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Abstract
This paper develops Bayesian analysis for Constant Stress Acceler-

ated Life Test (CSALT) under Type-II censoring scheme. Failure times
are assumed to distribute as the three-parameter Generalized Logistic
(GL) distribution. The inverse power law model is used to represent
the relationship between the stress and the scale parameter of a test
unit. Bayes estimates are obtained using Markov Chain Monte Carlo
(MCMC) simulation algorithm based on Gibbs sampling. Then, con-
fidence intervals, and predicted values of the scale parameter and the
reliability function under usual conditions are obtained. Numerical il-
lustration and an illustrative example are addressed for illustrating the
theoretical results. WinBUGS software package is used for implement-
ing Markov Chain Monte Carlo (MCMC) simulation and Gibbs sam-
pling.
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1 Introduction

Life data analysis involves analyzing lifetime data of a device, system, or com-
ponent obtained under normal operating conditions in order to quantify their
life characteristics. In many situations, and for many reasons, such data is very
difficult, if not impossible, to obtain. A common way of tackling this problem
is to expose the device to sufficient over stress (e.g., temperature, voltage, hu-
midity, and so on), or forcing them to fail more quickly than they would under
normal use conditions to accelerate their failures. Therefore, the failure data
are analyzed in terms of a suitable physical statistical model to obtain desired
information on a device under normal use conditions. This approach is called
Accelerated Life Testing (ALT). The most common ALT loading is constant
stress, step stress, and progressive stress (for more details, see Nelson (1990)).
In CSALT, the stress is kept at a constant level of stress throughout the life
of the test, i.e., each unit is run at a constant high stress level until the occur-
rence of failure or the observation is censored. Practically, most devices such
as lamps, semiconductors and microelectronics are run at a constant stress.

Bayesian inference procedure treats unknown parameters as random vari-
ables. Through Bayesian analysis, our information, our believe, or our knowl-
edge about the unknown parameters can be incorporating in a measurable
form as a prior distribution. There is a great amount of literature on applying
Bayesian approach to CSALT. Prior information is concerned with engineer-
ing facts and material properties by many authors, for example, Pathak et al.
(1987) discussed Bayes estimation of the constant hazard rate. They assumed
that the effect of acceleration was to scale up the hazard rate, and the hazard
rate had the natural conjugate prior with a known mean and unknown vari-
ance. Achcar (1994) used Bayesian approach and assumed non-informative
priors for the parameters of the exponential, Weibull, Birbaum-Saunders, and
Inverse Gaussian distributions. He You (1996) used Bayesian approach to es-
timate the parameters of the exponential distribution under different priors
and different censoring schemes. Aly (1997) considered natural conjugate pri-
ors for estimating the parameters of Pareto distribution. Zhong and Meeker
(2007) estimated the parameters of Weibull distribution assuming log-normal
prior density. Liu and Tang (2009) constructed a sequential CSALT scheme
and its Bayesian inference using Weibull distribution and Arrhenius relation-
ship. They derived closed form expression for estimating the smallest extreme
value location parameter at each stress level. Unfortunately, all this work was
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based on getting posterior distributions of the unknown parameters using or-
dinary samples. On the other hand, this paper uses Gibbs sampling to derive
posterior distributions.

The GL distribution is an important and useful family in many practical sit-
uations. It includes a number of other distributions for different choices of the
concerned model parameters. For example, standard Logistic, four-parameters
extended GL , four-parameters extended GL type-I, two parameter GL, type-
I GL , Generalized Log-logistic,standard Log-logistic, Logistic Exponential,
Generalized Burr, Burr III, and Burr XII distributions. There are some who
argue that the generalized logistic distribution is inappropriate for modeling
lifetime data because the left-hand limit of the distribution extends to negative
infinity. This could conceivably result in modeling negative times-to-failure.
However, provided that the distribution in question has a relatively high scale
parameter α and a relatively small scale parameter γ, the issue of negative fail-
ure times should not present itself as a problem. Nevertheless, the generalized
logistic distribution has wide applications in population model been shown to
be useful for modeling the log odds of moderately rare events, for graduating
life data, to modeling binary response data, for the comparison of log odd of
an event, in hydrological risk analysis, in environmental pollution studies, to
model the data with a unimodal density, geological issues, and to analyze sur-
vival data (for more details, see Mathai and Provost (2004), Alkasasbeh and
Raqab (2009), and Shabri et al. (2011)).

