute and each open subspace of Y is fuzzy *-dense-in itself , then  f  is fuzzy L-

continuous . 

ii. If  f  is fuzzy L-continuous  and  ,Y is fuzzy sub- maximal E.D, then f is fuzzy L- irresolute . 

iii. If  ,XOJL   each fuzzy irresolute and  - irresolute is equivalent . 

iv. If  ,XIJL   fuzzy L- irresoluteness and fuzzy   -irresoluteness coincide .  

Proof .  
i. Clear, since each fuzzy open and fuzzy *-dense in-it-self is fuzzy L-open and consequently fuzzy L-open 

(see  [ 4 ] ). 

ii. Clear, since each fuzzy L- open  set  is fuzzy  -open and thus fuzzy open from Lemma 2.1 [  4 ]  . 

iii. , iv  Follow from Lemma 2.1. [ 4 ] . 

Theorem 4.6. if      ,,: YXf    with fuzzy ideal L is an injective fuzzy L-irresolute map then 

 ,Y  is fuzzy L-Hausdorff space and then  ,X  is fuzzy L- Hausdorff space. 

Proof  Let 11,  be any two distinct fuzzy singletons in X ,  thus we have 

 ),(q and  )( 2
1

21
1

1
  fqf  where 21  and qq   are distinct fuzzy singletons in 

 ,Y .Since  ,Y  is fuzzy L-Hausdorff , then there exist )(, YFLO  such that 

  21 ,qq  and   ,  thus )()(),()( 1
2

11
1

1    fqffqf  

and )()( 11    fXf which means that XO  this implies  ,X  is fuzzy  L- 

Hausdorff space . 
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Abstract: This paper presents a non parametric measure of association between k populations, and a method 

of testing for its significance. Analysis of variance technique is employed to developa test statistic for the 
measure of the association. An illustrative example is provided and the method compares equally well with the 

Friedman’s two way analysis of variance by rank. 

 

I. Introduction: 
When assumptions of normality and homogeneity for the use of parametric two way analysis of 

variance for data analysis are not satisfied, use of a non-parametric equivalence becomes preferable. One of the 

methods often used is the Friedman‟s Two Way Analysis by ranks (Gibbons, 1971, Scheaffer and McClave, 

1982, Gerald and Warrack, 2003, Zar, 1999, Legendre, 2005,and Sheskin, 1997).  

In this paper, we propose to develop a measure of association between populations appropriate for 
analysis of variance by ranks and to develop an alternative test statistic for the proposed measure. 

 

II. The Proposed Measure 
As in Friedman‟s Test, suppose a random sample of k assessors, judges, observers or teachers are each 

to observe or assess and rank each of c candidates, patients, conditions , or situations. As in Friedman‟s test 

these data if treated as a two-way analysis of variance would correspond to a mixed effects model without 

replication (Oyeka, 2009). This means that the data are presented in the form of a kxc table with say, the column 
corresponding to one factor with c  treatments or respondents which are considered fixed and the row 

corresponding to a seccond factor with k blocks, levels or observers which are random and there are only one 

observation per cell.  The data are therefore arranged in a table with c  columns and k rows, just as for the 

corresponding two way analysis of variance with one observation  per cell. As in the analogous analysis of 

variance, the null hypothesis to be tested is that the k judges or assessors are in agreement or do not differ in 

their assessment of the c conditions or treatments versus the alternative hypothesis that the assessors do not in 

fact differ. Interest here is also in finding a common measure of association, agreement or concordance between 

the „k” assessors in their assessment of the “c‟ conditions or respondents. 

To answer these questions using a non-parametric approach, we first rank the observation in each row 

(observer) from smallest to the largest       or from the largest to the smallest. That is within each row (observer), 

the rank of 1 is assigned to the smallest or largest value. The rank of 2 is assigned to the next smallest (largest) 

value, and so on until the rank of “c” is assigned to the largest (smallest) value. 

Now let 𝑟𝑖𝑗  be the rank assigned by the 𝑖𝑡𝑕 observer or assessor to the j𝑡𝑕 condition, subject, or object, 

for 𝑖 = 1, 2, … , 𝑘, 𝑗 = 1, 2,… , 𝑐.   Then the 𝑖𝑡𝑕 𝑟𝑜𝑤 𝑖𝑠 𝑎 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 of the number 1, 2, …, c, and the j𝑡𝑕 

column represents the ranks assigned to the j𝑡𝑕  subject by the observers. The ranks in each column are then 

indicative of the agreement between observers since if the j𝑡𝑕 object has the magnitude relative to all other 

objects in the opinion of each of the “k” observers, all ranks in the j𝑡𝑕  column will be the same. Thus if the null 

hypothesis is true, we would expect the occurrence of the ranks 1, 2,  …, c to be equally likely in each column 
(object) across all rows (observers). This implies that we  would expect the column sums of ranks to be the same 

under the null hypothesis. If the observed sums of column ranks are so discrepant that they are not likely to be 

as a result of equal probabilities, then this constitutes an evidence against randomness and against the null 

hypothesis. If however, all the k observers agree perfectly in their ranking of each of the c objects, then the 

respective column totals 𝑅1 , 𝑅2 , , … , 𝑅𝑐 , will be some permutation of the numbers 1𝑘, 2𝑘, … , 𝑐𝑘. 

Now since the average column total is 𝑘  
𝑐+1

2
 ,  for perfect agreement between the k observers in their ranking 

of the “c” objects, the sum of squares of deviations of column totals from the average column total,𝑆𝑚𝑎𝑥
2   will 

have maximum value and a constant given as: 

𝑆𝑚𝑎𝑥
2 =   𝑗𝑘 − 𝑘

 𝑐 + 1 

2
 

2

=  𝑘2   𝑗 −
 𝑐 + 1 

2
 

2𝑐

𝑗=1

𝑐

𝑗=1
 

That is 𝑆𝑚𝑎𝑥
2 =  𝑘2𝑐

 𝑐2−1 

12
     ………………………………….  1 

However in general, the actual sum of squared  deviations of observed column totals from the average total, 
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𝑆𝑜𝑏
2 =   𝑅𝑗 − 𝑘

 𝑐 + 1 

2
 

2𝑐

𝑗=1
 

That is 𝑆𝑜𝑏
2 =   𝑅𝑗

2𝑐
𝑗=1 − 𝑘2𝑐

 𝑐+1 2

4
 … ………………………… 2 

Note that since 𝑆𝑚𝑎𝑥
2  𝑎𝑛𝑑 𝑆𝑜𝑏

2  are both sums of squares, they are non negative. However since k and c are both 

positive integers, 𝑆𝑚𝑎𝑥
2 > 0,  𝑐 > 1  𝑏𝑢𝑡 𝑆𝑜𝑏

2  ≥ 0 and is equal to 0 if the ranking of the “c” objects by the k 

observers are completely at random such that 𝑅𝑗 =  
𝑘 𝑐+1 ,

2
, for all 𝑗 = 1, 2,… , 𝑐. If the observers are in 

agreement in their ranking of the “c” objects, then 𝑆𝑜𝑏
2 =  𝑆𝑚𝑎𝑥

2  hence a good measure W, of agreement between 
observers in  their ranking of the objects is the ratio of these two sums of squares. That is  

𝑊 =  
𝑆𝑜𝑏

2

𝑆𝑚𝑎𝑥
2   ……………………………………   3 

This is similar to Kendall coefficient of concordance (Gibbon,1971), and hence to Friedman‟s two- way analysis 

of variance without replication by ranks. Kendall‟s coefficient of concordance .and Friedman‟s two – way 

analysis of variance are so closely related that they address hypothesis concerning the same data table and use 

the same 𝜒2  statistic for testing (Legendry,2005). W ranges between 0 and 1 with  1 designating perfect 

concordance and 0 indicating no agreement or independence of populations. Usually 0 < 𝑊 < 1, 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙. 
 

Test Statistic for W 

We now proceed to develop a test statistic for W, using analysis of variance technique. The total sum of squared 

deviations of assigned ranks 𝑟𝑖𝑗  from the mean rank, 𝑟 =  
𝑐+1

2
, 𝑖𝑠  

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =  𝑆𝑡
2 =     𝑟𝑖𝑗 − 𝑟  

2
𝑐

𝑗=1

𝑘

𝑖=1

 

 =     𝑟𝑖𝑗 −
 𝑐+1 

2
 

2
𝑐
𝑗=1

𝑘
𝑖=1  

 =   𝑟𝑖𝑗
2 −

𝑘𝑐  𝑐+1 2

4

𝑐
𝑗=1

𝑘
𝑖=1  

 =  
𝑘𝑐 𝑐+1  2𝑐+1 

6
− 

𝑘𝑐 𝑐+1 2

4
 

That is  

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =  𝑆𝑡
2 =  

𝑘𝑐 𝑐2−1 

12
  …………………………….  4 

Note from equations 1and 4 that  

𝑆𝑚𝑎𝑥
2 =  𝑘𝑆𝑡

2   ……………………………………………….  5 

The  total sum of squares 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =  𝑆𝑡
2  𝑐𝑎𝑛  be partitioned into three sums of squares that can be shown to be 

independent  (Hogg and Craig, 1971). 

Thus 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =  𝑆𝑡
2 =     𝑟𝑖𝑗 − 𝑟  

2𝑐
𝑗=1

𝑘
𝑖=1  

  =      𝑟𝑖𝑗 − 𝑟 𝑖. − 𝑟 .𝑗 + 𝑟  +   𝑟 𝑖. − 𝑟  +  𝑟 .𝑗 − 𝑟   
2𝑐

𝑗=1
𝑘
𝑖=1  

  =     𝑟𝑖𝑗 − 𝑟 𝑖 . − 𝑟 .𝑗 + 𝑟  
2

+ 𝑐  𝑟 𝑖. − 𝑟  2 + 𝑘  𝑟 .𝑗 − 𝑟  
2𝑐

𝑗=1
𝑘
𝑖=1

𝑐
𝑗=1

𝑘
𝑖=1  

Now    𝑟𝑖𝑗 − 𝑟 𝑖. − 𝑟 .𝑗 + 𝑟  
2

 𝑖𝑠 𝑡𝑕𝑒 𝑒𝑟𝑟𝑜𝑟 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑐
𝑗=1

𝑘
𝑖=1  , 𝑆𝑆𝐸 =  𝑆𝑆𝑒  

𝑐   𝑟 𝑖. − 𝑟  2𝑘
𝑖=1 = 𝑐𝑘  

 𝑐+1 

2
−

 𝑐+1 

2
 

2

= 0is sum of the squared deviations due  to row or observers. 

Finally,  𝑘  𝑟 .𝑗 − 𝑟  
2𝑐

𝑗=1 = 𝑘   
𝑅𝑗

2

𝑅2
𝑐
𝑗=1 −

𝑐 𝑐+1 2

4
 =  

  𝑅.𝑗
2−

𝑘2𝑐 𝑐+1 2

4
𝑐
𝑗=1  

𝑘
 is the sum of squared deviations due to 

column (object),𝑆𝑆𝑐 = 𝑆𝑐
2 

That is  

𝑆𝑆𝑐 = 𝑆𝑐
2 =   𝑅.𝑗

2 − 
𝑘2𝑐 𝑐+1 2

4

𝑘

𝑐
𝑗=1    …………………………     6 

In other words, 𝑆𝑐
2 =  

𝑆𝑜𝑏
2

𝑘
                 ………………………...     7 

Therefore, 𝑆𝑡
2 =  

𝑆𝑜𝑏
2

𝑘
+ 𝑆𝑒

2          

   8          

Now for sufficiently large  values of k and c, it is known that the observer or row sum of squares 𝑆𝑆𝑅 which is 

zero has a chi-square distribution with k-1 degrees of freedom, the object or column sum of squares, 𝑆𝑆𝑐 =  
𝑆𝑜𝑏

2

𝑘
 

has a chi-square distribution with c-1 degrees of freedom and the sum of squares error,  𝑆𝑆𝐸 =  𝑆𝑆𝑒  has a chi-

square distribution with  𝑘 − 1  𝑐 − 1  degrees of freedom (Hogg and Craig, 1971). Hence under 𝐻0: 
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𝐹 =  
𝑆𝑆𝑐 

 𝑐−1  

𝑆𝑆𝑒 
 𝑘−1  𝑐−1  

=  
 𝑘−1 

𝑆𝑜𝑏
2

𝑘
 

𝑆𝑒
2   _ _ _       

   9 

Has an F- distribution with   𝑐 − 1 and  𝑘 − 1  𝑐 − 1  𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 or from equation 8, we have 

that: 

𝐹 =  
 𝑘−1 

𝑆𝑜𝑏
2

𝑘
 

𝑆𝑡
2−

𝑆𝑜𝑏
2

𝑘

   _ _ _         

  10 

has an F-distribution with  𝑐 − 1 and  𝑘 − 1  𝑐 − 1  𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚. 
Using equation 5 in 10, we have that 

𝐹 =  
 𝑘−1 𝑆𝑜𝑏

2

𝑘𝑆𝑡
2−𝑆𝑜𝑏

2 =
 𝑘−1 𝑆𝑜𝑏

2

𝑆𝑚𝑎𝑥
2 −𝑆𝑜𝑏

2            _ _ _      

   11 

Dividing through equation 11 by  𝑆𝑚𝑎𝑥
2  𝑎𝑛𝑑  noting from equation 3 that  

𝑊 =  
𝑆𝑜𝑏

2

𝑆𝑚𝑎𝑥
2 we have the test statistic 

𝐹 =  
 𝑘−1 𝑊

1−𝑊
      _ _ _     

    12 

Which has an F- distribution with  𝑐 − 1 and  𝑘 − 1  𝑐 − 1 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚 which can be used to test 

our 𝐻0 about W. 𝐻0  𝑖𝑠 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝛼 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑖𝑓  
𝐹 ≥  𝐹1− 𝛼,  𝑐 − 1 ,  𝑘 − 1  𝑐 − 1   _ _ _      

    13 

Accept otherwise. 

  

ILLUSTRATIVE EXAMPLE 

The percent reduction in heart beat of a random sample of 15 bats of ertain species after the administration of 

three different dose levels of a certain drug is presented in Table 1. 

 

Table 1. Bats and Dose levels of the Drug 

Bat No.   

A B C Total 

1 2 3 1 6 

2 2 1 3 6 

3 1 2 3 6 

4 1 2 3 6 

5 2 1 3 6 

6 2 3 1 6 

7 3 1.5 1.5 6 

8 1 3 2 6 

9 3 2 1 6 

10 1 2.5 2.5 6 

11 3 1.5 1.5 6 

12 3 1 2 6 

13 1 2.5 2.5 6 

14 3 1 2 6 

15 1.5 1.5 3 6 

Total 29.5 28.5 32 90 

,  

Source: Exercises at the end chapter 14 Question 14.12 (Oyeka, 2009). Interest is in testing at 0.01 level of 

significance, the null hypothesis of no  difference in responses between the three dose levels A, B, C. Or 

symbolically the null hypothesis of interest is stated thus: 

𝐻0: The locations of all k populations are the same 

𝐻1:  At least two populations differ 

Then we obtained from computations as follows: 

from Equation 4 

𝑆𝑡
2 =  

15 3  8 

12
= 30 
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FromEquation 1, 𝑆𝑚𝑎𝑥
2 =  

152 3  8 

12
= 45.0 

From equation 2, 𝑆𝑜𝑏
2 =   29.5 2 +  28.5 2 +  32 2 −

152𝑥3𝑥42

4
= 6.5 

From equation 3, W 𝑊 =  
6.5

45.0
= 0.014 

From Equation 7, 𝑆𝑐
2 =  

6.5

15
= 0.433 

𝑆𝑒
2 = 30-0.433 = 29.567 

And from Equation 12, we have 

𝐹 =  
14 0.014 

1 − 0.014
= 0.199    𝑝𝑣𝑎𝑙𝑢𝑒 = 0.8207  

But 𝐹0.99,2,28 = 5.45 

Since 𝐹 =  0.199 < 5.45 =  𝐹0.99,2,28 ,  we accept  𝐻0 and conclude that there is no significance difference in 

responses of the bats to three dose levels of the drug. 

 

Friedman’s Two- Way Analysis of Variance by Rank Method 

Table 2: Bats, Dose Levels of Drugs and their Ranks 
Bat No Dose Levels Ranks 

A B C Rank (A) Rank (B) Rank © Total 

1 5 6 3 2 3 1 6 

2 6 4 8 2 1 3 6 

3 2 3 8 1 2 3 6 

4 2 5 7 1 2 3 6 

5 3 2 4 2 1 3 6 

6 4 5 3 2 3 1 6 

7 12 7 7 3 1.5 1.5 6 

8 6 12 7 1 3 2 6 

9 7 5 3 3 2 1 6 

10 3 4 4 1 2.5 2.5 6 

11 4 3 3 3 1.5 1.5 6 

12 8 6 7 3 1 2 6 

13 2 7 7 1 2.5 2.5 6 

14 13 7 8 3 1 2 6 

15 5 5 10 1.5 1.5 3 6 

Total    29.5 28.5 32 90 

 

To test the null hypothesis that the locations of all k populations are the same against the alternative that at least 

two populations‟ locations differ, Friedman‟s F- ratio (Fr) test statistic is  

𝐹𝑟 =  
12

𝑘𝑐 𝑐+1 
 𝑅.𝑗

2𝑐
𝑗=1 − 3𝑘 𝑐 + 1    _ _ _    14 

and rejection is given by  

𝐹𝑟 =  
12

15 3  4 
 29.52 + 28.52 + 32 − 3 15  4  

     = 0.433 (𝑝 𝑉𝑎𝑙𝑢𝑒 = 0.8057 

and𝜒0.99,2
2 = 9.21 

Since 𝐹𝑟 = 0.433 < 9.21 =  𝜒0.99,2
2 , we accept 𝐻0and conclude that the responses of the bats to the three dose 

levels of the drug do not differ. 

