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Abstract: 
    We found that for the co – dimension 

( )
, we can estimate the 

diameter of the section  of the 
convex body , which guarantee the 
best clustering of the data up to strong 
neighborhood 

2( ) log ,to 

decrease the loosing information of 
geometrical structures of the scattering data 
in a manifolds.  
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1. INTRODUCTION 

The problem of studying scattering data in an - dimensional space  plays an important 
role in many areas of mathematics, Biology, etc. Embedding play a significant role in this 
area [3,4,6,7,8]. To embed means to send the information data from a space  into some 
other space  to exhibit their geometrical structure. The technique for that depends on the 
concept of neighborhood between this pointed data (cluster), and the density of points 
within that neighborhood. In all modeling of embedding technique, one wants to 
approximate the geometry of the manifold  from its point cloud (  – ). 

Theorem:  Let  be a  –  subset of an Euclidean space. Then, for any > 0,  T  is  
(1 + )  embed into  with  . 

    The graph here is considered as empirical object (net) which constructed from sampled 
data to construct a geometrical shape from a manifold. For the purposes of embedding the 
manifold it is necessary to be compact, smooth and isometrically embedded in some 
Euclidean space .  

   The embedding involves many advantages: one of them is that it induces a measure 
corresponding to volume from a manifold . Secondly it induces a vector space at any 
point on the considering manifold, and also it induces an inner product on the manifold.  

   As we mentioned above we want to send the information data, so we want to find a linear 
map from the manifold  to some legally Euclidean space  for appropriate  such that 

( ) (1 + ) … (1) 

for all points  in the manifold  . 

Theorem: Let  be a metric space. Then there exists a complete metric space and an 
isometric embedding  such that  is dense. The space  is unique up to an 
isometry and it is called the completion of .  

   So the most important parameters to do embedding are; the neighborhood size (width), 
and the intrinsic dimension.  

Theorem: There is a constant > 0 such that for all  and all > 0, every 
 –  normed space admits a subspace whose Banach – Mazure distance from 
 is at most 1 +  and >  (log ).  

   The above theorem concerns the importance of the number of point data (dimension of the 
received space). By the other hand the property of neighborhood also affects the accuracy of 
embedding. In such way we can consider it as the notion of concentration of measure to 
cluster the data as groups.  

Definition: Let ) be a metric space with metric  and 1, which is 
equipped with a Borel probability measure . Then the concentration function on  is 
(isometric constant). 
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( ) = 1 inf{ ( ) :  , ( )
1
2

 } … … (2) 

Where = { ( ) } is the  of . And there exists one value  
such that ; 

( ) ( ) … … (3) 

Where  is  function on . 

   Now we had the base theorem for embedding which bounds the dimension of the data 
space. 

Theorem: There is a function ( ) > 0 such that for all ( ) ( ), the space  
(1 + )  into  

Here ( ) can be determined as second resolve of the random variable (point of ) which 
chosen identically and independently, or the variance of the element of . More specifically 
for this purposes we had. 

Theorem: There is a function ( ) > 0 such that for all ( ) log ,  (1 + )
 into and normed space of dimension  . 

   Our paper will concern the suspension of the convex bodies in the technique of 
embedding as an initial space for the scattering data which belongs to some manifold  . So 
the first section will concern some definitions and preliminaries about the convex body to 
obtain its qualification tour purpose. The second section will deal with the notion of 
concentration of measure and its features to obtain the geometric structure for the convex 
body. The third section will contain the effect of the log – concave measure in the space of 
convex geometry. And last we had a few discussions. I apologies that our paper will concern 
just the theorem as we need to prove our corollaries without proof .     

1- Preliminaries and Notations 

By a manifold we mean a set  which is locally Euclidean of dimension . On the other 
hand for the convex body we deal with an isotropic convex body , with the norm 

. , and we set ( , . ) as Euclidean space. A mathematician Hassler Whitney in 1936 
had proved that any  differentiable manifold can be embedded in . 

