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Abstract 

 

   In this paper, the discrete Adomian decomposition method (DADM) is applied 

to a fully implicit scheme of the generalized Burger’s–Huxley equation. The 

numerical results of two test problems are compared with the exact solutions. The 

comparisons reveal that the proposed method is very accurate and effective for 

this kind of problems. 
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1  Introduction 
 

   Nonlinear partial differential equations (NLPDEs) are encountered in various 

fields of science. Generalized Burger’s–Huxley equation (GBH) being one of the 

most famous NLPDE is of high importance for describing the interaction between 

reaction mechanisms, convection effects, and diffusion transports. Since there  
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exists no general technique for finding analytical solutions of nonlinear diffusion 

equations so far, numerical solutions of nonlinear differential equations are of 

great importance in physical problems. 

 The generalized Burger’s–Huxley equation investigated by Satsuma [16] in 

1987 is of the form 
2

2
(1 )( ),

u u u
u u u u

t x x

    
  

    
  

 , 0a x b t      (1) 

Subject to the initial condition 

( ,0) ( ),u x f x   a x b            (2) 

and the boundary conditions 

1( , ) ( )u a t f t , 2( , ) ( )u b t f t , 0t          (3) 

where , ,    and   are parameters, 0  , 0  , (0,1)  . 

 The GBH equation has received a great deal of attention by a wide variety of 

researchers. In Wang et al. [17] the solitary wave solutions of the GBH equation is 

studied. The non-classical symmetries and the singular modified solutions of the 

Burger and Burger’s–Huxley equation by Estevez [7]. Recently, various powerful 

methods have been applied to solve the GBH equation such as spectral methods 

[6,11], Adomian decomposition method [9,10], variational iteration method [1], 

homotopy analysis method [13], differential transform method [2], differential 

quadrature method [14], finite difference methods [3,12,15], Exp-function method 

[8], Haar wavelet method [5] and many others. 

 The discrete version of Adomian decomposition method was first proposed 

by Bratsos et al. [4] applied to discrete nonlinear Schrödinger equations. Zhu et al. 

[18] have developed the DADM to 2D Burgers’ difference equations. In this study, 

the DADM is implemented to nonlinear difference scheme of  generalized 

Burger’s–Huxley equation. The obtained results of two test problems are 

compared with the exact solutions to verify the efficiency and accuracy of the 

proposed method. 

 

 The paper layout is as follow: Section 2 deals with the application of the 

DADM to nonlinear difference scheme of the GBH equation. In Section 3, we 

present two test examples of the GBH equation with numerical illustrations. 

Section 4 concludes the paper. 

 

2  Discrete Adomian decomposition method 
 

   To apply the DADM to Eq. (1) with initial condition (2), we formulate the 

following fully implicit scheme: 
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 We denote the discrete approximation of ( , )u x t  at the grid point ( , )ih n  

by n

iu  ( 0,1,2, , ; 0,1,2, )i N n  , where 1h N  is the spatial step size 

and   represents time increment. 

Consider the above scheme written in an operator form as 

      
1 2 1

1 1 2 1 1 1 11n n n n n n n

i i h i h i i i iD u u D u D u u u u
  

    
 

            
  

(5) 

with the initial condition 
0

i iu f .              (6) 

The linear operator D

  denote the forward difference approximation, i.e., 

 11n n n

i i iD u u u


               (7) 

The first and second order central difference approximations, denoted by hD  

and 2

hD , respectively, are given by 

 1 1 1

1 1

1
,

2

n n n

h i i iD u u u
h

  

     2 1 1 1 1

1 12

1
2 .n n n n

h i i i iD u u u u
h

   

       (8) 

The inverse discrete operator 1( )D

   is given by [4] 

1
1

0

( ) ,
n

n m

m

D w w 


 



                     (9) 

Using the above definition, we get 
1 0( ) .n n

i i iD D u u u 

                (10) 

Applying the inverse operator 1( )D

   to Eq.(5) yields 
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( ) ( ) 1 ( )
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i i i h i i
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i i
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 (11) 

Following the DADM, the discrete approximation n

iu  can be decomposed into a 

sum of components defined by the decomposition series 

,

0

n n

i i k

k

u u




              (12) 

The nonlinear operators    1 1,n n

i iM u N u 
 and  1n

iP u 
 are related to the 

nonlinear terms and can be decomposed by the infinite series of the so-called 

Adomian polynomials as follows 

       

   

1
1 1 1 1 1

0 0

2 1
1 1

0

, ,n n n n n

i i h i k i i k

k k

n n

i i k

k

M u u D u A N u u B

P u u C

 



 


    

 




 



   

 

 


  

(13) 
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Where ,k kA B  and kC  are the so-called Adomian polynomials that can be 

generated according to the following algorithms 

 

1

,

0 0

1
, 0

!

k
n

k ik

d
A M u k

k d








 

  
   

  
  

1

,

0 0

1
, 0

!

