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Abstract: 

In this paper, introduced squeeze films characteristics in the poiseuille flow. 

Depended on The Reynolds equation for speed molecules and squeeze action is 

mathematically derived. The research focused on a study friction force between 

layers, center of pressure and rate of flow. It found increases speed molecules for 

first layers lead to increased friction force, rate of flow pressure and decreed center 

of pressure. 
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I INTRODUCTION 

Thin films are described by thin layers of 

materials whose dimensions range from 

nanometres to several micrometres in thickness. 

They are added to the surface of the material in 

order to add properties that were not there before, 

such as durability, various loads, reducing friction 

and corrosion. This technology is used in the 

manufacture of semiconductors and in coatings 

[1]. They are exercised to memorize surfaces from 

wear, recover lubricity, improve attrition and 

chemical resistance, modify optical and electrical 

properties. Thin films deposition technology and 

the science have progressed rapidly in the 

direction of engineered thin film coatings have 

surface engineering [2]. Plasmas are used more 

extensively. Accordingly, advanced thin film 

deposition processes have been developed and 

new technologies have been adapted to 

conventional deposition processes. The market 

and applications for thin film coating have also 

increased astronomically, particularly in the 

biomedical, display and energy fields. Thin films 

have distinct advantages on porosity materials [3]. 

A thin film is a structure whose dimensions are 

such that it has a substantially large surface to 

volume ratio. For example, while the structure 

may be macroscopically large in length and width, 

it may have a thickness that is only on the order of 

a micron or less. Thin films do not have to be 

h Film thickness x, y Coordinates along the direction 

Β Porosity of thin film P Pressure in thin film 

U Sliding motion ρ Density 

V Squeeze action µ Viscosity of thin film 

Us  Infusion of molecules  fh  Flexibility of the thin film 

hm  Minimum film thickness  R Radius  

W Load carrying capacity T Time flow 
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planer. The properties of such thin film structures 

are strongly influenced by the surface properties 

and may be very different from that of the same 

material in bulk form. The thin films may consist 

of a pure material, or a composite or a layered 

structure, and several of thin films may be present 

in a more complex device. Each thin film feature 

is dependent on the porosity process and can be 

modified and not all processes produce materials 

with the same porosity and permeability of thin 

layers. Therefore, we found each thin layers have 

different load carry capacity, time approach that 

transfer film thickness to minimum film thickness 

[4]. 

 
II ANALYSIS 

Based on Reynolds' equation, we can study the 

effect of some factors on the work of thin films, 

our study is on thin films in a case poiseuille flow 

when the surface fixed, now the Reynolds' 

equation is 

 

𝜕

𝜕𝑥
 
𝑝ℎ3

12µ

𝑑𝑝

𝑑𝑥
 +

𝜕

𝜕𝑦
 
𝑝ℎ3

12µ

𝜕𝑝

𝜕𝑦
 = 𝜌

 𝑈𝑎+𝑈𝑏  

2

𝜕ℎ

𝜕𝑥
+ (𝑉2 −

𝑉1) + ℎ
𝜕𝑝

𝜕𝑧
+ 𝐹ℎ(1) 

 

The first and two terms of the equation (1) are 

the poiseuille flow. The three is hydrodynamic 

and four terms squeeze film. The fife is local 

expansion. In addition, the six is flexibility of the 

thin film, we need to satisfy the following 

boundary condition, at the inlet P=0 &At the 

outlet𝑃 =
𝑑𝑝

𝑑𝑥
= 0, the motion assumed as pure 

sliding and squeeze term and applying the last 

assumptions equation (1)becomes 

d

dx
 

h3

µ

dp

dx
 = 6  U 

dh

dx
+ 12 V + 12Fh   (2) 

Such that U= Ua + Ub &V= V2 − V1 , 

Equation above can be integrated with 

consideration to x to give 

h3

µ

dp

dx
= 6Uh + 12Vx + 12Fh  x + A (3) 