 

III. Conclusion 
Both the proposed method and Friedman‟s two way analysis of variance by rank method not only 

accepted 𝐻0 at 1% significant levels, but also their p-values were almost the same (0.8207, and 0.8057 

respectively). Thus one can conclude that the proposed test statistic is as good as the Friedman‟s test statistic in 

this case. 
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Abstract: This paper developed a Ties adjusted non parametric statistical method for the analysis of ordered 

repeated measures that are related in time, space or condition that takes account of all possible pairwise 

combinations of treatment levels.  A test statistic is developed to determine whether subjects are increasingly 

performing better or worse over time or space. The proposed method also enables the researcher to have a 

bird’s eye view of the proportions of subject who are successively improving, experiencing no change or 
worsening overtime, space or condition to guide the introduction of any desired interventionist measures. The 

method is illustrated with some data and shown to be more powerful than Friedman test and shown to  beeasier 

to use than the Bartholomew procedure.  

 

I. Introduction: 
If one has repeated measures randomly drawn from a number of related populations that are dependent 

on some demographic factors or conditions or that are ordered in time or space which do not satisfy the 

necessary assumptions for the use of parametric tests, then use of nonparametric methods is indicated and 

preferable. These types of data include subjects’ or candidate’s scores in examinations or job placement 

interviews at various points in time; diagnostic test results repeated a certain number of times; commodity prizes 

at various times, locations or markets; etc.  

Statistical analysis of these types of data often  require  the use of non parametric methods such as 
Friedman’s two way analysis of variance test by ranks or the Cochran’s Q test(Gibbons 1971,Gibbons 1993, 

Oyeka et al, 2010; Siegel, 1956; Hollander and Wolfe, 1999, Freidlin and Gastwirth 2000).  

However, a problem with these two methods is that the Friedman’s test often tries to adjust for ties that 

occur in blocks or batches of sample observations by assigning these tied observations their mean ranks a 

procedure that tends to reduce the power of the test, while the Cochran’s Q test requires the observations to be 

dichotomous assuming only two possible values. Furthermore, if the null hypothesis to be tested is that subjects 

are increasingly performing better or worse with time or space, then these two statistical procedures may not be 

readily applicable. 

In this case the methods developed by Bartholomew and others (Bartholomew 1959a, 1959b) may then 

be used.  However, some of these methods are rather difficult to apply in practice and the resolution of any ties 

that may occur within blocks of observations is not often easy.  
In this paper, we propose aties adjusted non parametric statistical method for the analysis of ordered 

repeated measures that are related in time, space or condition, that takes account of all possible pairwise 

combinations of treatment levels. 

 

II. The Proposed Method 
Suppose  𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑛   is the 𝑖𝑡ℎ  batch, set of or match observations randomly drawn from related 

populations, 𝑋1,, 𝑋2 , … , 𝑋𝑘  for 𝑖 = 1, 2 ,… , 𝑛  where ‘k’ may be indexed in time or space. 

Populations 𝑋1,, 𝑋2 , … , 𝑋𝑘  may be measurements on as low as the ordinal scale and need not be continuous. 

The problem of research interest here is to determine whether subjects are on the average progressively 

increasing, experiencing no change or worsening in their scores or performance over time, space or remission of 

condition. It is quite possible that within any specified time interval say some subject scores at some time in the 

intervalinstead of as expected being monotone, other increasing or decreasing , may be higher than their scores 

earlier in the interval which are themselves higher than their scores later in the interval. 
Let  

𝑑𝑖𝑗 =  𝑐          ………………………….. 1 

For 𝑖 = 1, 2 ,… , 𝑛;  𝑗 = 1, 2 ,… , 𝑘 − 1 

Let  

𝑢𝑖𝑗 =  

1, 𝑖𝑓 𝑑𝑖𝑗 > 0

0, 𝑖𝑓 𝑑𝑖𝑗 =  0

−1 𝑖𝑓 𝑑𝑖𝑗 < 0 
     …………………………………… 2 

For 𝑖 = 1, 2 ,… , 𝑛;  𝑗 = 1, 2 ,… , 𝑘 − 1 
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Note that equations 1 and 2 can be combined into one equation as  

𝑢𝑖𝑗 =  

1, 𝑖𝑓 𝑥𝑖𝑗 > 𝑥𝑖𝑗 +1

0, 𝑖𝑓 𝑥𝑖𝑗 = 𝑥𝑖𝑗+1

−1  𝑖𝑓 𝑥𝑖𝑗 < 𝑥𝑖𝑗+1

      ………………………….. 2b 

For 𝑖 = 1, 2 ,… , 𝑛;  𝑗 = 1, 2 ,… , 𝑘 − 1 which is easier to use when the data being analysed are ordinal scale data 

that are non- numeric measurements such as letter grades. 

Define 𝜋𝑗
+ = 𝑃 𝑢𝑖𝑗 = 1 ; 𝜋𝑗

0 = 𝑃 𝑢𝑖𝑗 = 0 ; 𝜋𝑗
− = 𝑃 𝑢𝑖𝑗 = −1     …………………………… 3 

Where  

𝜋𝑗
+ +  𝜋𝑗

0 + 𝜋𝑗
− = 1     ……………………………… 4 

For 𝑗 = 1, 2 , … , 𝑘 − 1 

Note that equation2, 4 have structurally and intrinsically provided for the possibility of tied observations 
between successive pairs of the sampled populations. The model specifications allow ties to occur between these 

pairs of sampled populations with probability 𝜋𝑗
0 , 𝑗 = 1, 2,… , 𝑘 − 1 

Let 

𝑊𝑗 =  𝑢𝑖𝑗
𝑛
𝑖=1       …………………………….. 5 

Also let 

𝑊 =   𝑤𝑗
𝑘−1
𝑖=1 =   𝑛

𝑖=1
𝑘−1
𝑗=1          ……………………….6 

Now  

𝐸 𝑢𝑖𝑗  = 𝜋𝑗
+ − 𝜋𝑗

−; 𝑉𝑎𝑟 𝑢𝑖𝑗  =  𝜋𝑗
+ +  𝜋𝑗

− −  𝜋𝑗
+ − 𝜋𝑗

− 
2
    ……………………. 7 

Note that 𝜋𝑗
+, 𝜋𝑗

−𝑎𝑛𝑑  𝜋𝑗
− are respectively the probabilities that observations from greater than, equal to, less 

than observations from population Xj+1 for 𝑗 = 1, 2,… , 𝑘 − 1 . The sample estimates of these probabilities 

are𝜋 𝑗
+ =  

𝑓𝑗
+

𝑛
; 𝜋 𝑗

0 =  
𝑓𝑗

0

𝑛
; 𝜋 𝑗

− =  
𝑓𝑗
−

𝑛
   …………………………… 8 

Where 𝑓𝑗
+, 𝑓𝑗

0𝑎𝑛𝑑 𝑓𝑗
− are respectively the number of the 1𝑠, 0𝑠 𝑎𝑛𝑑 − 1𝑠 in the frequency distribution of these 

numbers in 𝑢𝑖𝑗  for  𝑖 = 1, 2 ,… , 𝑛, 𝑗 = 1, 2 ,… , 𝑘 − 1 

From equation 5 we have that the expected value of 𝑊𝑗  𝑖𝑠  

𝐸 𝑤𝑗  =  𝐸 𝑢𝑖𝑗  
𝑛
𝑖=1 = 𝑛 𝜋𝑗

+ − 𝜋𝑗
−     …………………….. 9 

And  

𝑉𝑎𝑟 𝑤𝑗  =  𝑉𝑎𝑟 𝑢𝑖𝑗  
𝑛
𝑖=1 = 𝑛  𝜋𝑗

+ − 𝜋𝑗
− −  𝜋𝑗

+ − 𝜋𝑗
− 

2
     ……………………….. 10 

Note from equations 9 and 10 that both 𝑤𝑗  and its variance are independent of 𝜋𝑗
0 and hence are not affected by 

any possible ties between successive pairs of sampled populations.  

Also, note that 𝜋𝑗
+ − 𝜋𝑗

−  is a measure of the difference between the probabilities that observations from 

population Xj  are on the average greater than observations from population Xj+1  and the probability that 

observations from population Xj  are on the average less than observations from population Xj+1 and is estimated 

by 

𝜋 𝑗
+ − 𝜋 𝑗

− =  
𝑊𝑗

𝑛
=  

𝑓𝑗
+−𝑓𝑗

−

𝑛
                           ………………………………… 11 

Where   

𝑊𝑗 =  𝑓𝑗
+ − 𝑓𝑗

−                                 …………………………………………….12 

Using equation  11  𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  10 ,  we obtain the sample estimate of the variance of 𝑊𝑗  as 

𝑉𝑎𝑟 𝑊𝑗  = 𝑛 𝜋 𝑗
+ − 𝜋 𝑗

− −
𝑊𝑗

2

𝑛
     ………………………………… 13 

The null hypothesis that is usually of interest in time or space ordered related populations or several   ordered 

related populations have medians 𝑀𝑗  that are successively atmost  𝑜𝑟 𝑎𝑡𝑙𝑒𝑎𝑠𝑡  equal to each other. That is, the 

null hypothesis that is usually of interest is that either  𝑀𝑗 ≤ 𝑀𝑗+1or 𝑀𝑗 ≥ 𝑀𝑗+1,for𝑗 = 1, 2,… , 𝑘 − 1. Hence the 

null hypothesis of interest here is  

𝐻0: 𝜋𝑗
+ ≤ 𝜋𝑗

−say versus 𝐻1: 𝜋𝑗
+ > 𝜋𝑗

−   …………………… 14 

Under this null hypothesis, the test statistic  

𝜒𝑗
2 =  

 𝑊𝑗−𝑛 𝜋𝑗
+− 𝜋𝑗

−  
2

𝑉𝑎𝑟  𝑊𝑗  
=

 𝑊𝑗−𝑛 𝜋𝑗
+− 𝜋𝑗

−  
2

𝑛 𝜋𝑗
++𝜋𝑗

− −
𝑊𝑗

2

𝑛

   ………………………… 15 , 

For 𝑗 = 1, 2,… , 𝑘 − 1 has approximately the chi- square distribution with 1 degree of freedom for sufficiently 

large n and maybe used to test the null hypothesis of equation 14 where   𝜋𝑗
+ − 𝜋𝑗

− is the hypothesized 

difference between  𝜋𝑗
+𝑎𝑛𝑑  𝜋𝑗

−, 𝑗 = 1, 2,… , 𝑘 − 1. 𝐻0 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 at𝛼 level of significance if  
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𝑐 ≥ 𝜒1−𝛼,1
2       …………………………… 16 

Otherwise, 𝐻0is accepted. 

However to avoid committing a type 11 Error too frequently, it is recommended that the calculated chi-square 

values of equation 5 be compared with the tabulated chi- square  value with k-1 degrees of freedom instead of 1 

degree of freedom.  

Note that like 𝑊𝑗  and its variance, the test statistic 𝜒𝑗
2  of Equation 15 isnot affected by the presence   of any 

possible ties between populations 𝜒𝑗
2𝑎𝑛𝑑 𝜒𝑗+1

2 , 𝑗 = 1, 2,… , 𝑘 − 1 

Of more general interest here however is that ‘k’ related populations that are ordered in time or space have 

medians that are atmost(at least) successively equal to one another. In other words, the null hypothesis that may 

be of interest would be that if 𝑀1 ,𝑀2 ,…𝑀𝑘  𝑎𝑟𝑒 the medians of ‘k’ time or space ordered populations, then the 

expectation would be that 𝑀1 is at most equal to 𝑀2 which is in turn at most equal to 𝑀3 and so on until 𝑀𝑘−1 is 

at most equal to 𝑀𝑘 say.  

The sample estimate of   𝜋𝑗
+ − 𝜋𝑗

− 𝑘−1
𝑗=1  is from equation 17 

 𝜋 𝑗
+ − 𝜋 𝑗

− =  
 𝑓𝑗

+ − 𝑓𝑗
− 

𝑛
=  

 𝑊𝑗
𝑘−1
𝑗=1

𝑛

𝑘−1

𝑗=1
=

𝑊

𝑛
 

Note that like 𝑊𝑗  and its variance which have been adjusted for the possibility of tied observations, W and its 

variance have also been similarly ties adjusted and are hence not affected by any ties between 𝑋𝑗  𝑎𝑛𝑑 𝑋𝑗+1 for 

all 𝑗 = 1, 2,… , 𝑘 − 1 sampled populations. 

Now if pairs of the k populations that are successively ordered in time or space have at most equal medians than 

the difference between  𝜋𝑗
+ 𝑎𝑛𝑑 𝜋𝑗

− would be expected to be equal to some constant 𝜃0 say which includes zero 

for all 𝑗 = 1, 2,… , 𝑘 − 1 , where 𝜋+, 𝜋0  𝑎𝑛𝑑 𝜋−  are respectively the common values of 

𝜋𝑗
+, 𝜋𝑗

0  𝑎𝑛𝑑 𝜋𝑗
− 𝑢𝑛𝑑𝑒𝑟 𝐻0 for 𝑗 = 1, 2, … , 𝑘 − 1 𝑎𝑛𝑑 are estimated as  

𝜋 + =   
𝜋𝑗

+

𝑘−1
= 𝑘−1

𝑗=1  
𝑓𝑗

+

𝑛 𝑘−1 
;  𝜋 0 = 𝑘−1

𝑗=1  
𝜋𝑗

0

𝑘−1
=   

𝑓𝑗
0

𝑛 𝑘−1 
;  𝜋 − =   

𝜋𝑗
−

𝑘−1
=  

𝑓𝑗
−

𝑛 𝑘−1 
; 𝑘−1

𝑗=1
𝑘−1
𝑗=1

𝑘−1
𝑗=1

𝑘−1
𝑗=1  ..21 

Under the null hypothesis 𝐻𝑜, Equation 18 becomes  𝑘 − 1  𝜋 + − 𝜋 − =  
𝑊

𝑛
 , 𝑠𝑜 𝑡ℎ𝑎𝑡 

𝑊 = 𝑛 𝑘 − 1  𝜋 + − 𝜋 −     …………………….22 

The sample estimate of the variance of W under 𝐻𝑜 is then from Eqn 19 

𝑉𝑎𝑟 𝑊 =  𝑛 𝑘 − 1  𝜋 + + 𝜋 − −  𝜋 + − 𝜋 − 2    ………………..23 
If the null hypothesis of Eqn 20 is true, then the test statistic 

𝜒2 =  
 𝑊−𝑛𝜃0 

2

𝑉𝑎𝑟  𝑊 
=  

 𝑊−𝑛𝜃0 
2

𝑛 𝑘−1  𝜋 ++𝜋 −− 𝜋 +−𝜋 − 2 
     ………………24 

has approximately a Chi-Square distribution with k-1 degrees of freedom for sufficiently large n and may be 

used to test the null hypothesis 𝐻𝑜 of Eqn 20.  The null hypothesis is rejected at the 𝛼 level of significance if  

𝜒2  ≥  𝜒1−𝛼,   𝑘−1
2    ……………………..25 

 

Otherwise 𝐻𝑜  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑. 
 Like the test statistic of Eqn 15, the test statistic of Eqn 24 is also unaffected by the presence of any 

possible ties between success ie pairs of sampled populations. The null hypothesis of Rqn20  is usually tested 

first. Its rejection would indicate the existence of some difference between  the k population medians. In this 

case one would then proceed to test the null hypothesis of Eqn 14 to determine which paired populations have 

different medians that may have led to the rejection of the more general null hypothesis of Eqn 20.  

 

III. Illustrative Example 
 Shown below are data on the letter grades earned by a random sample of 18 undergraduate students of 

a certain academic program during each of the five years of their studies in a university. 

Student’s Nos Year1 Year2 Year3 Year4 Year 5 

1 𝐶+ E 𝐴+ B 𝐴− 

2 𝐶+ C 𝐶+ 𝐴+ A 

3 𝐵+ 𝐴− 𝐵+ 𝑩+ 𝐵− 

4 F C B 𝐶− 𝐵− 

5 𝐴− 𝐶− F F E 

6 B 𝐵+ 𝐵− E E 

7 𝐵− F 𝐴+ 𝐴+ 𝐵+ 

8 E 𝐵+ 𝐴− 𝐵− 𝐶− 

9 C 𝐵+ B B F 

10 𝐶− 𝐶− E 𝐵− 𝐶+ 

11 C 𝐶− F 𝐶− 𝐴− 
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12 𝐴+ 𝐵+ E 𝐶+ C 

13 F 𝐶− 𝐴+ F 𝐵+ 

14 𝐵+ E 𝐵− 𝐵+ C 

15 C 𝐶− B B 𝐶− 

16 B A 𝐴− 𝐵+ 𝐶+ 

17 B 𝐴+ E A A 

18 A 𝐴+ A A E 

 

To illustrate use of the proposed method, we apply Equation 2b to the above data to obtain values of  𝑢𝑖𝑗 , results 

of which are presented in table 1 for  𝑖 = 1, 2,… , 18; 𝑗 = 1, 2,3, 4  
 

Table 1:  Tabulation of 𝑢𝑖𝑗  (Equation 2b) for the illustrative data 

Student’s S/No 𝑢𝑖1 𝑢𝑖2 𝑢𝑖3 𝑢𝑖4  

1 1 -1 1 -1  

2 1 -1 -1 -1  

3 -1 1 0 1  

4 -1 -1 1 -1  

5 1 1 0 -1  

6 -1 1 1 0  

7 1 -1 0 1  

8 -1 -1 1 1  

9 -1 1 0 1  

10 0 1 -1 1  

11 1 1 -1 -1  

12 1 1 -1 1  

13 -1 -1 1 -1  

14 1 -1 -1 1  

15 1 -1 0 1  

16 -1 1 1 1  

17 -1 1 -1 0  

18 -1 1 0 1  

𝑓𝑗
+ 8 10 6 10 34 =  𝑓+  

𝑓𝑗
0 1 0 6 2 9(=𝑓0) 

𝑓𝑗
− 9 8 6 6 29(=𝑓−) 

n 18 18 18 18 72(=n(k-1)) 

𝜋 𝑗
+ 0.444 0.556 0.333 0.556 0.472(=𝜋 +) 

𝜋 𝑗
0 0.056 0.000 0.333 0.111 0.125(=𝜋 0) 

𝜋 𝑗
− 0.500 0.444 0.333 0.333 0.389(=𝜋 −) 

𝑊𝑗  -1 2 2 4 7(=W) 

 

The values of 𝑓𝑗 ,
+ , 𝑓𝑗 ,

0 , 𝑓𝑗 ,
−,   𝜋 𝑗

+, 𝜋 𝑗
0., 𝜋 𝑗

− and 𝑊𝑗  for j = 1, 2, 3, 4 are  

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 as discussed above and shown in Table 1. From Equation 12, we have that W = 34-29 =5. From 

equation 23, we estimate the variance of ‘W’ as   

𝑉𝑎𝑟 𝑊 =   18  4  0.472 + 0.403 −  0.472 − 0.404 2  
=  72  0.870 = 62.64 

Hence to test the null hypothesis of equation 20, we have from Equation 24, with W=5, 𝜃0 = 0 , Var 𝑊 =
62.640 that  

𝜒2 =  
52

62.640
= 0.399, which with 5 − 1 = 4 degrees of freedom  is not statistically significantlyat  

α = 0.05.  Hence we may conclude that students performance do not seem to be increasing (or 

decreasing) with time during their five years of study. 
It would be instructive to compare the results obtained with the proposed methods with the results that would 

have been obtained if the Cochran’s Q test had been used to analyse the above data. To  do this, we first 

compare the grades of each student during every two successive years assigning the score 1 if the students grade 

in the past year is greater than the students grade in the immediately succeeding year and 0 otherwise for  the 

five year period.   
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Application of Cochran test to the Data on letter grades of 18 students  
Table 2: Relative order of the grades in Table 1  for use with Cochran Q Test 

S/NO 𝑑𝑖1 𝑑𝑖2 𝑑𝑖3 𝑑𝑖4 Total  

𝐵𝑖. 