k
n

k ik

d
B N u k

k d








 

  
   

  
         (14) 

1

,

0 0

1
0

!
, .

k
n

k ik

d
C P u k

k d








 

  
   

  
  

 

Substituting (12) and (13) into (11) yields 
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(15) 

 

Each term of series (12) is given by the recurrence relation 

,0

n

i iu f  

 1 1 2 1 1 1 1

, 1 , ,

1

( ) ( ) 1 ( ) ( )

( ) , 0

n n n

i k k h i k k i k
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u D A D D u D B D u

D C k

   



            



 

     

   

(16) 

So, the practical solution for the -term approximation is 
1

,

0

, 1n

i k

k

u




  ,            (17) 

and the exact solution is 

,

0

lim .n n

i i k

k

u u





             (18) 

The first three components of Adomian polynomials ,k kA B  and kC  read 
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3  Numerical experiments 
 

   In this section, we will give two test examples of the GBH equation to verify 

the efficiency and measure the accuracy of the DADM solutions in comparison 

with the exact solution and we will use Maple 16 software to obtain the numerical 

results. 

 

Consider the GBH equation [9]: 
2

2
(1 )( ),

u u u
u u u u

t x x

    
  

    
  

 0 1, 0x t      (19) 

 

with the initial condition 
1

( ,0) tanh( ) ,
2 2

u x x


 


 

  
 

          (20) 

and the boundary conditions 
1

(1 )( )
(0, ) tanh ,

2 2 1 2(1 )
u t t
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1

(1 )( )
(1, ) tanh 1 ,

2 2 1 2(1 )
u t t



      


 

       
        

       

   (22) 

where ( ) 4(1 )         and 2 4 (1 )        

and the exact solution is given by 
1

(1 )( )
( , ) tanh .

2 2 1 2(1 )
u x t x t



      


 

       
        

       

  (23) 
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Example 1. We consider Eq. (19) with 40.001, 1, 10         and 0.1h   

The absolute errors for various values of , t  and x are given in Table 1. We 

plot in Fig. 1 the absolute error for the values 0.001,   1,     410   

and 0.1h  . 

 

Table 1: The absolute errors using 3  for various values of , t  and x with 

0.001, 1      

 

t  x  1    2   4   8   
 0.1 1.87406E–08 8.74970E–07 6.13597E–06 1.66019E–05 

0.05 0.5 1.87406E–08 8.74894E–07 6.13465E–06 1.65954E–05 

 0.9 1.87406E–08 8.74818E–07 6.13333E–06 1.65888E–05 

      

 0.1 3.74812E–08 1.74995E–06 1.22721E–05 3.32047E–05 

0.1 0.5 3.74812E–08 1.74980E–06 1.22695E–05 3.31916E–05 

 0.9 3.74812E–08 1.74964E–06 1.22668E–05 3.31784E–05 

      

 0.1 3.74812E–07 1.75012E–05 1.22751E–04 3.32195E–04 

1 0.5 3.74812E–07 1.74997E–05 1.22724E–04 3.32063E–04 

 0.9 3.74812E–07 1.74982E–05 1.22698E–04 3.31932E–04 

 

 

 
Fig. 1 The absolute error of 3  with 0.001,   1,     410   and 0.1h   
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Example 2. We consider Eq. (19) with 40.1, 0.001, 10         and 

0.1h  . The absolute errors for various values of , t  and x are given in  

Table 2. We plot the absolute error in Fig. 2 for the values 0.1,    
40.001, 1, 10       and 0.1h  . 

 

Table 2: The absolute errors using 3  for various values of , t  and x with 

0.1, 0.001      

 

t  x  1    2   4   8   

 0.1 1.36075E–07 6.45516E–07 1.46880E–06 2.31838E–06 

0.05 0.5 1.36075E–07 6.45412E–07 1.46816E–06 2.31632E–06 

 0.9 1.36075E–07 6.45308E–07 1.46751E–06 2.31425E–06 

      

 0.1 2.72151E–07 1.29103E–06 2.93761E–06 4.63678E–06 

0.1 0.5 2.72151E–07 1.29082E–06 2.93632E–06 4.63265E–06 

 0.9 2.72151E–07 1.29062E–06 2.93503E–06 4.62851E–06 

      

 0.1 2.72151E–06 1.29105E–05 2.93769E–05 4.63706E–05 

1 0.5 2.72151E–06 1.29084E–05 2.93640E–05 4.63293E–05 

 0.9 2.72151E–06 1.29063E–05 2.93511E–05 4.62879E–05 

 

 
Fig. 2 The absolute error of 3  with 0.1,    

40.001, 1, 10       and 

0.1h   
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4  Conclusions 
 

   In this paper, the DADM is proposed for the generalized Burger’s–Huxley 

equation. The obtained results, reported in Tables 1 and 2, reveal that the 

proposed method is very reliable, accurate and simple tool to solve the GBH 

equation and can be applied to other nonlinear problems.     
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