Such that A is constant. So as to solve the 

Reynolds equation the integral A should be 

determined depended on boundary condition  
dp

dx
= 0   at   h = h0  , x = o.HenceA =

−6Uh0replace this into equation (3) gives   
dp

dx
= 6Uµ

 h−h0 

h3 +
12Vµx

h3 + 12
Fh µ

h3 x  (4)    

h = h0 +
x2

2R
  (5)    

Whereh0film thickness & x is: coordinate 

Now replace equation (5) in equation (4) 

dp

dx
= 6uµ

  h0+
x2

2R
 − h0+

x2

2R
  

 h0+
x2

2R
 

3 +
12Vµ

 h0+
x2

2R
 

3  x +

12Fh µ

 h0+
x2

2R
 

3 x (6) 

tan β =
x

 2R h0
(7) 

Replace equation (7) in equation (5) yields to 

h = h0 1 + tan2 β (8)  

h = h0 sec2 β    (9) 

Now distinguishing x and p with respect to β for 

equation (7) 
∂x

∂β
 = 2Rh0 sec2 β  (10) 

∂p =  6Uµ
 h0 sec 2 β−h0 sec 2 β 

h0
3 sec 6 β

+
12Vµ

h0
3 sec 6 β

x +

12Fhµh03sec6βx∗2Rh0sec2β ∂β(11) 

 

2.1. Dimensionless friction force 

To write modified Reynolds equation governing 

in the film pressure introducing the following 

dimensionless variables  
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𝑃∗ =
𝑃𝐻0

2

µ𝑈𝑜𝑅
 ℎ0

∗ =
ℎ0

𝐻
 𝑈∗ =

𝑈

𝑈𝑜
 

𝑉 =
𝑉

𝑈𝑜
 𝛽 =

𝑅

ℎ
 𝛽 =

𝑐 

𝛼
 

𝐹ℎ =
𝑅

ℎ
 𝑥∗ =

𝑥

𝐻
 𝑈𝑠

∗ =
𝐹ℎ
𝑈0

 

The dimensionlessPressure equation become 

P∗ =
6 2U∗

(h0
∗)

3
2

 
13

2
+

sin 2β

4
 −

6 2U∗

(h0
∗)

3
2

[sec2 β  
3

8
β +

sin 2β

4
+

sin 4β

32
 +

12V2

(h0
∗)

5
2

x∗ V∗ − Us
∗  

3

8
β +

1

4
sin 2β +

132sin4β(12) 

 

 

Friction force between layers thin and 

molecules are a very important factor, to find 

friction force depended on shear stress action of 

surface films (smooth – roughness). Assume that 

Newtonian fluid and Newton law of viscosity be: 

)
z

u
( µ



   [1]                                                                                          

(13) 

Where µis dynamic viscosity and the term )(
dz

du

velocity gradientof  zis obtained from the velocity 

distribution. 
𝜕𝑢

𝜕𝑧
=

1

µ

𝜕𝑃

𝜕𝑥
ℎ0

2  𝑍 −
ℎ

2
 +

𝑈𝐿

2
                                                                                

(14) 

µ
𝜕𝑢

𝜕𝑧
=

𝜕𝑃

𝜕𝑥
ℎ0

2  𝑍 −
ℎ

2
 +

𝑈𝐿

2
µ   (15) 

Now introduce friction force law of surface: 

𝐹 =
1

𝐿
 µ

𝜕𝑢

𝜕𝑧
𝑑𝑥    (16) 

𝐹𝐿 =  [
𝜕𝑃

𝜕𝑥
ℎ0

2  𝑍 −
ℎ

2
 +

𝑈𝐿

2
µ ]𝑑𝑥 

𝛽

0
  (17) 

Where (L) is length of thin film, the friction 

force is need on the two surfaces𝑍 = ℎ and 𝑍 = 0 

, writing Fh  for the first and F0for the second 

When 𝑍 = ℎ 

𝐹𝐿 =  [
𝜕𝑃

𝜕𝑥
ℎ0

2  
ℎ

2
 +

𝑈𝐿

2
 µ]𝑑𝑥 

𝛽

0
   (18) 