1 1 0 1 0 2 

2 1 0 0 1 2 

3 0 1 0 1 2 

4 0 0 1 0 1 

5 1 1 0 0 2 

6 0 1 1 0 2 

7 1 0 0 1 2 

8 0 0 1 1 2 

9 0 1 0 1 2 

10 0 1 0 0 1 

11 1 1 0 0 2 

12 1 1 0 1 3 

13 0 0 1 0 1 

14 1 0 0 1 2 

15 1 0 0 1 2 

16 0 1 1 1 3 

17 0 1 0 0 1 

18 0 1 0 1 2 

Total 

𝑇.𝑗  

8 10 6 10 34 

 

In Table 2 𝑑𝑖𝑗  assume the value 1 if the grade earned by the 𝑖𝑡ℎ   student in year ‘j’ is higher than that in year 

𝑗 + 1 and assumes the value 0 otherwise for 𝑖 = 1, 2,… , 18 ;  𝑗 = 1, 2, 3, 4. 

 Now using the marginal sums 𝑇.𝑗  and 𝐵𝑖. Shown in table 2 in the Cochran’s Q test statistic, we have 

 

𝑄 =  
 3  82 + 102 + 62 + 102 −  34 2 4 

34 − 61 4 
 

=  
 3  300 − 289.0 

34 − 15.25
=

33

18.75
= 1.76  

which with 4 degrees of freedom is not statistically significant at α = 0.05 thus the Cochran’s Q test like the 

proposed test statistic is unable to reject the null hypothesis of no  successive  improvements ( or decrease) in 

students performance during their five years of study. However, the proposed method unlike the Cochran’s Q 

test would enable the researcher to quickly have a birds eye view of the proportions of subject who are 

successively improving, experiencing no change or worsening overtime, space or condition to guide the 

introduction of interventionist measures. 

 

Application of Bartholomew test to the Data on letter grades of 18 students 

𝑑𝑖𝑗  𝑛.𝑗  n Prop(P) Revised Prop(𝑃′) 

1 8 18 0.44 0.56 

2 10 18 0.56 0.56 

3 6 18 0.33 0.56 

4 10 18 0.56 0.56 

Total    0.56 

 

𝜒 2 =  
1

𝑝 𝑞 
 𝑛𝑖𝑗

𝑛

𝑗=1
 𝑃𝑗

′ − 𝑃  
2
 

𝜒 2 =  
1

 0.56  0.44 
 18 0.56 − 0.56 2 + 18 0.56 − 0.56 2 +  18 0.56 − 0.56 2 +  18 0.56 − 0.56 2 

 = 0.000001 

Since all sample sizes are equal, m = 4, and hypothesized ordering not actually obtained in the population, the 

averaging process necessary before the calculation of 𝜒 2 reduces its magnitude to insignificance at α= 0.005 
level of significance.   Although the proposed method and the Bartholomew approach when applied to the 

present data both lead to the acceptance of the null hypothesis, nevertheless the relative sizes of the calculated 
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Chi- square values show that the Bartholomew test statistic is more likely to lead to an acceptance of a false null 

hypothesis( type 1 error) more frequently and hence is  likely to be less powerful than the proposed test statistic.  

Thus from the result of the analysis obtained, the proposed method is probably more efficient than the 

Bartholomew and Cochran’s Q test methods. 

 

IV. Summary And Conclusion: 
 This paper developed a Ties adjusted non parametric statistical method for the analysis of ordered 

repeated measures that are related in time, space or condition that takes account of all possible pairwise 

combinations of treatment levels.  A test statistic is developed to determine whether subjects are increasingly 

performing better or worse over time or space.  The proposed method unlike the Cochran’s Q test and the 

Bartholomew’s method would enable the researcher to quickly have a bird’s eye view of the proportions of 

subject who are successively improving, experiencing no change or worsening overtime, space or condition to 

guide the introduction of interventionist measures. 

  The method is illustrated with some data and shown to be more powerful than Friedman test and shown 

to be easier to use than the Bartholomew procedure.  
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Abstract: This paper aims to forecast   the inflation rate in Nigeria using Jenkins approach.  The data used for 

this paper was yearly data collected for a period of 1961-2010.  Differencing method were used to obtain 

stationary process. The empirical study reveals that the most adequate model for the inflation rate is ARIMA 
(1,1,1).  The model developed was used to forecast the year 2011 inflation rate as 16.27%.  Based on this result, 

we recommend effective fiscal policies aimed at monitoring Nigeria’s inflationary trend to avoid  the 

consequences in the economy.   

 Key words: ARIMA models, Box-Jenkins, Differencing method, forecasting, Inflation rate.  

 

I. Introduction 
In economics the inflation rate is a  measure of inflation, or the rate of increase of a price index such as 

consumer price index.  It is the percentage rate of change in price level over time [1].  The maintenance of price 

stability is one of the macroeconomic challenges facing the Nigeria government in our economic history [2].  In 

an inflationary economy, it is difficult for the national currency to act as medium of exchange and a store of 

value without having an adverse effect on the income distribution [ 3 ].  Inflation is characterized by a fall in the 

value of the country’s currency and rise in her exchange rate with other nation’s currencies. This is quite 

obvious in the case of the value of naira(#), which was #1 to $1 (US dollar) in 1980’s, average of #100 to $1 in 

year 2000 , #128 to $1 in 2003 and over #155 to $1 in 2011 [4].  This decline in the value of the Naira coincides 

with the period of inflationary growth in Nigeria. Increased exchange rate directly affects the prices of imported 

commodities and an increase in the price of imported goods and services contributes directly to inflation [ 2 ]. 

There are three approaches to measure inflation.  They are the Gross National Product(GNP) , the consumer 

price index(CPI) and the wholesome or producer price index (WPI and PPI).  The period to period changes in 
these two latter approaches (CPI and WPI) are regarded as direct measure of inflation. 

  Forecasting inflation can be done using time series analysis, relevant literature was scarce. Literature 

on modeling and forecasting tourism demand in various type of empirical analysis [5]. Some of the researchers 

apply cross-sectional data, but most of forecasting tourism demand used pure time-series modeling, which was 

specified based on the famous standard Box-Jenkins method. Many researchers has applied this methodology 

see for example [6], [ 5],  [7], [4] etc. 

Studies which focus on forecasting inflation rate in Nigeria have appeared in various research 

publications.[4] examined whether monetary aggregates have useful information for forecasting inflation in the 

case of Nigeria other than that provided by inflation itself using a sample data spanning from 1990 to 1998.  The 

study adopted two approaches, mean absolute percentage Errors (MAPE’s) and autoregressive model.  The 

study revealed that the treasury bill rate, domestic debt and M2 (broad money) provide the most important 

information about price movements. 
 [8 ] take a much more simple approach to determining future inflation.  In their paper, they 

acknowledge inflation to be a relatively persistent process, which implies that future inflation rates are greatly 

affected by past current rates.  After determining this, they felt it necessary to include any other economic 

variables in their analysis. Their paper compares the accuracy of the predictive model. The first are in a simple 

regression with a sample of 40 quarters. The second is what they refer to as the naive model, which was created 

by Atkesm and Ohanian in 2001.  In it, they simply state that the forecasted inflation for the next year in the four 

quarter growth rate in CPI in the present year. they concluded both models were capable of performing each 

other depending on time period. 

[ 9 ]  article makes the simple prediction that even though gas and food prices are rising, which will 

lead to a higher CPI, inflation stay relatively constant because consumer expectations will remain constant. 

 [10] provides a similar predictive for both Canada and US inflation rates, however with different methodology 
.he says both rates should remain fairly steady despite the continued rise in gas and food prices. 

 [6] use autoregressive integrated moving average(ARIMA) model to predict inflation in Ghana  using 

monthly inflation figures.  In building the ARIMA  model they use Box-Jenkinis  approach, this inflation was 

found to integrated  of order one and follows(6,1,6) order.   
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 Motivated by these research, this paper intends to predict inflation rate in Nigeria through ARIMA 

approach.  Also, the following specific objectives will be pursued: to build an appropriate Autoregressive 

Integrated Moving Average (ARIMA) model for inflation in Nigeria and forecast the inflation rate in Nigeria. 

 

II. Methodology 
The data used for this study consists of annual data on Nigeria- inflation, consumer prices (annual 

percent) for the period of 1961 to 2010 extracted from the official website of World Bank data base.   

In this study we use ARIMA model to forecast one-period ahead of the series by applying Box-Jenkins 

approach.  An ARIMA model is a generalization of an ARMA model.  The model is generally referred to as 

ARIMA (p, d, q) model where p, d and q are integers greater than or equal to zero and refer to the order of the 

autoregressive, integrated and moving average aspects.  

The Box-ARMA model is a combination of the AR(Autoregressive) and MA(Moving Average) models as 

follows: 

)1(...... 2211110 tqtqttptptt uuuuyyy     

The Box-Jenkins methodology [11], [12] is a five-step process for identifying, selecting, and assessing 

conditional mean models (for discrete, univariate time series data).  The steps are listed below: 

1. Establish the stationarity of your time series. If your series is not stationary, successively difference your 

series to attain stationarity. The sample autocorrelation function (ACF) and partial autocorrelation function 
(PACF) of stationary series decay exponentially (or cut off completely after a few lags). 

2. Identify a (stationary) conditional mean model for your data. The sample ACF and PACF functions can 

help with this selection. For an autoregressive (AR) process, the sample ACF decays gradually, but the 

sample PACF cuts off after a few lags. Conversely, for a moving average (MA) process, the sample ACF 

cuts off after a few lags, but the sample PACF decays gradually. If both the ACF and PACF decay 

gradually, consider an ARMA model. 

3. Specify the model, and estimate the model parameters. When fitting non-stationary models in Econometrics 

Toolbox, it is not necessary to manually difference your data and fit a stationary model. Instead, use your 

data on the original scale, and create an arima model object with the desired degree of non-seasonal and 

seasonal differencing. Fitting an ARIMA model directly is advantageous for forecasting: forecasts are 

returned on the original scale (not differenced). 
4. Conduct goodness-of-fit checks to ensure the model describes your data adequately. Residuals should be 

uncorrelated, homoscedastic, and normally distributed with constant mean and variance. If the residuals are 

not normally distributed, you can change your innovation distribution to a Student's t. 

5. After choosing a model and checking its fit and forecasting ability, you can use the model to forecast or 

generate Monte Carlo simulations over a future time horizon.  

 

III. Analysis And Result 
We obtain the CPI data in Nigeria from 1961 to 2010.   The plot of the CPI showed that the time series 

data was non stationary.  But the plot of the differences of the CPI, as shown in fig. 1 showed considerable 
volatility even though the first differences are stationary. In order to determine whether the data was stationary 

we conducted an Augmented Dickey Fuller test (fig. 2) with the null hypothesis that the process contains unit 

roots.  The test returned a p-value of approximately  0.00 and the null was rejected at 5% significance level.  We 

continued our analysis with the assumption of stationarity.  Since the data was confirmed stationary, it was 

observed that it was better to use the first difference of the series, so as to build a good model.  In other words, 

the series was an integration of the first order. The autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) graphs of the first difference confirm the results of the unit root test as 

discussed earlier (fig. 1). 

The next step was to estimate the model, in this regard, a test was carried out on AR(1) and AR(2) as  

 

shown in table 1 with the Akaike Information Criteria (AIC)  of 8.029 and 7.96 respectively. 
Model Coefficient RMSE AIC Mean dependent variable 2R  

AR(1) 
C 
AR(1) 

 
17.2499 
0.6291 

 
 
13.14 

 
 
8.029 

 
 
16.99 

 
 
0.398 

MA(1) 
C 
MA(1) 

 
16.7989 
0.7216 

 
 
12.67 

 
 
7.96 

 
 
16.77 

 
 
0.43 

ARIMA(1,1,1) 
C 
AR(1) 
MA(1) 

 
17.069 
0.3158 
0.5653 

 
 
12.55 

 
 
7.95 

 
 
16.99 

 
 
0.46 
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Table 1:   Regression Results and Diagonistic test for ARIMA models 

 

In carrying out the test for ARIMA process, ARMA (1, 0, 1) was derived and an AIC value of 7.95.  

However, since the series are integrated of order one as per the result of unit root test our model can be stated as 

ARIMA (1, 1, 1).   

The tentative models that were identified for the set of time series data are AR(1), MA(1) and 
ARMA(1,1).  Considering the tentative models (as shown in table 1) revealed that the best model is  ARIMA(1, 

1, 1) since it has the smallest root mean square (RMSE) of 12.55, least Akaike Information Criteria (AIC) of 

7.95and the highest coefficient of  determination of 0.46 which implies that the model is 46% fit.  

Diagnostic checking: one simple diagnostic is to obtain the residuals, say, up to lag 25.  The Box-

Pierce G and Ljung-Box (LB) statistic (Q-statistic) in fig 3 shows that non of the ACF and PACF are 

statistically significant.  In other words, the correlogram of both autocorrelation and partial autocorrelation give 

the impression that the residuals estimated from ARIMA model (1,1,1) are purely random.  Hence, there may 

not be any need to look for another ARIMA model. 

Therefore, the estimator of ARIMA (1,1,1) model is validated, the time series can be described by an 

ARIMA (1,1,1) process.  The inflation rate seasonal adjusted time series and in first-differences (DCPI) is 

described as: 

11 5653.03158.0069.17   tt uyDCPI  

The forecast is done using a statistical  package e (E-view), the residual value for the data was also 
obtained and used to predict the inflation  rate for 2011 to be 16.27% using ARIMA (1,1,1). 

 

Date: 09/13/12   Time: 10:23    

Sample: 1961- 2010      

Included observations: 49     

       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
             . | .    |       . | .    | 1 0.014 0.014 0.0095 0.922 

     ***| .    |      ***| .    | 2 -0.403 -0.404 8.6646 0.013 

      .*| .    |       .*| .    | 3 -0.104 -0.109 9.2527 0.026 

      .*| .    |       **| .    | 4 -0.076 -0.289 9.5716 0.048 

      . | .    |       .*| .    | 5 0.028 -0.096 9.6172 0.087 

      . |*.    |       . | .    | 6 0.186 0.018 11.632 0.071 

      . | .    |       . | .    | 7 0.063 0.017 11.864 0.105 

      .*| .    |       .*| .    | 8 -0.158 -0.098 13.378 0.099 

      .*| .    |       . | .    | 9 -0.081 -0.037 13.788 0.130 

      . | .    |       . | .    | 10 0.053 -0.011 13.966 0.175 

      .*| .    |       .*| .    | 11 -0.080 -0.174 14.385 0.212 

      . | .    |       . | .    | 12 0.020 -0.049 14.413 0.275 

      . |*.    |       .*| .    | 13 0.092 -0.069 14.995 0.308 

      . | .    |       . | .    | 14 0.050 0.056 15.171 0.367 

      .*| .    |       .*| .    | 15 -0.145 -0.181 16.723 0.336 

      .*| .    |       .*| .    | 16 -0.134 -0.156 18.080 0.319 

      . |*.    |       . |*.    | 17 0.179 0.080 20.582 0.246 

      . | .    |       .*| .    | 18 0.062 -0.073 20.894 0.285 

      . | .    |       . | .    | 19 0.019 0.060 20.923 0.341 

      . | .    |       . | .    | 20 0.069 0.053 21.339 0.377 

       
       fig .1 The correlogram of first  difference of inflation rate in Nigeria. 