This paper is organized as follows: The underlying distribution and the test
method are described in Section 2. Section 3 introduces Bayesian estimators
of model parameters. Finally, simulation studies as well as an illustrative real
Life example are addressed for illustrating the theoretical results.

2 Constant stress ALT model

The probability density function (pdf) of a three-parameter generalized logistic
distribution introduced by Molenberghs and Verbeke (2011), is given by

f(x) = αγeαx(1 +
γ

θ
eαx)−(θ+1), −∞ < x < ∞, α, γ, θ > 0. (1)

We assume the following assumptions for the CSALT procedure:

• A total of N units are divided into n1, n2, ... , nk units where
∑k

j=1 nj

= N .

• There are k levels of high stress Vj, j = 1, ..., k in the experiment, and
Vu is the stress under usual conditions, where Vu<V1<. . .<Vk .
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• Each nj units in the experiment are run at a pre-specified constant stress
Vj, j = 1, ..., k .

• It is assumed that the stress affected only on the scale parameter of the
underlying distribution.

• Assuming type-II censoring scheme, the failure times xij , i = 1, ..., rj

and j = 1, ..., k at stress levels Vj, j = 1, . . . , k are the 3-parameter
generalized logistic distribution with probability density function

f(xij , αj, γ, θ) = αjγeαjxij(1 +
γ

θ
eαjxij)−(θ+1),−∞ < xij < ∞,

αj, γ, θ > 0, i = 1, ..., rj, j = 1, ..., k. (2)

• The scale parameter αj, j = 1, . . . , k , of the underlying lifetime distri-
bution (2) is assumed to have an inverse power law function on stress
levels, i.e.,

αj = CSP
j , C, P > 0,

where Sj = V ∗
Vj

, V ∗ =
∏k

j=1 V
bj

j , bj =
rj∑k

j=1
rj

, C is the constant of

proportionality, and P is the power of the applied stress.

3 Bayesian Estimation

Considering the assumptions in Section (2), and assuming that the experiment
is terminated at a specified number of failure units rj (rj<nj), j = 1, ..., k,
the likelihood function will be in the following form

L =
k∏

j=1

{ nj !

(nj − rj)!
[

rj∏

i=1

CSP
j γeCSP

j xij(1 +
γ

θ
eCSP

j xij)−(θ+1)](1 +
γ

θ
eCSP

j xrjj)−θ(nj−rj)},(3)

Eq.(3) can be re-written as follows,

L(μ/x) ∝ Cξγξe
C
∑k

j=1

∑rj
i=1 SP

j xij [
k∏

j=1

rj∏

i=1

ηij ][
k∏

j=1

ηrjj], (4)

where μ = (c, p, γ, θ), x = (xij , i = 1, ..., rj, j = 1, ..., k), ξ =
∑k

j=1 rj,

ηij = (1 + γ
θ
eCSP

j xij)−(θ+1), and ηrjj = (1 + γ
θ
eCSP

j xrjj)−θ(nj−rj).
Following, we present inference for the unknown parameter C when the

other parameters (P, γ, θ) are known as well as inference for P when the other
parameters (C, γ, θ) are known. In addition, inference for C, P when the other
parameters (γ, θ) are known.
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Case of unknown C

Under the assumption that the parameters P , γ, and θ are known. We assume
the prior for C is gamma (λ1, λ2) distribution as

π(C) ∝ Cλ1−1e−λ2C , C > 0, λ1, λ2 > 0. (5)

Then posterior density function of C is given by

π(C/x) ∝ Cξ+λ1−1e
−(λ2−

∑k

j=1

∑rj
i=1 SP

j xij)C [
k∏

j=1

rj∏

i=1

ηij ][
k∏

j=1

ηrjj], C > 0, λ1, λ2 > 0, (6)

Bayesian estimate of the parameter C, the prediction of the scale parameter
α and the reliability function R(x0) at the lifetime x0 under the design stress
Vu can be obtained based on Eq.(6).