When 𝑍 = 0 

𝐹𝐿 =  [−
𝜕𝑃

𝜕𝑥
ℎ0

2  
ℎ

2
 +

𝑈𝐿

2
 µ ]𝑑𝑥 

𝛽

0
                                                                       

(19) 

With positive sign for z = h and u = U and the 

negative sign for the film then Z = 0 , U = 0 

𝐹𝐿 =  
𝜕𝑃

𝜕𝑥 ∗
ℎ0

2  
ℎ

2
 𝑑𝑥∗ +

𝑈𝐿

2
µ𝑅 𝑑𝑥∗

𝛽

0
 (20) 

𝐹𝐿

𝑈µ𝑅
=  

𝜕 

𝜕𝑥 ∗
𝑃ℎ0

3

𝑈µ𝑅

ℎ0
∗

2
𝑑𝑥∗ +

𝐿∗ℎ0

2
 𝑑𝑥∗

𝛽

0
                                                                 

(21) 

 𝐹ℎ

∗

=  
𝜕 𝑃∗

𝜕𝑥 ∗
ℎ0
∗

2
𝑑𝑥∗ +

𝐿∗

2
 𝑑𝑥∗

𝛽

0
                                                                            

(22) 

Derivative the dimensionless pressure 

hydrodynamic ( 𝑝∗) equation (12) we obtain 

𝜕𝑝∗

𝜕𝑥 ∗
=

12 2

ℎ0
∗

5
2

 𝑉∗ − 𝑈𝑠
∗  

3𝛽

8
+

𝑠𝑖𝑛 2𝛽

4
+

𝑠𝑖𝑛 4𝛽

32
                                                          

(23) 

Substitute equation (2.43) in equation (2.42), we 

get 

𝐹ℎ
∗ =

6 2

ℎ0
∗

3
2

 𝑉∗ −𝑈𝑠
∗  

3𝛽

8
+

𝑠𝑖𝑛 2𝛽

4
+

𝑠𝑖𝑛 4𝛽

32
  𝑑𝑥∗

𝛽

0
+

𝐿∗

2
 𝑑𝑥∗
𝛽

0
                            (24) 

𝐹ℎ
∗ =

6 2

ℎ∗
3
2

 𝑉∗ − 𝑈𝑠
∗  

3𝛽2

8
+

𝛽 𝑠𝑖𝑛 2𝛽

4
+

𝛽𝑠𝑖𝑛 4𝛽

32
 +

𝐿∗

2
𝛽 (25) 

In the same way we obtain force of friction when 

𝑍 = 0 

𝐹0
∗ =

6 2

ℎ∗
3
2

 𝑈𝑠
∗ − 𝑉∗  

3𝛽2

8
+

𝛽 𝑠𝑖𝑛 2𝛽

4
+

𝛽𝑠𝑖𝑛 4𝛽

32
 +

𝐿∗

2
𝛽 (26) 
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2.2. Dimensionless Centerof Pressure 

In general, the load carrying capacity is 

obtained by integration of the pressure distribution   

W = 2π H0P
L

0
 dx                                                                                                

(27) 

Introduce the non-dimensionless load carrying 

capacity in consideration 

W∗ =
W

µUo R
                                                                                                             

(28) 

Replace equation (28) inside (27) and we 

integrate dimensionless pressure with assessment 

to the dimensionless x and thus we get 

W∗ = 2π  P∗ dx∗
L

0
                                                                                                

(29) 

W∗ =
12π 2U∗L

(h0
∗ )

3
2

 
β

2
+

sin 2β

4
 +

12π 2U∗L

(h0
∗ )

3
2

sec2 β  
3β

8
+

sin 2β

4
+

sin 4β

23
 +

12 2L2

(h0
∗)

5
2

 V∗ − Us
∗  

3β

8
+

sin 2β

4
+

sin 4β

32
                             

(30) 