 

Null Hypothesis: D(CPI) has a unit root  

Exogenous: Constant   
Lag Length: 1 (Automatic - based on SIC, maxlag=10) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -7.181206  0.0000 

Test critical values: 1% level  -3.577723  

 5% level  -2.925169  

 10% level  -2.600658  

     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(CPI,2)   

Method: Least Squares   
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Date: 09/17/12   Time: 09:07   

Sample (adjusted): 1964 2010   

Included observations: 47 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     D(CPI(-1)) -1.385779 0.192973 -7.181206 0.0000 

D(CPI(-1),2) 0.403840 0.137382 2.939536 0.0052 

C 0.392279 2.002205 0.195923 0.8456 

     
     R-squared 0.578147     Mean dependent var 0.215745 

Adjusted R-squared 0.558971     S.D. dependent var 20.66776 

S.E. of regression 13.72546     Akaike info criterion 8.138083 

Sum squared resid 8289.079     Schwarz criterion 8.256178 

Log likelihood -188.2450     Hannan-Quinn criter. 8.182523 

F-statistic 30.15081     Durbin-Watson stat 2.079621 
Prob(F-statistic) 0.000000    

     
     fig. 2 Augmented Dickey fuller test 

 

Date: 09/17/12   Time: 11:06    

Sample: 1962 2010      

Included observations: 49     

Q-statistic 

probabilities adjusted 

for 2 ARMA term(s)       

       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
             . | .    |       . | .    | 1 -0.014 -0.014 0.0098  

      . | .    |       . | .    | 2 -0.001 -0.001 0.0098  

      . | .    |       . | .    | 3 0.052 0.052 0.1550 0.694 

      . | .    |       . | .    | 4 0.009 0.011 0.1599 0.923 

      . | .    |       . | .    | 5 0.058 0.059 0.3517 0.950 

      . |*.    |       . |*.    | 6 0.141 0.141 1.5123 0.824 

      . | .    |       . | .    | 7 0.043 0.048 1.6198 0.899 

      .*| .    |       .*| .    | 8 -0.084 -0.090 2.0540 0.915 

      .*| .    |       .*| .    | 9 -0.093 -0.116 2.5957 0.920 
      . | .    |       . | .    | 10 0.058 0.042 2.8078 0.946 

      .*| .    |       .*| .    | 11 -0.138 -0.151 4.0678 0.907 

      . | .    |       . | .    | 12 0.020 -0.001 4.0946 0.943 

      . | .    |       . | .    | 13 -0.022 -0.027 4.1267 0.966 

      . | .    |       . |*.    | 14 0.019 0.074 4.1524 0.981 

      .*| .    |       .*| .    | 15 -0.097 -0.066 4.8400 0.979 

      .*| .    |       .*| .    | 16 -0.128 -0.131 6.0780 0.964 

      . |*.    |       . |*.    | 17 0.143 0.168 7.6736 0.936 

      . | .    |       . | .    | 18 0.011 0.039 7.6840 0.958 

      . | .    |       . | .    | 19 -0.036 -0.043 7.7939 0.971 

      . |*.    |       . | .    | 20 0.109 0.073 8.8113 0.964 
       
                              fig. 3. Correlogram of residual 
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Fig. 4  graph of annual inflation rate during the period of 1961-2010 

 

 
Fig.5  Forecast Graph 

 

IV. Conclusion 
This study aimed at predicting inflation rate in Nigeria using ARIMA model.  The time series data is 

not stationary at level.  By applying the ADF test for the series of the first order differences we observed that the 

series becomes stationary, so the initial series of the annual inflation rate is integrated by first order. We then 

applied the Box-Jenkins procedure on the stationary data series and we identify the corresponding ARIMA (p, 

q) process. The series correlogram has allowed us to choose appropriate p and q for the data series.  Therefore, 
units root test was conducted and the null of the series integrated of order one was not rejected.  We finally, built 

an ARIMA (1,1,1) model. 

The root mean square error (RMSE) which determine the efficiency of the model was estimated at 

12.55, this indicate that the model built is efficient.  Using an ARIMA (1,1,1) model of annual value series of 

inflation rate for 2011 is estimated to be 16.27%. 
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Abstract:  A nonlinear stability analysis is performed for a triple- diffusive convection in a magnetized 

ferrofluid with magnetic field –dependent viscosity (MFD) for stress- free boundaries. The major mathematical 

emphasis is on how to control the non-linear terms caused by magnetic body force and inertia forces. A suitable 

generalized energy functional is introduced to perform the nonlinear energy stability analysis. It is found that 

nonlinear critical stability magnetic thermal Rayleigh number does not coincide with that of linear instability, 

and thus indicate that the subcritical instabilities are possible. However, it is noted that in case of non-ferrofluid 

global nonlinear stability Rayleigh number is exactly same as that of linear instability. For lower values of 

magnetic parameters, this coincidence is immediately lost. The effects of magnetic parameter 𝑀3 , solute 

gradients 𝑆 1  & 𝑆2and MFD viscosity parameter 𝛿 , on the subcritical instability region have also been analyzed. 

The solutes gradients 𝑆 1 &  𝑆2have stabilizing effect, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒  𝑏𝑜𝑡𝑕  𝑁𝑐𝑒  , 
𝑁𝑐ℓincreases as solute gradients  

increases. It has also been observed that in the presence of MFD viscosity (𝛿),  𝑏𝑜𝑡𝑕  𝑁𝑐𝑒   ,𝑁𝑐ℓ decrease for 

lower values of 𝑀3 and increase for higher values of 𝑀3 .   

Keywords:  nonlinear stability, magnetized ferrofluid, triple- diffusive convection, MFD viscosity , 

magnetization.  

 

I. Introduction 
     Magnetic fluids or ferrofluids are colloidal suspension of fine ferromagnetic mono domain nano 

particles in non-conducting liquids. The ferromagnetic nanoparticles are coated with a surfactant to prevent their 

agglomeration. Rosensweig [1985] in his monograph and review article provides a detailed introduction to this 
subject. Chandrashekher [1981] has given a detailed account of thermal convection problems of Newtonian 

fluids. The theory of convective instability of ferrofluid begins with Finalyson [1970] and is interestingly 

continued by Lalas and Carmi [1971], Shliomis [1974], Stile and Kagan [1990], Venkatasubramanian and 

Kaloni [1994] .In the absence of an applied magnetic field, the particles in the colloidal suspensions are 

randomly oriented and thus the fluid has no net magnetization. When exposed to a magnetic field, Brownian 

rotational motions prevent complete alignment of the dipoles with the applied field. As a result when the applied 

field has a changing direction or magnitude, the magnetization is unable to track the field closely and becomes 

non-equilibrated. This non-equilibrium state of magnetization leads to the state of asymmetric stress. Rayleigh – 

Bénard convection in a ferromagnetic fluid layer with internal angular momentum permeated by uniform, 

vertical magnetic field with free-free, isothermal, spin-vanishing, magnetic boundaries has been considered by 

Abraham [2002]. She observed that the micropolar ferromagnetic fluid layer heated from below is more stable 
as compared with the classical Newtonian ferromagnetic fluid. More recently, Suresh [2012] has studied the 

convection problems in a ferrofluid with internal angular momentum in a porous and non-porous medium. 

   In the standard Bénard problem, the instability is driven by a density difference caused by a 

temperature difference between the upper and lower planes bounding the fluid. If the fluid additionally has salt 

dissolved in it, then there are potentially two destabilizing sources for the density difference, the temperature 

field and salt field. The solution behavior in the double-diffusive convection problem is more interesting than 

that of the single component situation in so much as new instability phenomena may occur which is not present 

in the classical Bénard problem. When temperature and two or more component agencies, or three different 

salts, are present then the physical and mathematical situation becomes increasingly richer. Very interesting 

results in triply diffusive convection have been obtained by Pearlstein et al., [1989]. The results of Pearlstein et 

al., are remarkable. They demonstrate that for triple diffusive convection linear instability can occur in discrete 
sections of the Rayleigh number domain with the fluid being linearly stable in a region in between the linear 

instability ones. This is because for certain parameters the neutral curve has a finite isolated oscillatory 

instability curve lying below the usual unbounded stationary convection one. Straughan and Walker [1987] 

derive the equations for non-Boussinesq convection in a multi- component fluid and investigate the situation 

analogous to that of Pearlstein et al., but allowing for a density non linear in the temperature field. Lopez et al., 

[1990] derive the equivalent problem with fixed boundary conditions and show that the effect of the boundary 

conditions breaks the perfect symmetry. In reality the density of a fluid is never a linear function of temperature, 

and so the work of Straughan and Walker applies to the general situation where the equation of state is one of 
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the density quadratic in temperature. This is important, since they find that departure from the linear Boussinesq 

equation of state changes the perfect symmetry of the heart shaped  neutral curve of Pearlstein et al.,. A 

comprehensive review of the literature concerning convection in porous medium may be found in the book by 

Nield and Bejan [1998]. 

   There are in general two methods in a stability analysis, the linearlized instability method and energy 

method. The linear stability method provides sufficient condition for instability, whereas the energy method 
provides sufficient condition of stability of a basic flow. It is also noticed that the linearized theory alone cannot 

decide whether a particular flow is stable or not, for this it requires it’s response to all physically accepted 

disturbances. The energy methods on other hand guarantee the exponential decay of arbitrary disturbances at all 

times and thus can be fully conservative in determining the stable -unstable bounds. The energy method is one 

of the oldest methods for nonlinear stability and can be traced back to the work of Reynolds (1895) and Orr 

(1907). The revival of energy method has been acknowledged after the work of Serrin (1959) and Joseph (1965, 

1966).  Energy methods of nonlinear stability theory are based on the study of time evolution of energy of the 

perturbation to the basic flow, and leads to variational problem for a critical dimensionless number, below 

which energy decays to zero. The detailed discussion of literature pertinent to the energy method can be found 

in Straughan (2001). By introducing the coupling parameters in the energy method and by selecting them 

optimally, it has been possible to sharpen the stability bound in many physical problems as discussed by 

Straughan (2004). Nonlinear energy stability analysis for thermal convection with temperature –dependent 
viscosity in the fluid has been considered by Hill and Carr (2010).   A problem of thermal convection in a fluid- 

saturated porous layer using a global nonlinear stability analysis with a thermal non-equilibrium model has been 

study by Straughan (2006). He established that the global nonlinear stability boundary obtained using LTNE 

theory is exactly the same as the linear instability theory by Banu and Rees (2002).Recently a nonlinear stability 

analysis of magnetized ferrofluid and the same problem in the porous media have been studied by Sunil and 

Mahajan (2008, 2009).  

   In this paper, I have studied the nonlinear stability analysis of triple- diffusive convection in a 

magnetized ferrofluid with MFD viscosity by using generalized energy method. This problem, to the best of my 

knowledge has not been analyzed yet. It is found that when buoyancy magnetization is absent i.e. in case of non-

ferrofluid, there is a coincidence between the nonlinear and linear stability results. For a convection problem in 

magnetized ferrofluid , the linear critical magnetic thermal Rayleigh number is found higher in values than the 
nonlinear critical magnetic thermal Rayleigh number, which shows the possibility of the existence of subcritical 

instability. Finally, the comparison of the results obtained, respectively, by the linear stability analysis and 

energy method has been discussed in detail.  

 

II. Mathematical formulation of the problem 
                   Here we consider an infinite, horizontal layer of thickness d of an electrically non-conducting          

     incompressible thin –magnetized ferrofluid heated and salted from below having variable viscosity 𝜇1 = 𝜇 

(1+𝛿. 𝐵). The temperature T and solute concentrations C1
 and C2 at the bottom and top surfaces    z= ± 

1

2
d are T0 

and T1 ; C0
1 and C1

1; and C0
2 and C1

2 respectively, and a uniform temperature gradient   𝛽(= |
𝑑𝑇

𝑑𝑍
|) and uniform 

solute gradients  𝑎𝑟𝑒 𝛽´ (= |
𝑑𝐶1    

𝑑𝑍
|)   and 𝛽´´  (= |

𝑑𝐶2

𝑑𝑍
|) are maintained. Both    the boundaries are taken to be 

free and perfect conductors of heat. The gravity field g = (0,0,-g) and uniform vertical magnetic field intensity  

H = (0,0,H0) pervade the system. The mathematical equations to discuss the nonlinear stability analysis in triple 

diffusive convection, for the above model are as follows ( Finlayson[1970]) : The continuity equation is 

 

∇. 𝒒 = 0                                                                                                                                                                (1) 

 

The momentum equation is  
 

𝜌 0  
𝜕

𝜕𝑡
 + ( 𝐪. ∇) q = -∇p + 𝜇1∇

2
q + 𝜌 0 [1- 𝛼 (T- Ta

 
) + α´ ( C

 1
 – Ca

1
 ) + α´´ ( C

 2
 – Ca

2
 )] + 𝜇0 (M.  ∇ ) H                                          (2)    

                                   

The temperature and solute concentration equations are 

 

 
𝜕

𝜕𝑡
 +  ( 𝐪. ∇) T   = K1∇

2T                                                                                                                                    (3)                                                                                                                                                         

 
𝜕

𝜕𝑡
 +  ( 𝐪. ∇)  C1   = K´1∇

2C1                                                                                                                                                                                                     (4)                                              

 
𝜕

𝜕𝑡
 +  ( 𝐪. ∇)  C2   = K1´´ ∇2 C2                                                                                                                             (5)   

                                                                                                                                 

Maxwell ,s equation, simplified for a non-conducting fluid with no displacement currents, become 
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∇ . B   = 0,    ∇ × H  = 0    B = 𝜇0 (H + M).                                                                                                           (6)   

                                        

We assume that the magnetization is aligned with the magnetic field, but allow a dependence on the magnitude 

of the magnetic field, temperature and salinity, so that 
 

M = 
𝑯

𝐻
  M( H,T,C1

 ,C
2).                                                                                                                                        (7) 

 

The magnetic equation of state is linearized about the magnetic field, H0, an average temperature,  

Ta , and average concentrations, Ca
1and Ca

2 to become 

 

M = M0 + 𝜒(H- H0) - K2 (T- Ta) + K3(C
 1 – Ca

1) + K4( C
 2 - C a 

2).                                                                        (8) 

 

where magnetic susceptibility, pyromagnetic coefficient and salinity magnetic coefficients are defined by 

 

 χ ≡ ( 
𝜕𝑀

𝜕𝐻
 ) H0 , Ta 

  ;    K2≡  - ( 
𝜕𝑀

𝜕𝑇
 ) H0 , Ta ;   K3≡  ( 

𝜕𝑀

𝜕 𝐶1   ) H0, ca
1  and  K4 ≡  ( 

𝜕𝑀

𝜕𝐶2 ) H0 , ca 
2 respectively.       (9) 

  

Here H0 is the uniform magnetic field of the fluid layer when placed in an external magnetic field  

 H =H0
ext

 𝑘  , where  𝑘  is a unit vector in the z direction, H =|H|, M = |M| and  M0 = M( H0, Ta, Ca
1 , Ca

2 ) 

 

 The basic state is assumed to be quiescent state and is given by  

 

q = qb = (0,0,0),  𝜌 = ρb(z)  , p = pb (z),  T = Tb (z) = -𝛽𝑧 + Ta , , C
1

 =  C1
b (z) = - 𝛽´𝑧 +  𝐶1

a 

 

C2
 = C2

b (z) = - 𝛽´´𝑧 +  𝐶2
a ,     β =(T0 - T1)/d  ,        β´ = (C1

1- C0
1)/d,      β´´ = (C1

2- C0
2)/d,    

 

Hb = [ H0  - 
𝐾2  βz  

1+ 𝜒
 +

 𝐾3β´z  

1+ 𝜒
+

 𝐾4β´´z  

1+ 𝜒
 ] 𝒌 ,   Mb = [ M0  + 

𝐾2βz  

1+ 𝜒
 -  

 𝐾3β´z  

1+ 𝜒
− 

  𝐾4β´´z  

1+ 𝜒
] 𝒌  and H0 + MO = H0

ext,          (10)                                            

where the subscript ‘ b ‘ denotes the basic state. 