1.1 Theorem [Whitney]: Every  differentiable manifold can be 
embedded in . 

      A set  is called locally Euclidean of dimension  if every point in  has  a  
neighborhood  such that there is a bijective  from  into an open subset of . The pair 

) is called a chart. A collection of charts are called an atlas on a manifold  which is 
represents the differentiable structure of a manifold. This differentiable structure is 
homeomorphic to a polyhedron, in other words, every differentiable manifold is triangulate. 
The neighborhood of a chart on  constitute a basis for a topology on . The property of 
neighborhood can be determines with the notion of metric distance between points, and one 
of the important advantage of this property appear in the approximation.  
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1.2   Definition: Let  be a topological space and ) be a metric space with metric , 
and let  be a continuous function. We say that  is a 

 of  if  

( ) ( ) ( ) … … (4) 

   So, the property of neighborhood will generate a plausible approximation function to carry 
the data information into another space. The most appropriate measure for neighborhood is 
the similarity (dissimilarity) function, which measure the dependency (independency) 
between the points of the data space. From the other hand, these functions demand a metric 
to measure the similar (variance) between points in the same group. And that will serve at 
perfect way for the convex body.   

1.3 Definition: Let , … ,  be affinely independent points in , , 
which means that , … ,  are linearly independent. We call the set  

| , … , | = 1   

an . The  is the dimension of the simplex. The union of all simplices 
belonging to a set  is a polyhedron of  (simplicial complex of dimension ) denoted by 

| | … … (5) 

So, to exhibit the structure of any manifold we need to choose carefully a collection of 
affinely independent points on it (net or a graph), and these points will generate the faces of 
the polyhedron. In such a way we can deduce a tangent vectors, tangent spaces and tangent 
bundles. We will see that the convex set is comfortable for the purposes of embedding. 

1.4  Definition: We say that a set  is convex if for any two points , the line 
segment + ( ) [0,1], lies in . 

    The geometrical features of the convex sets appear in the next definition. 

1.5 Definition: Given a closed convex set , the tangent cone at a point  with 
respect to  is the set of all directions from  to any other point in : ( ) =
{ 0}. And the normal cone at a point  with respect to 

 is the set of normal vectors to supporting hyper plane of  at : ( ) =
{ : }.  

1.6 Theorem: A set  is convex, if and only if all convex combinations of points 
in  lie in  .  

In other word  is convex iff ( ; = 1) and this known as 
convex hull.  

1.7 Corollary: A convex set  is  

   The other advantage of the convex sets is that it has slices (charts) which are locally 
Euclidean. 
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1.8 Theorem: For every log , and for every convex body  in , there exist 
a  subspace  of  such that  

log (1 + )
… … … (6) 

with an absolute constant .  

1.9 Theorem: For any convex set  and any boundary points ) there exists a 
supporting hyperplane for  at .  

   The other advantage of the convex set is that, the measure which taken for it, is legally 
relative to Euclidean norm.  

1.10 Theorem: Let  be a convex body. For , the set of all 
subspaces  with 1, such that 

 | | ( )     … … … (7) 

has measure larger than exp( ), where > 0 is an absolute constant.  is the 
 constant of ).  

   The forgoing theorem gives other important features of the convex set, that is; the convex 
set can be divided into slices which seem to be simplex of the convex body, which 
determined the geometry of convex body. Secondly, the slices of a convex set can processed 
with the notion of concentration of measure.   

1.11 Corollary: Let  be a convex body. For , the set of all 
subspaces  with , such that Equation (7) above proved . 
Then,  

( ) ( ) … … ( ) 

where  is an absolute constant  

1.12 Theorem: There is a positive number  such that, for any > 0 and every 
natural number , every symmetric convex body of dimension  has a slice of 
dimension  

log(1 + ) log … … … (9) 

that is with in distance (1 + ) of the  Euclidean ball.  

1.13 Corollary: Up to Theorem (1.11), every slices of a convex body of  
dimension  is ( )  into a normed space of 

dimension ,and up to Equations (8-9) we have: 
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( )
+

… … ( ) 

1.14 Corollary: Let  be a convex body such that  is the ellipsoid of 
minimal volume containing , for (0,1), let = [( ) ]. Then there exist an 
orthogonal projection  with  and a subspace  with dim  
such that the Banach – Mazur distance satisfies  

max ( ) ( ) … … … (11) 

where  is an absolute constant and  denotes the unite ball of .  

   As we deal with the concentration of measure, Dvortzky’s theorem state that for any 
convex body  and > 0, there exist a subspace  of dimension at least 

log  with {(1 (1 + ) }, where is some Euclidean ball in the 
subspace .  

   Up to concentration of measure the convex set will generate a graph of points which built 
the structure of the polyhedron. 