 

 

 

 

 

 

 

 

 

 

The location of the center of pressure cpx  

indicates the position at which the resulting force 

is acting. The expression for calculating the 

location is 

 

𝑊𝑥𝑐𝑝 =
1

Ω
 𝑃𝑥 𝑑𝑥
𝐿

0
                                          (31) 

Where Ω is radial clearance  

Substituting dimensionless distance (𝑥∗ =
𝑥

𝐿
) in 

equation (31) yields to 

𝑊𝑥𝑐𝑝Ω =  𝐻2  𝑝𝑥∗ 𝑑𝑥∗
𝐿

0
                                     

(32) 
𝑊𝑥𝑐𝑝 Ω

µ𝑈𝑅
=  

𝐿2𝑃

µ𝑈𝑅
𝑥∗ 𝑑𝑥∗

𝐿

0
                                         

(33) 
𝑊𝑥𝑐𝑝 Ω

µ𝑈𝑅
=  𝑝∗𝑥∗ 𝑑𝑥∗

𝐿

0
                                            

(34) 

Substituting pressure hydrodynamic equation (12) 

in equation (34) yields to 

𝑊𝑥𝑐𝑝
∗ =

3 2𝑈∗𝐿2

ℎ0

∗
3
2

 
𝛽

2
+

𝑠𝑖𝑛 2𝛽

4
 −

3 2𝑈∗𝐿2

ℎ
∗

3
2

𝑠𝑒𝑐2 𝛽  
3𝛽

8
+

𝑠𝑖𝑛 2𝛽

4
+

𝑠𝑖𝑛 4𝛽

32
 +

4 2𝐿3

ℎ0

∗
5
2

 𝑉∗ −𝑈𝑠
∗  

3𝛽

8
+

𝑠𝑖𝑛 2𝛽

4
+

𝑠𝑖𝑛 𝛽

32
                                                                                                          

(35) 

Introduce the formulacenter of pressure equation (𝑥𝑐𝑝 ) 

𝑥𝑐𝑝 =
𝑊∗

𝑊𝑥𝑐𝑝
∗                                                                                                           (36) 

After that divide the load carrying capacity represent in equation (30) on result of integration of the equation 

(35) .Therefore, the center of pressure can be written as 

x 

dx

x ℎ0 

𝛽 

Figure 2: Center of pressure  
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𝑥𝑐𝑝 =        

12 2𝜋𝐿𝑈∗ 
𝛽

2
+
𝑠𝑖𝑛 2𝛽

4
 

ℎ0

∗
3
2

−
12 2𝐿 𝑠𝑒𝑐 2 𝛽 

3𝛽

8
+
𝑠𝑖𝑛 2𝛽

4
+
𝑠𝑖𝑛 4𝛽

32
 

ℎ0

∗
3
2

+
12 2𝐿2𝜋 𝑉∗−𝑈𝑠

∗  
3𝛽

8
+
𝑠𝑖𝑛 2𝛽

4
+
𝑠𝑖𝑛 4𝛽

32
 

ℎ0

∗
5
2

3 2𝜋𝐿2𝑈∗ 
𝛽

2
+
𝑠𝑖𝑛 2𝛽

4
 

ℎ0

∗
3
2

−
3 2𝐿2 𝑠𝑒𝑐 2 𝛽 

3𝛽

8
+
𝑠𝑖𝑛 2𝛽

4
+
𝑠𝑖𝑛 4𝛽

32
 

ℎ0

∗
3
2

+
4 2𝐿4𝜋 𝑉∗−𝑈𝑠

∗  
3𝛽

8
+
𝑠𝑖𝑛 2𝛽

4
+
𝑠𝑖𝑛 4𝛽

32
 

ℎ0

∗
5
2

 

(37) 

 

2.3. Dimensionless Flow rate 

Flow defined as the quantity of fluid (gas and 

liquid) that passes a point per unit time. A simple 

equation to represent this is 

𝑄𝑥 =
Ω

𝑡
 𝑈 𝑑𝑧
ℎ

0
                            (38) 