 

We now examine the stability of the basic state, and assume that the perturbation quantities are small. We write 
 

q = qb + q´ ,   𝜌 = ρb + ρ´   , p = pb (z)+ p´,  T = Tb (z) + 𝜃 , C1
 =  C1

b (z) + 𝛾, C2
 =  C2

b (z) + 𝛾 ´, 
 H = H b(z)+ H´   and M = Mb (z) + M´              

                                                                                                                                                                (11) 

where q´ = (u, v, w), ρ´, p´, 𝜃, 𝛾, 𝛾 ´, 𝐇´,  M´ are perturbation in velocity q, pressure p, temperature T, 

concentrations  C1 and   C2 , magnetic field intensity H, and magnetization M, respectively. The change in 

density ρ´ , caused mainly by the perturbation𝑠  𝜃,  𝛾, 𝑎𝑛𝑑  𝛾 ´  in temperature and concentrations, respectively, 

is given by 

 

ρ´  = - ρ0 (𝛼 𝜃 − α´ 𝛾 − 𝛼´´ 𝛾 ´ )     
                                                                                                                                                               (12) 

The non-dimensionless equations for the perturbation are 

 
∂q

∂t
  =  -∇p + ( 1+ 𝛿 M3) ∇

2
q +  𝑅 ( 1+M1–M4 ) 𝜃𝒌  - 

 𝑆 1

𝐿𝑒
 ( 1+M4´ –M1´ ) 𝛾𝒌  - 

 𝑆 2

𝐿𝑒
 ( 1+M4´´ –M1´´ ) 𝛾´𝒌   

    -  𝑅 ( M1 –M4 ) 𝜙1Z𝒌   +  
 𝑆 1

𝐿𝑒
 (M4´ –M1´ ) 𝜙2Z 𝒌   +   

 𝑆 2

𝐿𝑒
 (M4´´ –M1´´ )𝜙3Z 𝒌   - M1 𝜃 𝜙1Z + 

 𝑀 4 𝑀4´

 𝐿 𝑒
 ( 𝜃 ∇𝜙2Z  

    + 𝛾 𝜙1Z ) + 
 𝑀 4 𝑀4 ´́

 𝐿 𝑒
 (𝜃 ∇𝜙3Z + 𝛾´ 𝜙1Z ) + 

 𝑀 ´4 𝑀4 ´́

 𝐿 𝑒
 (𝛾∇𝜙3Z + 𝛾´ 𝜙2Z  ) +( M3 - 

1

1+𝜒 
 )[ M1 𝜙1x ∇𝜙1x -  

 𝑀 4 𝑀4´

 𝐿 𝑒
    

     (  𝜙1x ∇𝜙2x + 𝜙2x ∇𝜙1x)  −
 𝑀 4 𝑀4 ´́

 𝐿 𝑒
 (𝜙1x ∇𝜙3x + 𝜙3x ∇𝜙1x  − 

 𝑀 ´4 𝑀4 ´́

 𝐿 𝑒
 (𝜙2x ∇𝜙3x + 𝜙3x ∇𝜙2x ) + 

𝑀1 ´

𝐿𝑒
 𝜙2x∇𝜙2x      

    + 
𝑀1 ´́

𝐿𝑒
  𝜙3x ∇𝜙3x ] + ( M3 - 

1

1+𝜒 
 ) [ M1 𝜙1y ∇𝜙1y -  

 𝑀 4 𝑀4´

 𝐿 𝑒
 (  𝜙1y ∇𝜙2y + 𝜙2y ∇𝜙1y  −

 𝑀 4 𝑀4 ´́

 𝐿 𝑒
 (𝜙1y ∇𝜙3y + 𝜙3y  

     ∇𝜙1y ) − 
 𝑀 ´4  𝑀4 ´́

 𝐿 𝑒
 (𝜙2y ∇𝜙3y + 𝜙3y ∇𝜙2y ) + 

𝑀1´

𝐿𝑒
 𝜙2y ∇𝜙2y + 

𝑀1 ´́

𝐿𝑒
  𝜙3y ∇𝜙3y ] + ( 

𝜒

1+𝜒 
 ) [ M1 𝜙1z ∇𝜙1z  

  -  
 𝑀 4 𝑀4´

 𝐿 𝑒
 (  𝜙1z ∇𝜙2z + 𝜙2z ∇𝜙1z)  −

 𝑀 4 𝑀4 ´́

 𝐿 𝑒
 (𝜙1z ∇𝜙3z + 𝜙3z ∇𝜙1z )−

 𝑀 ´4 𝑀4 ´́

 𝐿 𝑒
 (𝜙2z ∇𝜙3z + 𝜙3z ∇𝜙2z)  
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    + 
𝑀1 ´

𝐿𝑒
 𝜙2z ∇𝜙2z - q. ∇q + 

𝑀1 ´́

𝐿𝑒
  𝜙3z ∇𝜙3z ] - 

𝑀1´

𝐿𝑒
 𝛾 ∇𝜙2z - 

𝑀1 ´́

𝐿𝑒
 𝛾´ ∇𝜙3z  + 𝛿 M3 (𝑀𝛿ϕ1x -𝑀´𝛿ϕ2x - 𝑀𝛿 ´´ϕ3x -𝑀𝛿ϕ1y 

   −  𝑀𝛿 ´ϕ2y - 𝑀𝛿 ´´ϕ3y) ∇
2
q + 𝛿 (𝑀𝛿ϕ1z - 𝑀´𝛿ϕ2z  −𝑀𝛿 ´´ϕ3z ) ∇

2
q - 𝛿𝑀𝛿  𝜃 ∇2

q + 𝛿𝑀𝛿 ´  𝛾 ∇2q + 𝛿𝑀𝛿 ´´  𝛾´∇2
q            

                                                                                                                                                                       

                                                                                                                                                                  (13) 

∇. q = 0                                                                                                                                                      (14) 

                                                                                                                                                                                                             
∂𝜃

∂t
  + q. ∇ 𝜃  = ∇2 𝜃 + 𝑅  w                                                                                                                                   (15)    

 
∂𝛾

∂t
  + q. ∇ 𝛾  = 

1

𝐿𝑒
 ∇2𝛾  + 𝑆 1  w                                                                                                                           (16) 

 
∂𝛾´

∂t
  + q. ∇ 𝛾´  = 

1

𝐿𝑒
 ∇2 𝛾´  +  𝑆 2w                                                                                                                        (17) 

                                                                                                                                                                      

 M3 ∇
2

 𝜙1 – ( M3 -1) 𝜙1zz = 𝜃z                                                                                                                              (18) 

                                                                                                                                                                         (19) 

M3 ∇
2

 𝜙2 – ( M3 -1) 𝜙2zz = 𝛾z    

                                                                                                                                                                          (20) 

 

M3 ∇
2

 𝜙3 – ( M3 -1) 𝜙3zz = 𝛾´z  

Here, the following non dimension quantities and non dimensionless parameters are introduced:  

 

   𝛾 ∗=   
 𝑆 1

𝛽´𝑑
𝛾 , 𝛾´ ∗=   

 𝑆 2

𝛽 ´́ 𝑑
𝛾´ ,   𝜙1

* = 
(1+𝜒)  𝑅

𝐾1 β𝑑
2   𝜙1,    𝜙2

* =  
(1+𝜒)  𝑆1

𝐾2 β´𝑑2   𝜙2,      𝜙3
* =  

(1+𝜒)  𝑆2

 𝐾3 β´´𝑑2   𝜙3,    

 

𝛿 ∗= 𝜇0H0 1 + 𝜒 𝛿,    R =  
g𝛼  β 𝜌0𝑑4  

𝜇𝐾1 
,  S1  = 

g𝛼´ β´𝜌0  𝑑4

𝜇𝐾1 ´
 , S2 =  

g𝛼´´ β´´ 𝜌0𝑑4  

𝜇𝐾1 ´´ 
,  M1    =  

  𝜇0  𝐾1
2β

 (1+𝜒 )𝛼ρ0 g
 , 

 M1´    =  
  𝜇0  𝐾2

2β´

 (1+𝜒 )𝛼´ρ0g
 ,   M1´´  =  

  𝜇0  𝐾3
2β´´

 (1+𝜒 )𝛼´´ρ0 g
 , M3 =   

 (1+ 
   𝑀0   
𝐻0

)

(1+𝜒 )
, M4 =  

  𝜇0  𝐾1𝐾2β´ 

 (1+𝜒 )𝛼ρ0g
 , M4´ =  

  𝜇0  𝐾2𝐾3β´´

 (1+𝜒 )𝛼´ρ0 g
 , 

 

M4´´ =  
  𝜇0  𝐾1𝐾3β

 (1+𝜒 )𝛼´´ρ0 g
 , M5 = 

   𝑀4  

𝑀1
 = 

𝑀1
´

𝑀4
´ =

   𝐾2β´ 

𝐾1β
=  

𝑀1
´´

𝑀4
´´ = 

   𝐾3β´´ 

𝐾1β
, 𝑀𝛿  = 

   𝐾1βd

H0  (1+𝜒 ) 𝑅
 , 𝑀𝛿 ´ = 

   𝐾2β´d

H0  (1+𝜒 ) 𝑆 1
 

 

𝑀𝛿 ´´ = 
   𝐾3β´´d

H0  (1+𝜒 ) 𝑆 2
 , 𝐿𝑒  = 

𝐾

𝐾´
 = 

𝐾

𝐾´́
 , 

Where, R is the Rayleigh number, S1 & S2 are the solute Rayleigh number, M1´  & M1´´   are the effect of 

magnetization due to salinity,  M5 represent the ratio of the salinity effect on magnetic field to pyromagnetic  

coefficient and 𝐿𝑒  is the Lewis number.  
 

The functions q , 𝜃, 𝛾 , 𝛾´, 𝜙1, 𝜙2, 𝜙3 must subject to the boundary conditions and we suppose that q , 𝜃, 𝛾 , 𝛾´, 

𝜙1, 𝜙2, 𝜙3 are periodic in x, y with periods  
2𝜋

𝑎𝑖
  for i= 1,2 respectively and the surfaces are stress free so that  

 

w=0,  uz = 0,  vz= 0,  𝜃= 0, 𝛾 
=0, 𝛾´ = 0, 𝜙1z= 0,  𝜙2z=0,  𝜙3z=0 at z= ±  

1

2
                                                       (21) 

                                                                                 

In order to exclude the rigid motions, we assume that the mean values of u and  v are zero (Wells and Kloeden 

[31]) i.e. we require  

 

   𝑢𝑑𝑉
𝑣

=   𝑣𝑑𝑉
𝑣

=  0,   

                                                                                                                                                                            (22) 

where V = [0, 
2𝜋

𝑎1
 ] × [0,

2𝜋

𝑎2
 ]  × [ 

−1

2
,  

1

2
 ] is the typical  periodicity cell.  

 

Nonlinear analysis 

To study the nonlinear stability of triple diffusive convection, we derive an energy equation of the form 

 

 
𝑑𝐸

𝑑𝑡  
 = I0 – D0 + N0                                                                                                                                                (23) 

  

where  
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E = 
1

2
  ∥ 𝜃 ∥2 + 

𝜆1

2
  ∥ 𝒒 ∥2  -  

𝜆3

2
  ∥ 𝛾 ∥2 -  -

𝜆5

2
  ∥ 𝛾´ ∥2   

                                                                                                                                                               (24) 

with coupling parameters  𝜆𝑖  and ∥  ∥ denote the norm on L2 (V) . The terms I0, D0,  N0 are as follow: 

 

I0 =  𝑅 { 1+𝜆1(1+M1–M4 )} 𝑤 𝜃 -  𝑆 1 { 𝜆3+ 
𝜆1

𝐿𝑒
  (1+ M4´ –M1´ ) }wγ -  𝑆 2 (𝜆5+ 

𝜆1

𝐿𝑒
 (M4´´ –M1´´ ) }w𝛾´  

      − 𝑅 𝜆1( M1 –M4 ) wϕ1Z  +  
 𝑆 1

𝐿𝑒
 𝜆1 (M4´ –M1´ ) wϕ2Z -    

 𝑆 2

𝐿𝑒
𝜆1 (M4´´ –M1´´ ) wϕ3Z   - 𝜆2 ϕ1𝜃Z + 𝜆4     

         ϕ2𝛾Z + 𝜆6 ϕ3𝛾Z´                                                                                                                                  (25) 

 

D0 = ∥ 𝛻𝜃 ∥2 + 𝜆1 ( 1+ 𝛿 M3) ∥ 𝛻𝑞 ∥2  - 
𝜆3

𝐿𝑒
  ∥ 𝛻𝛾 ∥2 - 

𝜆5

𝐿𝑒
  ∥ 𝛻𝛾´ ∥2 + 𝜆2M3∥ 𝛻𝜙1 ∥2 -  𝜆2(M3−1) ∥ 𝛻𝜙1𝑧 ∥2 

               - 𝜆4M3∥ 𝛻𝜙2 ∥2(M3−1) ∥ 𝛻𝜙2𝑧 ∥2-  𝜆6M3∥ 𝛻𝜙3 ∥2 -  𝜆6(M3−1) ∥ 𝛻𝜙3𝑧 ∥2                                       (26) 

                                                                                                 

N0 = 𝜆1M1𝒒𝛻𝜃𝜙1𝑧   -  
𝜆1 𝑀 4 𝑀4´

 𝐿 𝑒
𝐪∇θϕ2z    - 

𝜆1 𝑀 4 𝑀4´´

 𝐿 𝑒
 𝐪∇θϕ3z    + 

𝜆1𝑀1 ´

𝐿𝑒
𝐪∇γϕ2z    + 

 𝑀 ´4 𝑀4´´

 𝐿 𝑒
        

     𝐪∇γϕ1z +
𝜆1𝑀1´´

𝐿𝑒
𝐪∇γ´ϕ3z    +𝜆1( M3 - 

1

1+𝜒 
 ) [ M1 𝜙1x 𝒒∇𝜙1x -  

 𝑀 4 𝑀4´

 𝐿 𝑒
 {  𝜙1xq ∇𝜙2x +  𝜙2x 𝒒∇𝜙1x}      

    −
 𝑀 4 𝑀4´´

 𝐿 𝑒
 {𝜙1x 𝒒∇𝜙3x + 𝜙3x 𝒒∇𝜙1x }  − 

 𝑀 ´4 𝑀4´´

 𝐿 𝑒
 {𝜙2x 𝒒∇𝜙3x + 𝜙3x 𝒒∇𝜙2x } + 

𝑀1´

𝐿𝑒
𝜙2xq ∇𝜙2x  

     + 
𝑀1´´

𝐿𝑒
 𝜙3x 𝒒∇𝜙3x ] - 𝜆1 ( M3 - 

1

1+𝜒 
 ) [ M1 𝜙1y 𝒒∇𝜙1y -  

 𝑀 4 𝑀4´

 𝐿 𝑒
   { 𝜙1y  𝒒∇𝜙2y + 𝜙2y 𝒒∇𝜙1y}  

      −
 𝑀 4 𝑀4´´

 𝐿 𝑒
 {𝜙1y 𝒒∇𝜙3y + 𝜙3y 𝒒∇𝜙1y } −

 𝑀 ´4 𝑀4´´

 𝐿 𝑒
 {𝜙2y 𝒒∇𝜙3y + 𝜙3y 𝒒∇𝜙2y }  

     + 
𝑀1´

𝐿𝑒
 𝜙2y 𝒒∇𝜙2y  +  

𝑀1´´

𝐿𝑒
  𝜙3y 𝒒∇𝜙3y ] +𝜆1 ( 

𝜒

1+𝜒 
 ) [ M1 𝜙1z 𝒒∇𝜙1z -  

 𝑀 4 𝑀4´

 𝐿 𝑒
 {  𝜙1z 𝒒∇𝜙2z + 𝜙2z 𝒒∇𝜙1z }   

    −
 𝑀 4 𝑀4´´

 𝐿 𝑒
   {  𝜙1z q ∇𝜙3z   + 𝜙3z 𝒒∇𝜙1z  }−

 𝑀 ´4 𝑀4´´

 𝐿 𝑒
  { 𝜙2z 𝒒∇𝜙3z + 𝜙3z 𝒒∇𝜙2z} + 

𝑀1 ´

𝐿𝑒
  𝜙2z 𝒒∇𝜙2z   

   + 
𝑀1´´

𝐿𝑒
    𝜙3z 𝒒∇𝜙3z ]   +𝜆1  𝛿 M3{ 𝑀𝛿 ϕ1xq ∇2q -𝑀´𝛿 ϕ2xq ∇2q - 𝑀𝛿 ´´ϕ3x q∇2q -𝑀𝛿 ϕ1yq∇2q - 𝑀𝛿 ´ϕ2y q∇2q 

- 𝑀𝛿 ´´ϕ3yq ∇2q }  +𝜆1 𝛿 {ϕ1zq∇2q  - 𝑀´𝛿 ϕ2z q ∇2q −𝑀𝛿 ´´ϕ3z q∇2q}–  𝜆1 𝛿𝑀𝛿  𝜃 q∇2q +𝜆1𝛿𝑀𝛿  ́ 𝛾 q∇2q  

+  𝜆1 𝛿𝑀𝛿 ´´  𝛾´𝒒∇2q                                                                                                                                                         (27)                                                                                                                                                                                                                           

                                                               

where 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6 are  positive coupling parameters and     is the inner product on L2 (V). 

In equation (24) , it is seen that the energy of the system is consumed due to the solute concentrations (i.e. -ve 

sign with  
𝜆3

2
  ∥ 𝛾 ∥2 &   -

𝜆5

2
  ∥ 𝛾´ ∥2 ). Now, it can be assumed that the energy is consumed, due to solute 

concentrations is less than the energy produced due to velocity and temperature. Also the energy dissipated by 

the solute concentrations is less than the energy dissipated by the velocity, temperature and magnetization. 

These assumptions will ensure that all the terms on the right-hand side of the equations (24) & (26) are always 

less than the left – hand side of that equation.  
Thus from equation (23), we have 

 
𝑑𝐸

𝑑𝑡  
 ≤  – a0D0 + N0                                                                                                                                            (28) 

  

with a0 = 1-m (> 0) where  

 

m = 𝑚𝑎𝑥
𝐻  

𝐼0

𝐷0
    

                                                                                                                                                              (29) 

and H is the space of admissible solution.  
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In order to dominate the nonlinear terms and for studying the nonlinear stability, we now introduce the 

generalized energy functional as  

 

Vg(t) = E(t) + b0 E1(t )                                                                                                                           (30) 

 

where b0 is a positive coupling parameter to be chosen and the complementary energy  E1(t ) is given by 
  

E1(t ) = 
1

2
  ∥ 𝛻𝜃 ∥2 + 

1

2
  ∥ 𝛻𝑞 ∥2  +  

1

2
  ∥ 𝛻𝛾 ∥2 + -

1

2
  ∥ 𝛻𝛾´ ∥2 + 

1

2
  ∥ 𝛻2  𝜃 ∥2 + 

1

2
  ∥ 𝛻2  𝛾 ∥2 + -

1

2
  ∥ 𝛻2  𝛾´ ∥2      (31)                                       

 

III. The eigenvalue problem of nonlinear analysis 
Now  we use the calculus of variation to find the maximum problem at the critical argument m1= 1 in 

equation (29). The associated Euler-Lagrange equations, after taking the transformations 

 

 𝒒  =  𝜆1  q ,  𝜙 1 =  𝜆2  ϕ1 ,  𝛾  =  𝜆3𝛾 ,  𝜙 2  =  𝜆4 ϕ4 ,  𝛾 ́  = 𝜆5  𝛾´,  𝜙 3 = 𝜆6  ϕ3 ,                                     (32)                                                                

  
and dropping  the caps are 
 

2( 1+ 𝛿 M3) 𝛻2q  +
 𝑅

 𝜆1
  { 1+𝜆1(1+M1–M4 )} 𝜃𝒌   - 

 𝑺 𝟏

 𝝀𝟏 𝝀𝟑
 { 𝜆3+ 

𝜆1

𝐿𝑒
  (1+ M4´ –M1´ ) }γ𝒌    - 

 𝑆 2

 𝜆1 𝜆5
 (𝜆5+ 

𝜆1

𝐿𝑒
      

(M4´´ –M1´´ ) }𝛾´𝒌 −
 𝜆1

 𝜆4
 𝑅 (M1 –M4 ) ϕ1Z 𝒌   +  

 𝜆1

 𝜆4

 𝑆 1

𝐿𝑒
 (M4´ –M1´ ) ϕ2Z 𝒌    + 

 𝜆1

 𝜆6
  
 𝑆 2

𝐿𝑒
 (M4´´ –M1´´) 

ϕ3Z 𝒌   - 2 𝛻p =0                                                                                                                                                (33)     
                       

2𝛻2𝜃 +  𝑅 { 1+𝜆1(1+M1–M4 )}
1

 𝜆1
𝑤   + 𝜆2𝜙1Z  =o                                                                                 (34)                                                                                                             

2

𝐿𝑒
 𝛻2𝛾 +  𝑆 1 { 𝜆3+ 

𝜆1

𝐿𝑒
  (1+ M4´ –M1´ ) }

𝟏

 𝝀𝟏 𝝀𝟑
 w + 

 𝜆4

 𝜆3
 ϕ2Z = o                                                              (35)                                                                                              

2

𝐿𝑒
 𝛻2 𝛾´ + 𝑆 2 (𝜆5+ 

𝜆1

𝐿𝑒
 (M4´´ –M1´´ ) } 

𝟏

 𝝀𝟏 𝝀𝟓
 w + 

 𝜆6

 𝜆5
 ϕ3Z = 0                                                                 (36)                                                                                    

2M3 𝛻2 ϕ1 -  2 (M3 -1) ϕ1ZZ +  𝑅 
 𝜆1

 𝜆2
  (M1–M4) wz -  𝜆2 𝜃z =0                                                               (38)         

2M3 𝛻2 ϕ2 -  2 (M3 -1) ϕ2ZZ +  
 𝜆1

 𝜆4
 
 𝑆 1

𝐿𝑒
   (M1´ – M4´) wz -  𝜆2𝛾z =0                                                         (39)                                                                                           

2M3 𝛻2 ϕ3 -  2 (M3 -1) ϕ3ZZ + 
 𝜆1

 𝜆6
 
 𝑆 2

𝐿𝑒
   (M1´´  – M4´´ ) wz -  𝜆2𝛾´ z =0                                                     (40)                                                                                         

where ′p′ is a Lagrange’s multiplier,  and  ′q′ is solenoidal.  