1.15 Lemma: Let  be a compact convex body such that  is the ellipsoid of 
minimal volume containing . Let (0,1). Then there exist   ( )  and 
contact points , … ,  of  and  such that  

 { , 1 } … … … (12) 

For = 1, … , .  

2- Convex Bodies and Concentration of measure Phenomenon: 

   The convex set (body) in high dimension convex geometry is a body  which consists of 
bulk and outliers. If  is properly scaled, the bulk usually looks like a Euclidean ball. For a 
proper scaling we had to deal with the notion of concentration of measure. This assumption 
demands that the convex body had to be isotropic, which means that the random points in  
must distributed uniformly in  according to Lebesgue measure with zero mean and identity 
covariance. For isotropic assumption we had to create a plausible invertible linear 
transformation, and with this scaling we guarantee that most of volume of the convex body 

 is located around Euclidean ball.    

 

 

 

 

 



 

Khalid Abd assalam Ateia Ismaeel 
 

318 

2.1 Theorem: (Distribution of volume in high – dimensional convex sets) 

Let  be isotropic convex body in , and let  be a random vector uniformly distributed in 
. Then the following is true: 

i- (concentration of volume): For any 1 , one has  

exp … … (13) 

ii- (thin shell): For any (0,1), one has  

exp … … (14) 

where  stands for the radius of the unite ball in the Euclidean space 

   Up to the concept of concentration of measure for the isotropic convex body , it helps to 
exhibit the construction of the random section of the convex body . And that appear in 
Corollary (1.12) and Lemma (1.14)above.   

2.2 Theorem (Dvortzy’s Theorem): Let  be an origin – symmetric convex 
body in  such that the ellipsoid of maximal volume contained in  is the 
unit Euclidean ball . Fix (0,1). Let  be random subspace of dimension 

log  drown from the Grassmanian  according to the Haar 
measure, then there exist 0 such that with high probability (say, 0.99) we 
have: 

( ) ( ) (1 + ) ( ) … … (15) 

   The quantity  which appear in Equation (15) refer to as the radius of the ball within the 
convex body . To more specific this quantity in high – dimensional space we deal with 
new criteria which is called the mean width of  denoted by ) and it place in the same 
category as volume and surface area.   

2.3     Proposition: The mean width is invariant under translations, orthogonal 
transformations and taking convex hull. 

   The mean width of the convex body behaves like the distance function and it’s appropriate 
to deal with the convex geometry area. 

2.4 Definition: Let  be non – empty and convex. The support function 
) of  is defined as 

= sup … … … (16) 

which fail to be as a distance function.  

   Another definition for the mean width in the manner of linear function  

2.5 Definition : The global mean width of a subset  is defined as 

( ) sup  … … … (17) 
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where  (0, ). The local mean width of a subset  is a function of scale  0, 
and is defined as 

( ) sup ;  … … … (18) 

   To get more specific on the mean width, how to compute it and what its advantages, we 
have, 

2.6 Theorem: Let  be a symmetric convex body such that  . Define  

( ) = ( ) ( ) … … (19) 

where  is the support function of . Then for all > 0, there exists a vector subspace  

of  of dimension ( ) ( )) , such that: 

( ) ( ) (1 + ) ( ) … … (20) 

2.7 Corollary :  The mean width (17) & (18) fail to be as distance in such way 
that: 

( ) ( ) = | | ( ) … ( )  

where,   

Another advantage of the concentration of measure is that it generate the neighborhood 
property, and according to Corollary (1.10) ,Theorem (1.11) and Lemma (1.14)  we had the 
following corollary 

2.8 Corollary:  Let  be a compact convex body such that  is the 
ellipsoid of minimal volume containing . Let ) with 

 and let , … , be a contact points of  and  up to 

concentration of volume of  in , such that: 

 { } ( ) … … … ( ) 

then, for every ( ) = { }  and { }, then each  will 
be  of , and every two distinct points  will be (edge). 
Where ( ) stand for the radius of the Euclidean ball .  

3- Convex bodies and log – concave measure 

The level of concentration is determined with respect to the class of linear functional by 
measuring the size of minimal well – distributed substructures. And these substructures 
should exhibit a high level of concentration, and at the same time, they should represent the 
original space in an essential way. All these hypotheses is compatible with the log – concave 
Borel probability measure  on  . 
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3.1 Definition: We say that the measure  on  is log – concave if:  +
( ) ) ) , for every . 