 𝑈 =
1

2µ𝑉𝑖𝑛𝑠𝑡

𝜕𝑃

𝜕𝑥
 𝑍2 − 𝑍ℎ +  𝑈ℎ − 𝑈0 

𝑍

ℎ
                                                      

(39) 

WhereVinst : instantoneous veloety, substitute 

equation (39) in equation (38), we get  

𝑄𝑥 =
Ω

𝑡
 

1

2µ𝑉𝑖𝑛𝑠𝑡

𝜕𝑃

𝜕𝑥
 𝑍2 − 𝑍ℎ +

ℎ

0
 𝑈ℎ − 𝑈0 

𝑍

ℎ
 𝑑𝑧                                          

(40) 

ℎ∗ =
ℎ

𝐿
  ,𝑥∗ =

𝑥

𝑅
, 𝑧∗ =

𝑧

𝐿
,  𝑄𝑥

∗ = 𝑄𝑥
𝑡

Ω 𝑅
   (41) 

Now, by substitution equation (41) into equation 

(40), we obtain on dimensionless flow rate ( 𝑄𝑥
∗). 

𝑄𝑥
∗ =  

𝜕𝑝∗

2𝜕𝑥 ∗
 −𝑍∗2 + ℎ∗𝑍∗ 𝑑𝑧∗ +

ℎ

0
 𝑈ℎ −

𝑈0𝑍∗ℎ∗𝑑𝑧∗                                     (42) 

𝑄𝑥
∗ =

1

2

𝜕𝑝∗

𝜕𝑥 ∗
 
ℎ∗

3

6
 +  𝑈ℎ −𝑈0 

ℎ∗

2
                                        

(43) 

 From equation (23) and substitute in equation 

(43), we get 

𝑄𝑥
∗ =  2ℎ∗

1

2 𝑉∗ − 𝑈𝑠
∗  

3𝛽

8
+

𝑠𝑖𝑛 2𝛽

4
+

𝑠𝑖𝑛 4𝛽

32
 +

 𝑈ℎ − 𝑈0 
ℎ∗

2
   (44) 

III RESULT AND DISCUSSION 

Based on the Reynolds equation, this chapter 

discusses effective of properties of thin film in 

poiseuille flow. 

 

 

 

3.1. Center of pressure 

The dimensionless center of pressure (𝑥𝑐𝑝
∗ ) as a 

function of length (𝐿) for different values of the 

speed of molecules parameters  𝑈𝑠
∗ is shown in 

figure (3),it is observed that increasing the center 

of pressure for thin films lead to decreases values 

of the speed of molecules (𝑈𝑠
∗), explained that 

energy absorption increases with the increases 

motion of the molecules between layers of thin 

films and as a result decreasing the center of 

pressure, and relationship center of pressure with 

the difference of the speed of the molecules 

shown in the table (1). The different 

dimensionless center of pressure as a function of 

the length for different value of film thickness 

(ℎ∗)is seen in figure (4).  It is shown that the 

center of pressure ofincreases with decreases 

values of  ℎ∗0 , It is shown that the center of 

pressure ofincreases with decreases values of 

𝑈𝑠
∗ = 0.01 

𝑈𝑠
∗ = 0.03 

𝑈𝑠
∗ = 0.05 

 
 

 

Figure (3): The variation of dimensionless 

center of pressure (𝑥𝑐𝑝
∗ ) of with length (L) for 

various dimensionless speed of molecular 

(𝑈s
∗). 