 

After taking the third component of the curl curl of equation (33), we have  

 

 2( 1+ 𝛿 M3) 𝛻
4w  +

 𝑅

 𝜆1
  { 1+𝜆1(1+M1–M4 )}𝛻

2
1𝜃 – 

 𝑺 𝟏

 𝝀𝟏 𝝀𝟑
 { 𝜆3+ 

𝜆1

𝐿𝑒
  (1+ M4´ –M1´ ) }𝛻

2
1γ    

 - 
 𝑆 2

 𝜆1 𝜆5
 (𝜆5+ 

𝜆1

𝐿𝑒
 (M4´´ –M1´´ ) }𝛻

2
1𝛾´ −

 𝜆1

 𝜆4
 𝑅 ( M1 –M4 )𝛻

2
1ϕ1Z +  

 𝜆1

 𝜆4

 𝑆 1

𝐿𝑒
  (M4´ –M1´ ) 𝛻

2
1ϕ2Z  +  

 𝜆1

 𝜆6
  
 𝑆 2

𝐿𝑒
     

   (M4´´ –M1´´ ) 𝛻2
1ϕ3Z  =0                                                                                                                              (41) 

 

 Now, we assume a plane tilting form 

 

(w, 𝜃, 𝛾 , 𝛾´, 𝜙1 , 𝜙2, 𝜙3) =[ W(z), Θ z , Γ z ,Ψ(z),𝜙1(z), 𝜙2(z),𝜙3(z) ] g (x, y)                                    (42)   
                                                      
Where 𝛻2

1𝑔 + a2g =0, ′a′ being the wave number (Chandrasekhar [1981]) 
The boundary conditions at the free-free surface are 
 

W =D2W = Θ = Γ = Ψ =D𝜙1 = D𝜙2 = D𝜙3 =0   at z =  ± 
1

2
 ,                                                                         (43)             

                                                                                            
The exact solution subject to these boundary conditions is written in the form 
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W = A1cos 𝜋𝑧  ,  Θ  = A2cos 𝜋𝑧  , D𝜙3 = A3cos 𝜋𝑧 , 

𝜙1 = ( 
𝐴3

𝜋
 ) sin 𝜋𝑧, Γ = A4cos 𝜋𝑧, D𝜙2 = A5cos 𝜋𝑧,  

𝜙2 = ( 
𝐴5

𝜋
 ) sin 𝜋𝑧,  Ψ = A6cos 𝜋𝑧, D𝜙3 = A7cos 𝜋𝑧,  

𝜙3 = ( 
𝐴7

𝜋
) sin 𝜋𝑧,                                                                                                                                                 (44) 

 

         Where A1, A2, A3,  A4 , A5 ,A6, ,A7  are constants. Using the plane tiling form and substituting solution (44), 

we get equations involving coefficients of A1, A2, A3,  A4 , A5 ,A6, ,A7. For the existence of non-trivial solutions, 

the determinant of the coefficients of A1, A2, A3,  A4 , A5 ,A6, ,A7 must vanish. This determinant on simplification 

yields the energy thermal Rayleigh number R´e and then we can performs the optimization 

 

Re =  𝑚𝑎𝑥
𝜆1,𝜆 ´2 ,𝜆3,𝜆 ´4,𝜆5 ,𝜆 ´6

 , 𝑚𝑖𝑛  
𝑥  R´e (𝜆1, 𝜆´2 , 𝜆3, 𝜆´4, 𝜆5 , 𝜆´6, 𝑀1 ,  𝑀3, 𝑀5, 𝑀´1 , 𝑀´´1, 𝛿  , 𝐿𝑒 , S1, S2 )      (45)                                                   

 where R´e= 
 𝑅𝑒

𝜋4  , S1= 
 𝑆

𝜋4   x = 
 𝑎2

𝜋2  , 𝜆´2 = 
𝜆2  

𝜋2, 𝜆´4 = 
𝜆4  

𝜋2 , 𝜆´6 = 
𝜆6  

𝜋2              

                                                                                               
 To achieve this we need careful selection of 𝜆1, 𝜆´2 , 𝜆3, 𝜆´4, 𝜆5 ,  𝜆´6  and are found to be 

 

  𝜆1 = 
1 

1+𝑀1 (1−𝑀5  ) 
,       𝜆´2 = 

(1+𝑥)𝑀1 (1−𝑀5  ) 

1+𝑀1 (1−𝑀5  ) 
,       𝜆3 = 

1+ 𝑀´1 (
 1

   𝑀5  
 −1)

𝐿𝑒 [1+𝑀1  1−𝑀5   ] 
, 

 

  𝜆´4 = 
(1+𝑥)𝑀´1 (

 1

   𝑀5  
 −1 )

𝐿𝑒
2[1+𝑀1  1−𝑀5   ]

,  𝜆5 = 
1+ 𝑀´´1 (

 1

   𝑀5  
 −1)

𝐿𝑒 [1+𝑀1  1−𝑀5   ] 
,  𝜆´6 = 

(1+𝑥)𝑀´´1 (
 1

   𝑀5  
 −1 )

𝐿𝑒
2[1+𝑀1  1−𝑀5   ]

,                                         (46)  

                                                                             
Using Equation (46) in (45), we have 

 

Re = 
  4 1+𝑥𝑀3

  −𝑀1 (1−𝑀5  )/[1+𝑀1  1−𝑀5   ]    1+𝑥 3(1+ 𝛿𝑀3
 )  +x𝑆1{1+ 𝑀1

 ´ 
1

𝑀5
  

 −1 }+x𝑆2{1+ 𝑀1
 ´´ 

1

𝑀5
  

 −1 }    

                               x  4 1+x𝑀3
   1 +𝑀1   1−𝑀5

    −2𝑀1   1−𝑀5
      

  (47)    

                                            
For  𝑀1   sufficiently large, we obtain the magnetic thermal Rayleigh number 

 

𝑁𝑒 = 𝑀1 𝑅𝑒
  = 

 3+4𝑥𝑀3
  [  1+𝑥 3 1+ 𝛿𝑀3

  +𝑥𝑆1{1+ 𝑀1
 ´ 

1

𝑀5
  

 −1 }+𝑥𝑆2 {1+ 𝑀1
 ´´ 

1

𝑀5
  

 −1 }]   

                               x   2+4x𝑀3
    1−𝑀5

     
                                                    (48)      

                                                                            

as a function of x,  𝑁𝑒  given by equation (48) attains its minimum, when  
 

 𝑃5
 𝑥5

 + 𝑃4
 𝑥4 +𝑃3

 𝑥3 + 𝑃2
 𝑥2 + 𝑃1

 𝑥 + 𝑃0
  =0 

                                                                                                                                                                 (49) 

the coefficients 𝑃0
 , 𝑃1

 ,…………… 𝑃5
  being quite lengthy, and  have not written here. The Newton-Raphson 

method is used to determine the values of critical wave number in nonlinear stability results by the condition  

 

     
   𝑑𝑁𝑒 

𝑑𝑥
= 0.                                                                                                                                                       (50)                                                                                                                                                                                       

With x determined as a solution of Equation (49) ,  Equation (48) will give the required critical magnetic 

thermal Rayleigh number 𝑁𝑐𝑒  . In the absence of solute and MFD viscosity, Equation (48) reduces to  

 

𝑁𝑒 = 
   3+4𝑥𝑀3

   1+𝑥 3  

𝑥 2+4𝑥𝑀3
  

                                                                                                                                            (51) 

 
For analyzing the linear instability results, we use the non-dimensional Equations (13)-(20), neglecting the 

nonlinear terms. We again perform the standard stationary mode analysis and look for the solution of these 

equations in the form of Equation (42). The boundary conditions in the present case are same i.e. Equation (43). 

After following the same procedure as stated earlier in the energy stability case, we have 

 

𝑅ℓ =
  1+𝑥 3 1+ 𝛿𝑀3

   1+ 𝑥𝑀3
   + 𝑥𝑆1  [1+ 𝑥𝑀3

  + 𝑥𝑀1
´ 𝑀3

  (
1

𝑀5
  

 −1)+ 𝑥𝑆2  [1+ 𝑥𝑀3
  + 𝑥𝑀1

´́  𝑀3
  (

1

𝑀5
  

 −1)]   

𝑥 [1+𝑥𝑀3
 + 𝑥𝑀1

 𝑀3
  (1−𝑀5

 )]
                                        (52)  

 



Triple- Diffusive Convection In A Magnetized Ferrofluid With Mfd Viscosity: A Nonlinear Stability  

www.iosrjournals.org                                                             27 | Page 

We again consider the magnetic thermal Rayleigh number 𝑁𝑒  depends on the parameter 𝑀3
  . For 𝑀1

  sufficiently 

large, the linear critical magnetic thermal Rayleigh number is  

 

𝑁ℓ = 
  1+𝑥 3 1+ 𝛿𝑀3

   1+ 𝑥𝑀3
   + 𝑥𝑆1  [1+ 𝑥𝑀3

  + 𝑥𝑀1
´ 𝑀3

  (
1

𝑀5
  

 −1)+ 𝑥𝑆2  [1+ 𝑥𝑀3
  + 𝑥𝑀1

´́  𝑀3
  (

1

𝑀5
  

 −1)]   

𝑥3𝑀3
  (1−𝑀5

 )
                                      (53)        

                                                             

In the absence of the solute and MFD viscosity, Equation (53)    reduces to      

 

𝑁ℓ =    
  1+𝑥 3 1+ 𝑥𝑀3

      

𝑥2𝑀3
  

                                                                                                                                       (54) 

                                                                                                                                                               

which is in good agreement with the previous published (Finlayson[1970] ) 

 

   There are instances in which the two theories coincide. This is true for the classical Bénard problem. In the 

absence of magnetic parameters   ( 𝑀1
 =0,   𝑀´1

 
=0 , 𝑀´´1

 = 0,   and    𝑀3
 = 0), we obtain 

 

𝑅ℓ  = 
  1+𝑥 3    

𝑥 
 + 𝑆1

  +𝑆2
  = Re  

                                                                                                                                                                                                                                                            (55) 

In the absence of solutes (i.e. 𝑆1
 = 0 &  𝑆2

  =0), this further simplifies to  

 

 𝑅ℓ = 
  1+𝑥 3    

𝑥 
 = Re                                                                                                                                          (56) 

                                                                                                                                                                                                                                                                              

Thus in both the cases the linear instability boundary is equal to linear stability boundary. Here, the 

energy method leads to the result that arbitrary subcritical instabilities are not possible, which is in good 

agreement with the previous published work (Joseph[1965’1966]). Thus, for lower values of magnetic 

parameters, this coincidence is immediately lost.   

 

IV. Results and discussion 
  The critical magnetic thermal Rayleigh number𝑠 𝑁𝑐𝑒  , 𝑁𝑐ℓ depend upon 𝑀3

 ,𝑀´1
 
, 𝑀´´1

 
,  𝑆1

 , 𝑆2
  and 𝑀5

 . It 

has been seen that in the absence of MFD viscosity (𝛿) , 𝑏𝑜𝑡𝑕  𝑁𝑐𝑒  , 𝑁𝑐ℓ decrease as 𝑀3
  increases, there by 

showing the destabilizing effect of 𝑀3
 . It has also been observed that in the presence of MFD viscosity (𝛿) , 

𝑏𝑜𝑡𝑕  𝑁𝑐𝑒  , 𝑁𝑐ℓ decrease for lower values of 𝑀3
  and increase for higher values of 𝑀3

 . Thus the MFD viscosity 

increases 𝑤𝑖𝑡𝑕 𝑡𝑕𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓   𝑁𝑐𝑒  ,𝑁𝑐ℓ, hence showing the stabilizing effect of MFD viscosity. In the 

absence of MFD viscosity, the variation in magnetization releases extra energy, which adds up to the thermal 

energy to destabilize the system. So, in the absence of the MFD viscosity, magnetization always has a 

destabilizing effect. The presence of MFD viscosity gives rise to a resistive force. It (force) has the tendency to 

slow down the motion of the fluid in the boundary layer, thus inducing the heat transfer from bottom to top. The 

decrease in heat transfer is responsible for delaying the onset of convection. Thus, the MFD viscosity promotes 

stabilization. Since variation in magnetization leads to change in viscosity, hence for large values of coefficient 

of the MFD viscosity (𝛿)  and large values of magnetization (𝑀3
 ), the resistive viscous force overcomes the 

energy released, due to increase in magnetization and thus delays the onset of convection. Hence, increase in 

magnetization stabilizes the system, and so magnetization plays a dual role depending upon the values of 

coefficient of the MFD viscosity. Also it is observed that the values of 𝑁𝑐ℓ  are always greater than those of  𝑁𝑐𝑒  

, and this is quite obvious from the fact that linear stability theory gives sufficient conditions for instability, 

while the energy stability theory gives the sufficient condition for stability. Thus, the difference between the 

values of  𝑁𝑐𝑒   𝑎𝑛𝑑 𝑁𝑐ℓ reveals that there is a band of Rayleigh numbers where subcritical instability may arise. 

One can note that this band decreases as 𝑀3
  increases.  

    The solutes gradients 𝑆1
  & 𝑆2

  have stabilizing effect, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒  𝑏𝑜𝑡𝑕  𝑁𝑐𝑒  , 𝑁𝑐ℓ increases as solute 
gradients  increases. One can note that the subcritical instability region expands with the increase of solute 

gradients . Here, in this case heating expands the fluid at the bottom of the layer and this in turn wants to 

expand, thereby enhance the motion due to thermal convection. On the other side, the heavier salts at the lower 

part of the layer have exactly the opposite effect and these act to prevent motion through convective 

overturning. Thus, these two effects are competing against each other. Due to this, the linear theory of instability 

does not always capture the effect of instability completely and instabilities might arise before the threshold is 

reached, as we have obtained in this problem.  
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V. Conclusions 
     

 

 In this paper a nonlinear stability analysis of triple- diffusive convection in a magnetized ferrofluid with 
magnetic field –dependent viscosity has been investigated. It has been observed that the boundaries of nonlinear 

stability and linear instability analyses do not intersect. The MFD viscosity and solute gradients always delay 

the onset of convection. We have derived a nonlinear stability threshold very close to the linear instability one. 

It has been seen that the magnetic mechanism alone can induce subcritical region of instability.  The comparison 

between the linear and energy stability reveals that for convection problem in ferrofluids, the linear critical 

magnetic thermal Rayleigh  number is higher in values than the nonlinear (energy) critical magnetic thermal 

Rayleigh  number, which shows the possibility  of the existence  of subcritical instability . It is important to 

realize that the subcritical instability region decreases as magnetization increases.  We also observe that solute 

gradients cannot induce subcritical region of instability, but in magnetic mechanism, this region expands with 

the increase of solute gradients. In non-ferrofluids, it is verified that the global stability Rayleigh number is 

exactly the same as that of linear instability.  
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Oscillatory Unsteady Hydrodynamic Viscoelastic Flow in a 

Porous Channel with Radiative Heat Transfer 
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Abstract: This analysis examines the problem of oscillatory flow of a viscoelastic fluid and heat transfer along a 

porous oscillating channel with radiative heat transfer. Here we consider the flow through a channel in which the 

fluid is injected on one boundary of the channel with a constant velocity, while it is sucked off at the other 

boundary with the same velocity. The two boundaries are considered to be in close contact with two plates 

parallel to each other. The plates are supposed to be oscillating with a given velocity in their own planes. The 

analytical expressions for the velocity, the temperature and the wall shear stress have been obtained. The effects 

of viscoelastic parameter on the velocity profile, shear stress are presented graphically with the combinations of 

the other flow parameters. It is also observed that the temperature field is not significantly affected by the 

viscoelastic parameter. 

Keywords: Viscoelastic fluid, radiative heat transfer, porous wall, oscillating channel.  

 

I. INTRODUCTION  
The problem of hydrodynamic flow in a porous channel with radiative heat transfer received much 

attention because of its various applications in physiology and in engineering devices such as blood flow in 

arteries, transpiration cooling of re-entry vehicles and rocket busters, cross-hatching on ablative surfaces. 