   The log – concave measure  is isotropic if : )   for every . If 

we fix (0,1) then, 
( )

 points which chosen uniformly and 
independently from a convex body  with centroid at the origin in  satisfy with 
probability greater that   

{ , … , } ( ) … … (23) 

Where, { , … , } stands for the convex hull. 

that is, any exponentially number of random points from a convex body  creates a body 
which represent  in the distance sense (neighborhood).  

3.2 Lemma: There exist absolute constants > 0 such that: 

| ( ) max 1, … … (24) 

for every > 0 and . 

3.3 Corollary: Let be a compact convex body such that  is the ellipsoid of 
minimal volume containing . Let ) with  and let 

, … , be a contact points of  and  up to concentration of volume of  in 
, then and with Equation (24) we had: 

| ( ) … … ( ) 

for every  .  

Which, in the case of = 2 we can replace  with ( ), (1 + ) respectively . Beside 
of that, for an isotropic convex body also we can replace  with the convex constant   

3.4 Corollary: If the log – concave measure is isotropic, then and with Equation 
(24) we had: 

| ( ) … … ( ) 

for every  , then : 

)( ) | ( ) ) … … ( ) 

And up to Definition (2.5), Theorem (2.6) and Corollary (2.7) we had 
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| ( ) ) … … ( ) 

for every  . Where  is a universal constant.  

3.5 Theorem: Every convex body  creats a log – concave measure , and a 
random set of exp  points chosen from  creates a body equivalent to  and at 
the same time, form a  for   

   Up to the above theorem we need a plausible distribution function, and as we ex-mention 
that the supports function of the convex body should be serving as a distance function.   

3.6 Definition: A random vector  is called log – concave, if its density has the form 

( ) = exp ( ) … … (29) 

where (+ ) is a convex function. 

3.7 Theorem: Let 1 be an integer and let  be a random vector in  with an 
isotropic, log – concave density. Then there exists  with ( )

exp  such that for all , the real – valued random variable  has a 
density [0, ) with the following properties: 

i- | ( ) )|  

ii-  For all | |  we have ( )
( )

 

here, > 0 are universal constants, and( ( ) = exp ( )  is the standard 

Gaussian density).  

The quantity  in the ex-theorem stands for the radius of the maximal neighborhood 
 which contains the random vector . 

3.8 Proposition: If  is a normally distributed random variable with mean  and 
variance , then  concentrated around a constant, namely its mean, in the sense 
that, for every 0 

{| | } exp … … (30) 

Taking = 1 and  we have ( ) exp  

    In the above proposition the quantity  stands for the width of the interval which contains 
. 

   As it mention in the forgoing theorem the property of isotropic stands with zero mean and 
identity covariance, and if we rethink of the value ( )  as the variance between the points 
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in the same convex body, in such a way it scales the mount of convexity around origin point 
( Apostolos Giannopoulos and others in their paper [1] mention that 1)). So up to the 
Gaussian density function we can rewrite Theorem (3.7) with a new assumption, then we 
have    

Corollary: Let  be an isotropic convex body and let be a section of  with 
co- dimension   .  Set    be an integer and let  be a random 

vector in  which uniformly distributed according to a log – concave density with mean 
zero and variance  (the convex constant), and up to concentration of Gaussian 
measure, then for every : 

{| | }
)

… … ( ) 

And with the consideration ~( , ( ) ), then the appropriate density function for the 
convex body has the form: 

( ) = ( ) … … ( ) 

Such that ( )
( )

. And  that with Equation (10)we set 

| | = ( ) ( )
+

… … ( ) 

Where, , … ,  and ( ) . So we can think of   as a ball in the formula 

( )
+

… … ( )  

Klartag [68] in his paper find  that with concentration up to probability 

3.10 Theorem (Klartag): suppose  is convex and isotropic, and  is distributed 
uniformly in . Then  with ( ) , such that for , 

sup  { }
1

… … … (35) 

Here, say, < exp( ), .  

 Many authors was treated to find the appropriate initially point , but  

4- Discussion : As we has mentioned above the property of neighborhood plays an 
important role in the space of estimating and that depends originally at the 
number of elements point in that neighborhood. And for that purposes we had to 
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cluster with a strong distribution function which guarantee that, the similar point 
with in the same group and dissimilar point get out with high accuracy to 
decrease the loose of information from scattering data which considered as a 
manifold in .       
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