Case of unknown P

Under considering that the parameters C, γ, and θ are known, and the gamma
G(λ3, λ4) is the prior density of P , that is

π(P ) ∝ P λ3−1e−λ4P , P > 0, λ3, λ4 > 0. (7)

The posterior density function of P given x under the likelihood function
(4) is obtained as follows:

π(P/x) ∝ P λ3−1e
C

∑k

j=1

∑rj
i=1 SP

j xij−λ4P
[

k∏

j=1

rj∏

i=1

ηij ][
k∏

j=1

ηrjj], P > 0, λ3, λ4 > 0. (8)

Also, Bayesian estimate of P , prediction of the scale parameter α and the
reliability function at the lifetime x0 under the design stress Vu can be obtained
based on Eq.(8).

Case of unknown C and P

In this case, we assume the prior density for C is gamma (λ1, λ2) distribution
and the conditional distribution of P given C is gamma (λ3, λ4C), then the
prior density for C and P is given by

π(C, P ) ∝ Cλ1+λ3P λ3e−C(λ2+λ4P ), C > 0, P > 0, λ1, λ2, λ3, λ4 > 0. (9)

From the likelihood function (4), we have

L(C, P/x) ∝ CξeC
∑k

j=1

∑rj
i=1 SP

j xij [
k∏

j=1

rj∏

i=1

ηij ][
k∏

j=1

ηrjj ]. (10)
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Therefore, the posterior density of C and P given x based on Eq.(9) and
Eq.(10) is given by

π(C, P/x) ∝ Cλ1+λ3+ξ P λ3 e
−C(λ2+λ4P−

∑k

j=1

∑rj
i=1 SP

j xij)[
k∏

j=1

rj∏

i=1

ηij ] [
k∏

j=1

ηrjj ],

C > 0, P > 0, λ1, λ2, λ3, λ4 > 0. (11)

The marginal posterior density function of C, the marginal posterior den-
sity function of P , Bayesian estimate of the scale parameter α and the relia-
bility function at the lifetime x0 under the design stress Vu can be obtained
based on Eq.(11). Similarly, numerical simulation to evaluate the value of α̃u

and R̃u(x0) is used. To obtain the normalizing constants of the posterior func-
tions and the marginal posterior densities π(C/x), and π(P/x) complicated
integrations are often analytically intractable and sometimes even a numerical
integration cannot be directly obtained. In these cases, Markov Chain Monte
Carlo (MCMC) simulation is the easiest way to get reliable results [Gelman,
et al. (2003)]. A MCMC algorithm that is particularly useful in high dimen-
sional problems is the alternating conditional sampling called Gibbs sampling.
Through the MCMC approach, a sample of the posterior distribution can be
obtained. From the sample, approximations of moments and an approxima-
tion of the posterior distribution may be derived using Gibbs sampling. Gibbs
sampling is used to draw a random sample of the parameters C and P from
their own marginal posterior distribution π(C/x), and π(P/x), respectively,
and then estimate the expected value of the parameters C and P using the
sample mean.

Each iteration of Gibbs sampling cycles through the unknown parameters,
by drawing a sample of one parameter conditioning on the latest values of all
other parameters. When the number of iterations is large enough, the samples
drawn on one parameter can be regarded as simulated observations from its
marginal posterior distribution. Functions of the model parameters, such as αu

at the normal use condition, can also be conveniently sampled. In this paper,
we use WinBUGS software, a specialized software package for implementing
MCMC simulation and Gibbs sampling.

4 Numerical Illustration

4.1 Simulation Study

The following steps are used: Three accelerated stress levels V1 = 1, V2 =
2, V3 = 3 and usual stress Vu = 0.5 are considered. Assume that the experiment
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is terminated at a specified number of failure units rj, j = 1, 2, 3, where
n1 = n2 = n3 = 15, r1 = 9, r2 = 8, r3 = 7. Accelerated life data from
the GL distribution are generated using MathCad software. The K-S test
(Kolomgrov-Simrnov test) is used for assessing that the data set follows the
GL distribution and we concluded that the data set follows it. The CSALT
generated data are used for getting posterior estimation of the parameters by
applying Bayesian approach. The parameters of interest are estimated as well
as the scale parameter and the reliability function under usual conditions are
predicted.