Pulsatile flow of a fluid in a porous channel has been investigated by Wang [1], as well as Bhuyan and Hazarika 

[2] by considering the periodic pressure gradient. Raptis [3] studied the unsteady free convective flow through a 

porous medium bounded by an infinite vertical limiting surface with constant suction and time dependent 

temperature. The effect of Hall current and wall temperature oscillation on convective flow in a rotating fluid 
through porous medium was studied by Ram [4]. On the other hand, several other researchers (e.g. Makinde and 

Mhone [5], Prakash and Ogulu [6] as well as Mehmood and Ali [7]) investigated the effects of heat transfer in 

the flow of fluids. Adhikary and Misra [8] investigated the effects of porosity of the channel wall, magnetic field 

and radiative heat transfer on unsteady flow of an electrically conducting fluid through a channel. Ghosh [9] 

investigated the hydrodynamic fluctuating flow of a viscoelastic fluid in a porous channel, where the channels 

oscillate with a given velocity in their own planes.  

The aim of the present work is to investigate the effects of non-Newtonian parameter on the unsteady 

two dimensional hydrodynamic flow and heat transfer of a viscoelastic fluid. One of the most popular models for 

non-Newtonian fluids is the model that is called the second-order fluid or fluid of second grade. It is reasonable 

to use the second-order fluid model to do numerical calculations. The effects of visco-elastic parameter with the 

combinations of the other flow parameters have been studied thoroughly and presented graphically. The 

constitutive equation for the incompressible second-order fluid is 
2

132211 )(AAApIS                                                                                   (1) 

where S  is the stress tensor, p is the hydrostatic pressure, 2,1, nAn  are the kinematic Rivlin-

Ericksen tensors, 321 ,,  are the material co-efficients describing the viscosity, visco-elasticity and cross-

viscosity respectively, where 1  and 3  are positive and 2 is negative (Coleman and Markovitz [10]). The 

equation (1) was derived by Coleman and Noll [11] from that of the simple fluids by assuming that the stress is 

more sensitive to the recent deformation than to the deformation that occurred in the distant past. 
 

II. MATHEMATICAL FORMULATIONS 

Consider the channel between two oscillating porous plate 0y  and ,hy   the fluid is being injected 

by one plate with constant velocity V  and sucked off by the other plate with the same velocity. Then the 

continuity equation reduces to   0
*

*






x

u
 so that 

*u  is the function of
*y  and 

*t only. 

The momentum equations are given by   
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
  assuming 02 32    as 02   and .03                                                                     (3) 

The heat transfer equation may be put in the form                                                  

                                        
*2*

2

**

1

y

q

Cy

T

C

k

y

T
V

t

T

pp 



















                                                                 (4) 

where 
*p  is the pressure,   the density of the fluid, k  permeability factor, q  the radiative heat flux,   the 

coefficient of volume expansion due to temperature, g the gravitational acceleration, k   the coefficient of 

thermal conductivity, pC  the specific heat at constant pressure. The last term on the right hand side of equation 

(4) arises owing to the radiation effect of the heat transfer. 

The corresponding boundary conditions of the oscillatory motion are: 

                                0

**

0
* **

, TTeTTeUu w
ti

w
ti  

       at     hy *
 

                                      0

**

0
* , TTeUu ti  

             at    0* y                                                                (5) 

In these equations, we have taken into account the temperature oscillation on the upper plate hy *
, while the 

lower plate 0* y  is maintained at the fixed temperature .0T  

The heat flux may be expressed (Cogley et al. [12]) as 

                                                               0
2
1*

4 TT
y

q





                                                                             (6) 

where 1  is the mean radiation and absorption coefficient.  

Introduce the following non-dimensional quantities: 
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where Re  the Reynolds number, Gr  the Grashof number, Pr  the Prandtl number, N  the radiation 

Parameter,   the angular frequency. 

The governing equations together with the heat equation can be re-written in terms of dimensionless quantities 

given in (7) as 
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while the boundary conditions will assume the form 

                             
titi eeUu    1,0          at          1y  

                               0,0  tieUu         at           0y                                                               (11) 
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where 
h

V

1

2




   is the viscoelastic parameter. 

 

III.    METHOD OF SOLUTION 

From (8) and (9), it follows that 
x

p




  is a function of t   alone. For the present study, we consider 

                                               
tiBeA

x

p 



, 

A  and B  being undetermined constants. To solve equations (8) and (10) subject to boundary conditions (11), 

we write the velocity and temperature in temperature in the form: 

                                        ),()(),( tyuyutyu ps    

                                                  
tieyuyu fs

)()(                                                                                      (12) 

and                      

                                      ),()(),( tyyty ps    

                                               
tieyy fs

 )()(                                                                                        (13) 

where ),(),(),,(),( tyytyuyu psps  respectively represent the steady and unsteady parts of the velocity 

and temperature. 

Substituting the above expressions in (8) and (10) and comparing the like terms, we have derived the equations 

that govern the corresponding steady and unsteady flow and heat transfer of the problem under consideration. 

They are given below:  

Steady Case:  
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with the boundary conditions: 

                                  ,1,0  ssu               at         1y    

                                  .0,0  ssu               at         0y                                                                           (16) 

Unsteady Case: 
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with the boundary conditions: 

                                  ,1,0  ff Uu               at         1y    

                                  .0,0  ff Uu              at         0y                                                                   (19) 

On solving the equations (15) and (18) along with the boundary conditions (16) and (19) respectively, are found 

as 
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where 
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We note that 1  for small shear and so we can assume that 
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Substituting (22) in (14) and (17) together with boundary conditions (16) and (19) up to first order of   and 

equating the co-efficient of like powers of  , we obtain the following sets of ordinary differential equations 

and corresponding boundary conditions: 
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with  

                                  ,0, 100  ff uUu           at         1y    

                                  ,0, 100  ff uUu           at         0y                                                                    (28) 

The equations (23), (24) and (26), (27) are solved under the boundary conditions (25) and (28) respectively. 

Substituting these solutions in (22), we get the expressions for su and fu , and thus the expression for u  but 

due brevity the solutions are not presented here. 
The non-dimensional wall shear stress at the upper plate is given by 
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IV. RESULTS AND CONCLUSIONS 
The purpose of this study is to bring out the effects of the visco-elastic parameter  on the governing 

flow and heat transfer characteristics. We have considered the real parts of the results throughout for numerical 

validation. The effects of viscoelastic parameter on velocity, shear stress and flow rate of viscoelastic fluid are 

evaluated numerically and the results are presented in figures 1-4, and 5. The predicted variation of velocity 

with different values of   and for 1k 2,Pr 2,N  ; 1;k 2,Pr 3,N  1;k5,Pr2,N   

2k 2,Pr 2,N   are shown in figures 1-4 respectively.  

It is evident from the figures 1-4 that the velocity profile is parabolic in nature and the values of the 

velocity u  decrease with the increasing values of the viscoelastic parameter )2.0,1.0,0(   in 

comparison with Newtonian fluid. It is also noted from the figures that the behaviours of the velocity profiles 

remain the same with the increasing values of the viscoelastic parameter  when (i) The values of N increase 
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(Fig.1 and Fig.2) and (ii) Pr increase (Fig.1 and Fig.3) (iii) k  increase (Fig.1 and Fig.4). It is also seen that the 

velocity u  increase with the increasing values of the radiative parameter N  and the permeability parameter k  

for both Newtonian and non-Newtonian cases.  

The wall shear stresses are calculated from the equation (29). Figure 5 show that the wall shear stress 

w  increases as the values of the viscoelastic parameter )2.0,1.0,0(   increase in comparison to 

Newtonian fluid.  

It is also observed that the temperature field is not significantly affected by the visco-elastic parameter.  
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Abstract: The use of the double integral is the topic of the paper. The link of the double integral and the single 

integral is mentioned and the splitting of the double integral in two simple single integrals is involved. Also the 

equation of the curve formed when the double integral is converted to a single in integral is mentioned. 

The paper deals with the question that if the double integral is solved and it is converted to single 

integral then what is ment by it, also the equation of the curve formed of that single integral function is 
discussed and the relation between the surface of that double integral function and the single integral function 

is discussed. 

                                                                          

I. Introduction 
This paper deals with the DOUBLE INTEGRALS as what does double integral mean to me. It also 

consist of some facts and the proofs which provides the relation between the double integral and the single 

integral. 

We have the function as   

Y = f(x,y) 

Generally, we have to plot or to calculate area under the curve of this region we have to take the double integral 

of the function  

Therefore,  

z =  f x, y d x d y    

Solve the double in integral and convert the function to a single integral function generally  

We have  

Z= g x dx    or     Z = g y dy  …eq.( 1) 

Depending on the term or the parameter (x or y) we keep constant the value of the integral will change as shown 

in the eq. 1. 
The relation between the f(x, y) and g(x) or the relation between the f(x, y) and g(y) is described in this paper. 

We are known to the single integral function as it can be written and described using the limits as the sum. 

  We have   f x dx
b

a
 =  f(t)n

r = 1  

This concept can be extended further to define the integral of functions of two independent variables as follows. 

DOUBLE INTEGRATION : DEFINATION 
Let  f(x, y) be a continuous function and it is single valued of two variables x, y  defined over a region R of area 

A bounded by a closed simple curve C. let the region  be divided into n sub intervals in any manner (eg. By 

drawing horizontal and the vertical lines) into sub regions R1,…R4 ,…………., Rn of areas A1,…..A4,……An. 

Let P(Xr, Yr) be any point inside the rth sub region of area Ar. 

We know form the sum 

f(x1,y1) &A +…………… f(x7,y7) &A + ………………+f(xn,yn) 

ie.     f xr , yr  &𝐴𝑟 .n
r=1  

We now increase the number of sub regions such that the area of each sub region becomes smaller and smaller. 

The limit of the sum (1), when it exits, as tends to infinity and the area of each sub intervals tend to zero is 

called the double integral of the f(x,y) over the region A and is denoted by 

 f x, y dxdy.
A

   

Thus,  f x, y dxdy
A

 =lim  f x, y  &𝐴n
r=1  

 
EQUATION OF DOUBLE INTEGRAL : 

The double integral as defined above can be evaluated by successive single integration as follows: 

If A is a region bounded by the curves y=f(x) , y=g(x). 

Then, 

 f x, y d x d y  =   f x, y dy dx.
g(x)

f(x)

b

a
  

Where the integration w.r.t. y is performed first by treating x as constant. 

Consider the area bounded the two curves y= f(x) and y=g(x) and the ordinates as x=a and x=b. 
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Now consider a strip parallel to the axis. On this strip y varies from y= f(x) to y=g(x). if the strip is 

moved to itself so that it will sweep the shown area then x varies from a and b. now it can be shown that  

 f x, y d x d y  =   f x, y dy dx.
g(x)

f(x)

b

a
 

 

II. Concept 
1. CONVERSION TO SINGLE INTEGRAL: 

Generally to find the double integral of any function f(x, y) we have to first convert the double integral to the 

single integral. So in order to convert to the single integral we have to take solve by using one variable constant 

as x or y. 

 
1.1 CONVERSION: 

 When we have the tendency to convert the double integral to single integral . 

Let f(x, y) be a function of independent variables x and y. we have to convert in single integral there we take the 

cases in which we first consider x as constant and y as independent variable. 

Therefore  

  f x, y  dx dy =
f2(x)

f1(x)

b

a

 

Here the function varies from x=a to x=b and y=f1(x) to y=f2(x). so we take the x is independent and y 

as dependent of x. 

1.2 Plotting of curve: 

Plot the curve y=f1(x) and y=f2(x) on the x-y plane and find its required region according to specified values of 

x that is a and b. 

We take the integration of the curve according to the limits decided by the y as f1(x) and f2(x).  

We got  

 g x dx
b

a

 

And what actually g(x) is,  

we know that  limits of y are the extension of the curve  f1(x) and f2(x) in the y direction. when the region 

enclosed between the curves the closed curve must have to be integrated in the x direction for  getting the 

double integral. 

 

 In this case the curve g(x) is actually a line which is parallel to y- axis as the line is made to integrated over x=a 

to x=b. 

1.3 AREA 

 In the simple integral we have to take the area under the curve of the whole region. Similarly we have the 

equation of the line here and it has been integrated in the prescribed limits. 

Actually the line about which we are talking is the centroidal line which passes from the centroid of the curve 
and parallel to y-axis. 

 

 

Here the curve explains the the change in the x as there is a enclosed figure ABCD and the x varies from x1 to 

x2. 

 
 

III. Change In Varible: 
Consider the second case when the x is dependent on y and y is a dependent variable. 

1.2 TAKING X AS VARIBLE: 

Similarly we have the same curve as f(x, y) so here we will integrate the x first as it is a dependent variable and 

then y over the prescribed limits 
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  𝑓 𝑥, 𝑦  𝑑𝑦 𝑑𝑥 =
𝑓2(𝑦)

𝑓1(𝑦)

𝑏

𝑎

 

So we will first integrate by taking x as variable. So we get 

 𝑔 𝑦 𝑑𝑦
𝑏

𝑎

 

Here the curve g(y) is a line which is parallel to x axis which has to be integrated along the y axis limits that is 

from y=a to y=b. 

Actually the line about which we are talking is the centroidal line which passes from the centroid of the curve 

and parallel to x-axis. 

  

1.3 PLOTTING OF FIGURE: 

Here the figure explains the variation of y from y1 to y2 along the figure ABCD as here the x varies from y1 to 

y2.  

 

 
Now consider the case of triple integral in this case we have three variables x, y and z. 

Then take the case in which we have 

   𝑓(𝑥, 𝑦, 𝑧) 
𝑔2(𝑥,𝑦)

𝑔1(𝑥,𝑦)

𝑓2(𝑥)

𝑓1(𝑥)

𝑏

𝑎

𝑑𝑥 𝑑𝑦 𝑑𝑧 

: 

2. TRIPLE INTEGRAL: 

The in this case we can have two curves as if we convert the triple integration to a double integral considering 

either x or y or z as constant variable and the other as the dependent variable. 

 

2.1 CONVERSION TO DOUBLE INTEGRALS: 

So if we convert in double integral then, 

                    𝑚 𝑥, 𝑦 𝑑𝑥 𝑑𝑦
𝑓2(𝑥)

𝑓1(𝑥)

𝑏

𝑎
            e.q.2 

Here the f(x, y, z) is actually a space region or we can say a three dimensional space. Also we can say that the 

function m(x, y) is the plane which is actually parallel to x-y plane. 

2.2 CONVERSION TO SINGLE INTEGRAL: 

Also again if again we convert the equation in to single integral then again we can say that it is a equation of a 
line parallel to axis either x or y depending on the dependent variable. 

 If we write the equation 2 as  

  𝑚 𝑦, 𝑧  𝑑𝑦 𝑑𝑧
𝑓2(𝑦)

𝑓1(𝑦)

𝑏

𝑎
  

Then we say that the dependent variable here is x and the curve m(y, z) is parallel to the y-z plane and also 

passes from the centroidal plane of that region. Again taking the integral and converting to single integral then 

the curve is parallel to any axis depending to the variable which is dependent, if the dependent variable is y then 
the curve formed is parallel to y axis otherwise x-axis. 

3.3.CHANGE IN  VARIBLES: 

 Similarly we can define the other condition  

  𝑚 𝑥, 𝑧 𝑑𝑥 𝑑𝑧
𝑓2(𝑥)

𝑓1(𝑥)

𝑏

𝑎

 

2.4 Here dependent variable is y and the curve m(x, z) is parallel to the plane x-z and also passes from the 

centroidal plane of the three dimensional space. again taking the integral then we convert to single integral then 

the curve is again a line parallel to any axis depending on the dependent variable. 
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Here the case is taken in which the plane is formed by the three equations and also the plane formed by 

theequation when there is the case of forming the double integrels then the the plane is parallel to the main x-y-z 

plane and passes from the centroid of the figure .  

 

3. APPLICATION ON NTH INTEGRAL: 

This condition of applying the concept can be used for nth integral as in this case let we have there is 

nth dimensional plane and if we take the integral of that then the curve which is formed is nothing but the figure 

which actually consists of the centroidal figure of the main nth degree equation figure. 

  ……………… 𝑓 𝑥, 𝑦, 𝑧, …… .  𝑑𝑥 𝑑𝑦 𝑑𝑧……… . .
𝑏2(𝑥,𝑦,𝑧………..)

𝑏(𝑥,𝑦,𝑧……… )

𝑓2(𝑥)

𝑓1(𝑥)

𝑏

𝑎

 

 

Then if we take integral of this case then the figure we get, is the figure which covers the centroidal figure of the 

main figure and parallel to any of the figure formed by the mixture of the independent variables. 

 

IV. Conclusion 
This paper consist of the method through which we can relate the concept of integrals to the mechanics. 

If we solve the integral then the figure we get, is the figure which covers the centroidal figure of the main figure 

and parallel to any of the figure formed by the mixture of the independent variables. 

This concept is applied in the various fields of mechanics and fluid mechanics. 
There can be certain limitations to this concept as it is difficult to analyze the figure regarding the nth 

order integral when in the future when the nth dimension will be defined this concept can be applied there for 

finding out the center of gravity etc. 
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 Abstract : Using Deissler’s approach, the decay for the concentration of a dilute contaminant undergoing a 

first-order chemical reaction in dusty fluid homogeneous turbulence at times prior to the ultimate phase for the 

case of multi-point and multi-time is studied. Here two and three point correlations between fluctuating 

quantities have been considered and the quadruple correlations are ignored in comparison to the second and 

third order correlations. Taking Fourier transform the correlation equations are converted to spectral form. 

Finally, integrating the energy spectrum over all wave numbers we obtained the decay law for the concentration 
fluctuations in a homogeneous turbulence prior to the final period in presence of dust particle for the case of 

multi-point and multi-time.  
Keywords: Deissler’s method, Dust particle, First order reactant, Navier-Stock’s equation, Turbulent flow. 