ℎ∗0 = 0.7 

ℎ∗0 = 0.8 

ℎ∗0 = 0.9 

 

 

 

Figure (4): The variation of dimensionless 

center of pressure (𝑥𝑐𝑝
∗ ) of with length (L) for 

various dimensionless film thickness (ℎ0
∗
). 
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 ℎ∗0 . The dimensionless center of pressure (𝑥𝑐𝑝
∗ ) 

as a function of length of layers (𝐿) for different 

values of squeeze action parameters  𝑉∗ is shown 

in figure (5),It is shown that the center of pressure 

increases with increasing values squeeze 

action 𝑉∗ ,clear that external force generated 

hydrodynamic pressure  as previously explained 

in analysis of pressure ,physically with increasing 

squeeze action between layers become movement 

of particles low and center of pressure high. The 

dimensionless center of pressure (𝑥𝑐𝑝
∗ ) as a 

function of length of layers (𝐿) for different values 

of porosity parameters  𝛽 is shown in figure (6), 

It has shown that the center of pressure increases 

with decreasing values of porosity 𝛽 . When 

center of pressure increasing then volume of 

porosity on layers shrinks and this contraction 

varies from layer to layer. The different 

dimensionless center of pressure as a function of 

the length of layers for different valuesliding 

motion (𝑈∗) is seen figure (7). Sliding motion 

between layers occurs interaction between 

particulars fluid and members that it generated 

couple stress as a result curved pressure are high 

so center of pressure. The effect of the length of 

layers parameter 𝐿 on the variation of center of 

pressure (𝑥𝑐𝑝
∗ ) with porosity (𝛽)is shown in figure 

(8).It is shown that the center of pressure 

ofincreases with increasing values of length of 

layers of thin films 𝐿 . 

 

3.2 friction force  Illustrates dimensionless the friction force 

Figure (5): The variation of dimensionless 

center of pressure (𝑥𝑐𝑝
∗ ) of with length (L) 

for various dimensionless squeeze action 

(𝑉∗). 

𝑉∗ = 0.30 

𝑉∗ = 0.40 

𝑉∗ = 0.50 

 
 

F

i

g

u

r

e

 

(

2

.

3

)

:

 

T

h

e

 

v

Figure (6): The variation of dimensionless 

center of pressure (𝑥𝑐𝑝
∗ ) of with length (L) 

for various porosity (β). 

U∗ = 0.025 

U∗ = 0.050 

U∗ = 0.075 

 
 

 

Figure (7): The variation of dimensionless 

center of pressure (𝑥𝑐𝑝
∗ ) of with length (L) for 

various dimensionless sliding motion (𝑈∗). 

Figure (8): The variation of dimensionless 

center of pressure (𝑥𝑐𝑝
∗ ) of with Porosity (β) 

for various Length (L). 
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among thin of layers that consisting of atoms and 

molecules. The different dimensionless friction 

force as a function of the length for different value 

different speed of molecular (𝑈𝑠) be seen in figure 

(10). Friction strength between objects due to 

bumps or gaps between surfaces.When the 

velocity of the particles is high, the porosity of the 

membrane surfaces is also high and as a result the 

friction strength is high,the opposite occurs when 

the speed of the particles is low. As well as each 

film of layers different speed of molecules since 

hydrodynamic pressure, therefore friction force in 

one- film become very high then it starts to 

decrease with the other layers. See table (2)  

 

 

The different dimensionless friction force as a 

function of the length for different value of thin 

layers is seen in figure (11). When layers of film 

appears thickness this mean that pressure and load 

carrying low so friction force between layers this 

case it found in final layers while appears thin 

film since the high pressure these layers are 

exposedfirst layers which results in higher friction 

between the layers.The different dimensionless 

friction force as a function of the length for 

different squeeze action between layers is seen in 

figure (12). When squeeze action increasing in the 

first layers turns up thickness film to thin film as a 

result friction force increase an estimated rate of 

increase 90% while in final layers squeeze action 

less and on it   estimated rate friction force with 

65%. The different dimensionless friction force as 

a function of the length for different porosity is 

seen in figure (13).The protrusions on the surfaces 

of the membranes vary with the hydrodynamic 

pressure. The higher the pressure, the less 

protrusions and the less friction with them.at 

𝛽 = 0.05   estimated rate friction force with 70%.  