The case of unknown C

We start with three Markov chains with different initial values (C = 1.0, C =
0.9, C = 0.7), and assume that the values of the three parameters (P, γ, θ) are
known. We set (P = 0.25, γ = 0.05, θ = 0.15) and assume the prior of the
parameter C is gamma distribution with parameters λ1 = 3.5 and λ2 = 3.75.
We run 30000 iterations for each Markov chain. To check convergence, Gelman-
Rubin convergence statistic, R, is introduced. R is defined as the ratio of the
width of the central 80% interval of the pooled chains to the average width of
the 80% intervals within the individual chains. When a WinBUGS simulation
converges, R should be one, or close to one [Luo, 2004]. Figure 1 shows the
Gelman-Rubin convergence statistic of C and Figure 2 shows posterior density
of C (see Appendix II). One can see that Gelman-Rubin statistic is believed to
be convergent. A simple summary can be generated showing posterior mean,
median and standard deviation with a 95% posterior credible interval. The
summary of the sampling results with respect to the unknown parameter C is
displayed in Table 1 (see Appendix I). The accuracy of the posterior estimate
is calculated in terms of Monte Carlo standard error (MC error) of the mean
according to [Spiegelhalter et al. (2003)]. The simulation should be run until
the MC error for each node is less than 5% of the sample standard deviation.
This rule has been achieved in this paper. Table 1 shows that the estimated
value of the scale parameter under usual conditions is 1.272, and the reliability
decreases when the mission time x0 increases.

The case of unknown P

In this case, we assume the values of the three parameters (C, γ, θ) are known
and apply Bayesian method to determine the posterior density function of P .
We set (C = 1.0, γ = 0.05, θ = 0.15) and the parameters of the prior density
of the unknown parameter P are λ1 = 3.5 and λ2 = 3.75. Three chains with
different initials (P = 0.25, P = 0.15, P = 0.3) are run simultaneously in one
simulation. Each chain continues for 40000 iterations. Gelman-Rubin conver-
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gence statistic of P shows that the simulation is believed to have converged as
shown from Figure 3. The summary for the sampling results concerning the
unknown parameter P is displayed in Table 2, and shows that the estimated
value of the scale parameter under usual conditions is 4.091, and the reliability
decreases when the mission time x0 increases, (see Appendix I). The posterior
density of P is shown in Figure 4, (see Appendix II).

The case of unknown C and P

To apply Bayesian approach for determining the posterior density function of
C and P , we assume the following points:

• The values of the two parameters (γ, θ) are (γ = 0.05, θ = 0.15).

• The prior of the parameter C is gamma distribution with parameters
λ1 = 3.5 and λ2 = 3.75.

• The conditional distribution of P given C is gamma (λ3, λ4C) with pa-
rameters λ3 = 0.25 and λ4 = 0.25.

• Three chains with different initials [(C = 0.9, P = 0.25), (C = 1.0, P =
0.3), (C = 0.7, P = 0.15)] are run simultaneously in one simulation.

• Each chain continues 40000 iterations.

Sampling results assume that unknown parameters C and P are displayed
in Table 3 and shows the estimated value of the scale parameter under usual
conditions and the reliability decreases when the mission time x0 increases,
(see Appendix I). From Figure 5, we note that the simulation is believed to be
convergent. Figure 6 shows the marginal posterior density of both C and P
(see Appendix II).

4.2 An Illustrative Real Life Example

This Section presents getting Bayesian estimates of the unknown parameters
using a real life example based on accelerated life data given by Nelson (1970).
This data represents the times to breakdown of an insulating fluid subjected to
elevated voltage stress levels. For convenience, we consider only four acceler-
ated voltage stress levels 32, 34, 36, and 38 kilovolts (KV’s) and the experiment
is terminated at a specified number of failure units rj, j = 1, ..., 4. The usual
conditions in the experiment is considered 28 kilovolts (KV’s). The failure
times (in minutes) under the various stress levels are given in Table (4), (see
Appendix I). Nelson’s original data correspond to seven different stress levels,
but some of theses contains very few failures times and are therefore omitted
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here. We use the K-S (Kolomgrof-Smirnof) test for assessing that the data
set follows the GL distribution. Also, we got that the data set follows the GL
distribution.

The case of unknown C

In this case, we assume the values of the three parameters (P, γ, θ) are known
and we set (P = 0.25, γ = 0.5, θ = 0.25). The conjugate prior to the param-
eter C is assumed to be gamma distribution with the parameters λ1 = 3.5
and λ2 = 3.75. Five chains with different initials (C = 0.9, C = 0.7, C = 0.5,
C = 0.35, C = 0.25) are run simultaneously in one simulation. Each chain
continues for 30000 iterations. Gelman-Rubin convergence statistic, R, indi-
cates that the simulation is believed to have converged as shown in Figure 7. A
simple summary can be generated showing posterior mean, median and stan-
dard deviation with a 95% posterior credible interval. This summary of the
sampling result assuming unknown C is presented in Table 5, and shows that
the estimated value of the scale parameter under usual conditions is 0.9805,
and the reliability decreases when the mission time x0 increases (see Appendix
I). Figure 8 shows the posterior distribution of C (see Appendix II).