 

I. INTRODUCTION  
Chemical kinetics deals with the rates of chemical reactions and with how the rates depend on factors 

such as concentration and temperature. Such studies are important in providing essential evidence as to the 

mechanisms of chemical processes. The essential characteristic of turbulent flows is that turbulent fluctuations 
are random in nature. Chemical reactions occur in the gas phase, in solution in a variety of solvents, at gas-solid 

and other interfaces, in the liquid state, and in the solid state. It is sometimes convenient to work with amounts 

of substances instead of with concentrations. Experimental methods, some of them very sophisticated, have been 

developed for studying the rates of these various types of reaction and even for following very rapid reactions 

such as explosions. Theoretical treatments also have been worked out for the various types of reaction. 

Experiments of this kind can be referred to as “bulk” or “bulb” experiments. Chemical reaction as used in 

chemistry, chemical engineering, physics, fluid mechanics, heat and mass transport. The mathematical models 

that describe chemical reaction kinetics provide chemists and chemical engineers with tools to better understand 

and describe chemicals processes such as food decomposition, stratospheric ozone decomposition, and the 

complex chemistry of biological systems. In recent year; the motion of dusty viscous fluids in a rotating system 

has developed rapidly. The motion of dusty fluid occurs in the movement of dust –laden air, in problems of 
fluidization, in the use of dust in a gas cooling system and in the sedimentation problem of tidal rivers. The 

behavior of dust particles in a turbulent flow depends on the concentrations of the particles and the size of the 

particles with respect to the scale of turbulent fluid. 

 Following Deissler’s approach [1, 2], the two-point, two-time correlations are obtained by considering 

the equation for the concentration of a dilute contaminant undergoing a first order chemical reaction. In order to 

solve the equations for the final period, the triple order correlation terms are neglected in comparison to the 

second-order ones. Loeffer and Deissler [3] used the theory, developed by Deissler [1, 2] to study the 

temperature fluctuations in homogeneous turbulence before the final period. In the study of homogeneous fluid 

turbulence a method is describing theoretically the concentration fluctuations of dilute contaminant a first order 

reactant prior to the ultimate phage of decay by Kumar and Patel [4]. Kumar and Patel [5] extended their 

problem [4] for the case of multi-point and multi-time concentration correlation. In [6], Sarker and Kishore 
studied the decay of MHD turbulence at times before the final period using Chandrasekhar’s relation [7].Sarker 

and Islam [8] discussed the decay of MHD turbulence before the final period for the case of multi-point and 

multi-time. Aziz et al. [9] also extended their previous problem in presence of dust particle. Corrsin [10] 

obtained on the spectrum of isotropic temperature fluctuations in isotropic turbulence. Azad et al. [11] obtained 

first order reactant in magneto-hydrodynamic turbulence before the final period of decay in presence of dust 

particles. Azad et al. [12] also studied the statistical theory of certain distribution functions in MHD turbulent 

flow for velocity and concentration undergoing a first order reaction in a rotating system.  

 In this work, we studied the fluctuation of concentration of a dilute contaminant undergoing a first-

order chemical reaction in homogeneous dusty fluid turbulence prior to the final phase of decay for the case of 
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multi-point and multi-time. Here, we have considered two-point and three-point correlation equations and 

solved these equations after neglecting fourth-order correlation terms. Finally we obtained the decay law of 

energy fluctuations of concentration of dilute contaminant undergoing a first order chemical reaction for the 

case of multi-point and multi-time in homogeneous dusty fluid turbulence comes out to the form  
2X  .)exp()exp(-2RT 52/3

m
  mm BTfQAT   

where 2X  denotes the concentration fluctuation energy. It is seen that the demolition of the impurity is more 

rapid than that in the case of pure mixing. This result has been shown in the figure also.  

 

II. BASIC EQUATION  
 The differential equation governing the concentration of a dilute contaminant undergoing a first-order 

chemical reaction in dusty fluid homogeneous turbulence could be written as 

i
kk

i

kk

i
k

i Ru
xx

u

x

p

x

u
u

t

u



















 2
1




)( ii vuf                                                                                    (1)  

 The subscripts can take on the values 1, 2, and 3. Here, )ˆ(xui   is a random function of position and 

time at a point p, ),ˆ( txuk =turbulent velocity, R=constant reaction rate, D =diffusivity, t= time, 

mki =alternating tensor, m =constant angular velocity components, 


kN
f 

, dimension of frequency, 

N=constant number density of dust particle, 
sss Rm 

3

3

4
 , mass of single spherical dust particle of 

radius sR , s =constant density of the material in dust particle, ),ˆ( txp Pressure fluctuation,  Fluid 

density,  Kinematics viscosity, ku =turbulent velocity component, iv = dust particle velocity component, 

kx = space-coordinate, and repeated subscript in a term indicates a summation of terms, with the subscripts 

successively taking on the values 1, 2, 3.  

 

III.            TWO-POINT, TWO-TIME CORRELATION AND SPECTRAL EQUATIONS 
 Under the limitations that (i) the turbulence and the concentration fields are homogeneous (ii) the 

chemical reaction and the local mass transfer have no effect on the velocity field and (iii) the reaction rate and 

the diffusivity are constant, differential equation governing the concentration of a dilute contaminant undergoing 

a first-order chemical reaction we take the Navier-Stokes equations at the point P and the concentration equation 

at P and separated by the vector r̂  could be written as  

RX
xx

X
D

x

X
u

t

X

kkk

k 












 2

                                                                                                                           (2) 
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X
D

x

X
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t

X

kkk
k 













 2
                                                                                                                        (3) 

where ),ˆ( txX   is a random function of position and time. The other symbols are as usual.  

Multiplying equation (2) by X  , equation (3) by X, and averaging, we get  

XXR
xx

XX
D

x

XXu

t

XX

kkk

k














 2                                                                                                             (4)      

XXR
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x

XXu

t

XX
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













 2

                                                                                                              (5) 

where the conditions of continuity and the fact that the quantities at a point at a particular time are independent 

of the positions at the other points have been utilized.    

Using the transformations. 
tttttrxrx tkkkk 









































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





,,, ,   

 in to equations (4) and (5), we obtains  
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                                                      (6) 
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
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),,ˆ(                                                                                     (7) 

In order to reduce Eqs. (6) and (7) to spectral form by using three-dimensional Fourier transform  



Homogeneous Dusty Fluid Turbulence In A First Order Reactant For The Case Of Multi Point And  

www.iosrjournals.org                                                             41 | Page 






 kdrkittkttrXX ˆ)ˆ.ˆexp(),,ˆ(),,ˆ(                                                                                                               (8) 






 kdrkittkttrXX k
ˆ)ˆ.ˆexp(),,ˆ(),,ˆ( 

.                                                                                                           (9) 

We get  

),,ˆ()(),,ˆ()22( 2 tttkkittkikRDk
t

kkkkk 





  ,                                                (10) 

),,ˆ()( 2 tttkikRDk
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kk 





 .                                                                                         (11) 

                                        

IV.     Solution for the Ultimate Phase of Decomposing Turbulence 
 For the ultimate phase of homogeneous turbulence decompose, the third-order correlations can be 

ignored in comparison to the second-order correlations, with this approximation the solutions of Eqs. (10) and 

(11) may be obtained as  

)])(22(exp[),ˆ( 0
2

1 ttRDktkf                                                                                                               (12) 

)].)(exp[),ˆ( 2
2 tRDktkf                                                                                                                         (13) 

 For consistent solution of Eqs (12) and (13) we must have  

)]
2

)(22exp[()()( 0
2 t

ttRDkkfkG


 .                                                                                                    (14) 

where  22)( kkG   is the concentration spectrum function. We evaluate ƒ (k) by Corrsion [10] 

 i.e. ƒ (k) = Nok
2|   .where 0N  is a constant depend on initial condition. Thus, we obtain  
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                                                                                                   (15) 

By integrating equation (15) with respect to k, we obtain 

),ˆ( mtrXX   = 
2/3

2/1

)(44 om

o

tt

DN


 exp 






























)(8

)(2 2

om

om

ttD

rttC
   ,    where 2/tttm  .                       (16)  

 

V.          Three-point, Three-time Correlation and Spectral Equations 
 Under the same assumptions as before, we take the Navier-Stokes equation for dusty fluid 

homogeneous turbulence at the point P and the concentration equations at P and P as 
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 Multiplying equation (17) by XX, (18) by Xui
  and (19) by Xui

 and then taking space averages, we 

obtain. 
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Using the transformations  
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Into equations (20)-(22), we get 
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Using the six-dimensional Fourier transform of the type  
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and the assumption that the quintuple correlations representing the transfer terms in equations (23)-(25) can be 

neglected as they decay faster than the lower-order correlation terms. Then the equations (23) - (25) in Fourier 
space can be written as  
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where DN s / , the Schmidt number and lil vXXLvXX   , 1-L=Q. 

 As the pressure force terms are related to higher-order correlations, therefore, these along with the 

quadruple correlations are also neglected.  

Integrating equations (26)-(28) between to and t, we obtain  
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 where the subscript 0 refers to the value of i  at t = to, t = t = 0 and   is the angle between k 

and k  . The relation between i and i is given by  
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Substituting equations (30) and (29) into equation (10), we obtain   
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 where kd    is written as kddk  )(cos2 2   and the quantity 0)( i  depends on the initial 

conditions of the turbulence. Now, following Deissler [1, 2], we take  
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Substituting equation (33) in (32) and completing the integration, we get 
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 This represents the transfer function arising due to the consideration of concentration at three- point 

and three- time. When t = 0 and R = 0, the expression for reduces to the case of pure mixing .It may also be 

noted that (for t = 0) 

0.
0
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dkW                                                                                                                                                         (35) 

 This means that the conditions of continuity and homogeneity are satisfied. Physically, it was to be 

expected as W is a measure of the energy transfer and the total energy transferred to all wave numbers must be 
zero. With the help of equations (31) and (34), one can get 
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where, T = t - to. For ,2/TTTm  equation (37) becomes 
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If  0t ,then equation (38) reduces to the form 
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 Thus, the decay law for the concentration energy fluctuation of dusty fluid homogeneous turbulence in 

a first order reactant for multi-point and multi-time prior to the ultimate phase may be written as 
2X  .]fQ exp[)exp(-2RT 52/3

m
  mm BTAT                                                                                               (40)                     
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In equation (40) we obtained the concentration fluctuation energy of dusty fluid homogeneous turbulence. In the 

absence of dust particles the equation (40) becomes 
2X  .)exp(-2RT 52/3

m
  mm BTAT                                                                                                               (41) 

 Which was obtained earlier by Kumar and Patel [5].For large times, the last term of equation (41) 

becomes negligible and the decay law for the ultimate period becomes )()exp(-2RT 2/3

m



mAT which in the 

case of pure-mixing is similar to the law obtained by Corrsin [12]. 

 In Figs. 1-4 we observe that the variation of chemical reaction in presence of dust particle i.e. for exp 

(fQ) =.75, .50, .25, 0 causes significant changes in the concentration fluctuation decay of energy of 

homogeneous turbulence. In the presence of dust particles the energy decay of the fluid particles more rapidly 

which indicated in the Figs. 3-1 respectively. In Fig. 4, we observe that in the absence of dust particles energy 

decay more slowly than with the present of dust particles. It is noted that y1,y2,y3,y4,y5,y6 and y7 are solution 

curves of equation (40) but in the absence of dust particles y1,y2,y3,y4,y5,y6 , y7 are represented by  equation 

(41) at the different values of R and dust particles and plotted are shown  from Figs. 1 -3 and Fig. 4 respectively. 
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 Fig. 1.Energy decay curves for exp (Qf) = 0.75.              Fig. 2.Energy decay curves for exp (Qf) = 0.50. 
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Fig. 3.Energy decay curves for exp (Qf) = 0.25.              Fig. 4.Energy decay curves for exp (Qf) = 0. 

                                                   

VII.           CONCLUSION 
In the case of pure mixing, the concentration fluctuation decays with time in a natural manner. This 

study shows that if the concentration selected is the chemical reactant of the first order, then the effect is that the 

decomposition of the concentration fluctuation in homogeneous turbulence in the presence of dust particle for 

the case of multi-point and multi-time is much more rapid and the faster rate of decomposition is governed 

by )exp(-2RTm .The decomposition of the concentration fluctuation in homogeneous turbulence is more slowly 

due to the absence of dust particles than any other type of chemical reactant as stated above.  In a normal way, it 

takes a lot of time to get rid of a pollutant in the fluid. From the above figures and discussion, we conclude that 

in the absence of dust particles energy decay of the fluid particles more slowly but in the presence of dust 

particles the decomposition of the concentration fluctuation for the case of multi-point and multi-time in 
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homogeneous turbulence are decreases due to the increases of the first order chemical reaction and maximum at 

the point where the chemical reaction is zero. 
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Abstract: The superimposition of infinite number of intervals [a1, b1], [a2, b2], [a3, b3],......., [an, bn] follows two 

laws of randomness if 

(a) ai ≠ aj; i,j= 1, 2,......, n, 

 (b) bi ≠ bj; i,j= 1, 2,......, n, 

                                                         (c) max(ai) ≤ min(bi); i= 1, 2,..., n,  where n→ ∞ 
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I.          Introduction 

Construction of normal fuzzy number has been discussed in ([1], [2]) based on the randomness – 

fuzziness consistency principle deduced by Baruah ([3], [4], [5]). Based on this aforesaid principle by including 

two more conditions which are not mentioned by Baruah, we have shown that if we superimpose infinite 

number of intervals [a1, b1], [a2, b2], [a3, b3],......., [an, bn], then the values a(1), a(2), .... , a(n) follows an uniform 

probability distribution function and the values b(1), b(2),.... , b(n) follows an another complementary uniform 

probability distribution function where a(1), a(2), .... , a(n) and b(1), b(2), .... , b(n) are arranged in increasing order of 

magnitude of a1, a2, a3, ......., an and b1, b2, b3, ......., bn respectively. If α = min(ai), β = max(ai), µ = min(bi), γ = 

max(bi), by satisfying the condition ai ≠ aj, bi ≠ bj and max(ai) < min(bi); i,j= 1, 2,......, n, then we can define the 

function  x  as 
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

 

Where Ψ1(x) being a continuous distribution function in the interval [α, β], and (1- Ψ2(x)) being a continuous 

distribution function in the interval [µ, γ], with Ψ1 (α) = Ψ2 (γ) = 0 and Ψ1 (β) = Ψ2 (µ) = 1. 

 

II.         The Operation Of Set Superimposition 

The operation of set superimposition of two real intervals  11,ba  and  22 ,ba  as 

                                            
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Where            211212211 ,min,,max,,min bbbaaaaaa  and    212 ,max bbb  .Here we have 

assumed without any loss of generality that 21 aa  , 21 bb  and    2211 ,, baba   is not void or in other 

words that     2,1,minmax  iba ii   
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Figure2: Cumulative and complementary cumulative distribution functions 
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where, for example      
3

2

21 , yy  represents the interval     21 , yy  with probability 2/3 for all elements in the 

entire interval,      321 ,, xxx  being values of 321 ,, xxx  arranged in increasing order of magnitude, and 

similarly      321 ,, yyy  being values of 321 ,, yyy  arranged in increasing order of magnitude again. We here 

presumed that      332211 ,,, yxyxyx   is not void and 321 xxx  and 321 yyy  . 
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Where, for example,      n
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interval, a(1), a(2),......., a(n) being values of a1, a2,.......an arranged in increasing order of magnitude, and  b(1), 

b(2),......., b(n) being values of b1, b2,.......bn arranged in increasing order of magnitude. Thus for the intervals 

      ,,,........,,,
11

22

1

11
n

nn
nn bababa  all with uniform probability 

n

1
, the probabilities of the superimposed 

intervals are 
nn

n

n

n

nn

2
.....,,

1
,1,

1
......,,

2
,

1 
 and 

n

1
. These probabilities considered in two halves as  








 
1,

1
......,,

2
,

1
,0

n

n

nn
 

and 








 
0,

1
,

2
........,,

1
,1

nnn

n
 

would suggest that they can define an empirical distribution and a complementary empirical distribution on 

naaa .........,,, 21  and nbbb .........,,, 21  respectively. In other words, for realizations of the values of a(1), 

a(2),......., a(n) in increasing order and of  b(1), b(2),......., b(n) again in increasing order, we can see that if we define 
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Then the Glivenko – Cantelli Lemma on Order Statistics assures that 
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where     xx ,,1  and     xx ,2 are two probability distributions. Here in this case we 

have considered that max(ai) ˂ min(bi), but for large number of observation when max(ai) = min(bi) that is β = µ 

then a(n) = b(1) and we can write   
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 where     xx ,,1  and     xx ,2  are two probability distributions. 

 

III.           CONCLUSION 
 The superimposition of an infinite number of intervals [a1, b1], [a2, b2], [a3, b3],......., [an, bn] by 

satisfying the conditions ai ≠ aj, bi ≠ bj and max(ai) ≤ min(bi); i,j= 1, 2,......, n, follows two laws of randomness, 

one of which is a(1), a(2), .... , a(n) follows an uniform probability distribution function and the other one is b(1), 

b(2),.... , b(n) follows an another complementary uniform probability distribution function where a(1), a(2), .... , a(n) 

and b(1), b(2), .... , b(n) are arranged in increasing order of magnitude of a1, a2, a3, ......., an and b1, b2, b3, ......., bn 

respectively. If  α = min(ai), β = max(ai), µ = min(bi), γ = max(bi) and max(ai) ˂ min(bi), then we can define the  

function  x  as 
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Where Ψ1(x) being a continuous distribution function in the interval [α, β], and (1- Ψ2(x)) being a continuous 

distribution function in the interval [µ, γ], with Ψ1 (α) = Ψ2 (γ) = 0 and Ψ1 (β) = Ψ2 (µ) = 1. 

 Again if max(ai) = min(bi), then β = µ and we can define the function  x  as 
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Where Ψ1(x) being a continuous distribution function in the interval [α, β], and (1- Ψ2(x)) being a continuous 

distribution function in the interval [β, γ], with Ψ1 (α) = Ψ2 (γ) = 0 and Ψ1 (β) = Ψ2 (β) = 1. 
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