When  𝛽 = 0.01  estimated rate friction force with 

5%.The different dimensionless friction force as a 

function of the speed of molecular different length 

is seen in figure (14). When length increasing 

distribution pressure less this lead to low friction 

force compared to shorter surface. 

Classification Friction 

force  
 

Thin of layers 

 
 

 

 

 

atoms and particles 

 
 

 

 
 

Thin film differ 
 

Thin film constant 
 

Internal friction 

force 
External friction force 

Figure (9): phase friction in thin film 
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𝑈𝑠
∗ = 0.01 

𝑈𝑠
∗ = 0.03 

𝑈𝑠
∗ = 0.05 

 
 

 
Figure (10): The variation of dimensionless 

Friction force (𝐹∗) of with Length (𝑙∗) for 

different dimensionless speed of molecular 

(𝑈𝑠
∗) 

ℎ∗0 = 0.7 

ℎ∗0 = 0.8 

ℎ∗0 = 0.9 

 
 

 

Figure (11): The variation of dimensionless 

Friction force (𝐹∗) of with Length (𝑙∗) for 

different dimensionless film thickness (ℎ∗) 

𝑉∗ = 0.20 

𝑉∗ = 0.35 

𝑉∗ = 0.50 

 
 
 

Figure (12): The variation of dimensionless 

Friction force (𝐹∗) of with Length (𝑙∗) for 

different dimensionless squeeze action (𝑣∗) 

𝛽 = 0.01 

𝛽 = 0.03 

𝛽 = 0.03 

 
 

Figure (13): The variation of dimensionless 

Friction force (𝐹∗) of with Length (𝑙∗) for 

different porosity (𝛽). 

𝐿 = 1 

𝐿 = 2 

𝐿 = 3 

 

 
 

 

Figure (14): The variation of dimensionless 

Friction force (𝐹∗) of with dimensionless speed 

of moleculars (𝑈𝑠
∗) for different Length (𝐿) 
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3.3 Flow rate 

The dimensionless flow rate (𝑄𝑥
∗) as a function 

of dimensionless film thickness (ℎ∗) for different 

values of the dimensionless speed of 

particlesparameters (𝑈𝑠
∗)is shown in figure (15). 

After applying equation (44) in the computer 

program (Mathematica 11) noticed that the 

increasing of speed of particles decreases of flow 

rate, explained that the increases speed of particles 

leads to decreases pressure and this leads to 

increases sliding motion between layers and this 

mean increases flow rate. The dimensionless flow 

rate (𝑄𝑥
∗) as a function of porosity (β) for different 

values of the dimensionless film 

thicknessparameters (ℎ∗)is shown in figure (16). 

After applying equation (44) in the computer 

program (Mathematica 11) noticed that the 

increasing of film thickness (ℎ∗) increases of flow 

rate, explained that the increases film thickness 

leads to decreases pressure and this leads to 

increases sliding motion between layers and this 

mean increases flow rate. The dimensionless flow 

rate (𝑄𝑥
∗) as a function of dimensionless film 

thickness (ℎ∗) for different values of squeeze 

action (𝑉∗) is shown in figure (17). After applying 

equation (44) in the computer program 

(Mathematica 11) noticed that increasing of 

squeeze action (𝑉∗) increases flow rate. The 

dimensionless flow rate (𝑄𝑥
∗) as a function of 

dimensionless film thickness (ℎ∗) for different 

values of the porosity parameters (β)is shown in 

figure (18). After applying equation (44) in the 

computer program (Mathematica 11) noticed that 

the increasing of porosity increases of flow rate, 

explained that the increases porosity leads to 

decreases pressure and this leads to increases 

sliding motion between layers and this mean 

increases flow rate. 

The dimensionless flow rate (𝑄𝑥
∗) as a function 

of dimensionless film thickness (ℎ∗) for different 

values of the sliding motion between layers 

parameters  𝑈ℎ
∗ is shown in figure (19). After 

applying equation (44) in the computer program 

(Mathematica 11) noticed that the increasing of 

sliding motion between layers increases of flow 

rate, explained that the increasing of sliding 

motion between layers leads to increasing distance 

between the layers and this implies increasing film 

thickness. 