The case of unknown P

The values of the three parameters (C, γ, θ) are assumed to be known and
take the values (C = 0.5, γ = 0.5, θ = 0.25). The prior of the parameter P is
assumed to be the gamma distribution with parameters λ1 = 0.25 and λ2 =
0.25. Seven chains with different initials (P = 0.8, P = 0.7, P = 0.6, P = 0.5,
P = 0.4, P = 0.3, P = 0.2) are run simultaneously in one simulation. Each
chain continues for 25000 iterations. For checking the convergence, Figure
9 shows Gelman-Rubin convergence statistic of P is converged to one. The
summary of sampling results is displayed in Table 6 (see Appendix I). The
mean value of the samples, as the estimate of P is shown to be 0.9314, and
the estimated value of the scale parameter under usual conditions is 0.609.
In addition, we note that the reliability decreases when the mission time x0

increases. Figure 10 shows posterior of distribution of P (see Appendix II).

The case of unknown C and P

In this case, we assume the values of the three parameters (γ, θ) are known and
apply Bayesian method to determine the posterior density function of C and
P . We set (γ = 0.5, θ = 0.5) and the prior of the parameter C is the gamma
distribution with parameters λ1 = 3.5 and λ2 = 3.75, and the conditional
distribution of P given C is gamma (λ3, λ4C) with parameters λ3 = 3.25 and
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λ4 = 5. Three chains with different initials [(C = 0.5, P = 0.5), (C = 0.4, P =
0.3), (C = 0.3, P = 0.6)] run simultaneously in one simulation. Each chain
continues for 40000 iterations. Figure 11 shows that the simulation is believed
to be convergent, and Figure 12 shows the marginal posterior distributions of
both C and P . The summary of the sampling results assuming C and P are
unknown is displayed in Table 7, and shows that the estimated value of the
scale parameter under usual conditions is 1.107, and the reliability decreases
when the mission time x0 increases (see Appendix I).

5 Conclusion

This paper presents Bayesian method for Type-II censored constant stress ac-
celerated life test with three-parameter generalized logistic lifetime distribution
and inverse power law acceleration model. The three-parameter generalized
logistic distribution appears to be an important and useful family as it in-
cludes a number of other distributions for different choices of the concerned
model parameters. We present Bayesian inference for three cases, the first
case when the parameter C is unknown and the other parameters (P, γ, θ) are
known, the second case, inference for P when the other parameters (C, γ, θ)
are known, and the third case, inference for C, P when the other parameters
(γ, θ) are known. Then, Bayesian analysis is conducted to estimate the point,
the asymptotic confidence interval of the model parameters, prediction the
scale parameter and the reliability function under the usual conditions. The
use of MCMC technique and WinBUGS software enhances the flexibility of
the proposed method. The simulation for Bayesian analysis has proved to be
converged in this paper. We provide a numerical simulation and a real exam-
ple to illustrate the proposed method. We restrict our Bayesian analysis to
cases where some of the parameters are known because we are interesting to
estimate the unknown parameters of the scale parameter α under kth levels of
stress.
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Appendices

Appendix I

Table 1: Estimates of C, αu, and Ru(x0) based on simulated data
Parameter Mean S.D MC error 2.5% Median 97.5%

C 0.9317 0.4987 0.0016 0.2272 0.8442 2.1340
αu 1.2720 0.6807 0.0022 0.3101 1.1520 2.9120

Ru(0.5) 0.9277 0.0203 0.0001 0.8753 0.9325 0.9519
Ru(1) 0.8838 0.05299 0.0001 0.7447 0.8976 0.9454
Ru(3) 0.6712 0.1620 0.0005 0.3179 0.6926 0.9122

Table 2: Estimates of P , αu, and Ru(x0) based on simulated data
Parameter Mean S.D MC error 2.5% Median 97.5%

P 0.9313 0.4981 0.0015 0.2265 0.8443 2.1330
αu 4.0910 5.3020 0.0146 1.3260 2.8600 14.220