  

  

𝑈𝑠
∗ = 0.01 

𝑈𝑠
∗ = 0.03 

𝑈𝑠
∗ = 0.05 

 
 

 

Figure (15): The variation of dimensionless Flow 

rate (𝑄𝑥
∗) of with dimensionless film thickness (ℎ∗) 

for differentdimensionless speed of moleculars (𝑈𝑠
∗). 

ℎ∗ = 0.7 

ℎ∗ = 0.8 

ℎ∗ = 0.9 

 
 

 

Figure (16): The variation of dimensionless 

Flow rate (𝑄𝑥
∗) of with porosity (𝛽) for 

differentfilm thickness (ℎ∗). 
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Table 1 

 The different between dimensionless center of pressure (𝑥𝑐𝑝
∗ ) with the dimensionless pressure (P∗) for 

different the speed of molecules parameters  𝑈𝑠
∗  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The speed of molecules 

(𝑈𝑠
∗) 

The dimensionless pressure 

(P∗) 

The dimensionless center of 

pressure (𝑥𝑐𝑝
∗ ) 

0.01 4.83314 0.59955 

0.02 4.66343 0.536121 

0.03 4.44372 0.468727 

0.04 4.3240 0.396986 

0.05 4.2910 0.320462 

𝑉∗ = 0.20 

𝑉∗ = 0.35 

 𝑉∗ = 0.50 

  

  

  
Figure (17): The variation of dimensionless Flow 

rate (𝑄𝑥
∗) of with dimensionless film thickness 

(ℎ∗) for differentdimensionless aqueeze action 

(𝑉∗). 

𝛽 = 0.01 

𝛽 = 0.03 

 𝛽 = 0.05 

  

  

  

Figure (18): The variation of dimensionless 

Flow rate (𝑄𝑥
∗) of with dimensionless film 

thickness (ℎ∗) for differentporosity (𝛽) 

𝑈ℎ = 0.025 

𝑈ℎ = 0.050 

𝑈ℎ = 0.075 

 
 

 

Figure (19): The variation of dimensionless Flow 

rate (𝑄𝑥
∗) of with dimensionless film thickness (ℎ∗) 

for different dimensionlesssliding motion (𝑈ℎ
∗). 
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Table 2 

Relationship between friction force and speed of molecular with different layers of films 

 

 

 

 

 

 

 

 

 

 

 

IV CONCLUSION 

1. The increasing speed of the particles 

results in absorption of energy low center 

of pressure. 

2. High squeeze action and sliding motion 

leading to an increase in the flow of liquid 

responsible for generating center of 

pressure. 

3. High center of pressure corresponds to the 

longest thin films, so high thickness film 

between layers makes the liquid flow less 

and center of pressure. 

4. The increased speed of particle results in 

lower pressure and increased friction 

between layers so higher squeeze action 

due to external force increases friction, the 

longer films also have the same result.  

5. The thickness of the high film represents 

the protection of the layers from friction 

while increased porosity of layers leads 

increased friction. 

6. Increased sliding motion and squeeze 

action are consistent with increased flow 

rate.  

7. When the thickness of the film and 

porosity are high the flow rate increases. 

8. Speed of the particles have major effect on 

decreasing flow rate. 
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Three- film Two-film One - film 

𝐹∗ 𝑈𝑠  𝐹∗ 𝑈𝑠  𝐹∗ 𝑈𝑠  

0.051339 0.05 0.05288 0.05 0.06497 0.05 

0.051393 0.04 0.05299 0.04 0.06557 0.04 

0.051446 0.03 0.05311 0.03 0.06617 0.03 

0.051500 0.02 0.05322 0.02 0.066772 0.02 

0.05155 0.01 0.05334 0.01 0.067371 0.01 

0.05160 0 0.05345 0 0.06797 0 