Ru(0.5) 0.8278 0.1356 0.0003 0.4056 0.8773 0.9279
Ru(1) 0.6839 0.1955 0.0005 0.1396 0.7498 0.8852
Ru(3) 0.3182 0.1898 0.0004 0.0019 0.3255 0.6441

Table 3: Estimates of C, P , αu, and Ru(x0) based on simulated data
Parameter Mean S.D MC error 2.5% Median 97.5%

C 0.9316 0.4981 0.0014 0.2254 0.8451 2.1360
P 0.8328 0.2367 0.0006 0.1676 0.9537 1.0000
αu 2.7240 1.6250 0.0045 0.5465 2.4060 6.6920

Ru(0.5) 0.8757 0.0649 0.0001 0.7032 0.8940 0.9470
Ru(1) 0.7613 0.1370 0.0003 0.4319 0.7929 0.9341
Ru(3) 0.4199 0.2261 0.0006 0.05805 0.3992 0.8608
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Table 4: Times to breakdown of an insulating fluid under various values of
the stress

V nj rj Failure Times
(in Kilovolts) (in Minutes)

32 15 11 0.27 0.40 0.69 0.79 2.75 3.91 9.88
13.95 15.93 27.80 82.85

34 19 14 0.19 0.78 0.96 1.31 2.78 3.16 4.15
4.67 4.85 6.50 7.35 8.01 8.27 12.06

36 15 8 0.35 0.59 0.96 0.99 1.69 1.97 2.07
2.58

38 8 6 0.09 0.39 0.47 0.73 0.74 1.13

Table 5: Estimates of C, αu, and Ru(x0) based on the illustrative example
Parameter Mean S.D MC error 2.5% Median 97.5%

C 0.9313 0.4983 0.0012 0.2261 0.8442 2.1310
αu 0.9805 0.5246 0.0013 0.2380 0.8888 2.2430

Ru(0.5) 0.6957 0.0348 0.0001 0.6118 0.7019 0.7446
Ru(1) 0.6316 0.06692 0.0001 0.4736 0.6426 0.7293
Ru(3) 0.4236 0.1365 0.0003 0.1563 0.4281 0.6660

Table 6: Estimates of P , αu, and and Ru(x0) based on the illustrative
example

Parameter Mean S.D MC error 2.5% Median 97.5%
P 0.9314 0.4985 0.0011 0.2252 0.8443 2.1330
αu 0.6090 0.0664 0.0001 0.5237 0.5949 0.7757

Ru(0.5) 0.7204 0.0041 0.0000 0.7094 0.7214 0.7260
Ru(1) 0.5034 0.1024 0.0030 0.2699 0.5180 0.6585
Ru(3) 0.5227 0.0234 0.0001 0.4644 0.5275 0.5539

Table 7: Estimates of C, P , αu, and Ru(x0) based on the illustrative example
Parameter Mean S.D MC error 2.5% Median 97.5%

C 0.9316 0.4981 0.0014 0.2254 0.8451 2.1360
P 0.8328 0.2367 0.0006 0.1676 0.9537 1.0000
αu 1.1070 0.5945 0.0017 0.2671 1.0030 2.5440

Ru(0.5) 0.6564 0.0279 0.0001 0.5883 0.6615 0.6952
Ru(1) 0.6041 0.0562 0.0001 0.4679 0.6141 0.6831
Ru(3) 0.2387 0.1487 0.0004 0.0220 0.2168 0.5565

Appendix II
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Figure 1: Gelman-Rubin Statistic of C based on simulated data

Figure 2: Posterior density plots of C based on simulated data

Figure 3: Gelman-Rubin Statistic of P based on simulated data



Bayesian estimation for the generalized logistic distribution 983

Figure 4: Posterior density plots of P based on simulated data

Figure 5: Gelman-Rubin Statistic of C and P based on simulated data
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Figure 6: Posterior density plots of C and P based on simulated data

Figure 7: Gelman-Rubin Statistic of C based on the illustrative example
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Figure 8: Posterior density plots of C based on the illustrative example

Figure 9: Gelman-Rubin Statistic of P based on the illustrative example

Figure 10: Posterior density plots of P based on the illustrative example
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Figure 11: Gelman-Rubin Statistic of C and P based on the illustrative exam-
ple

Figure 12: Posterior density plots of C and P based on the illustrative example
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