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operates in them, were given the label photonic crystal [1, 
2]. Since PCs may reflect or trap light, they provide unprec-
edented levels of control and manipulation of light propaga-
tion in the microwave regime, which has sparked an increase 
in scientific interest in recent years [1–3]. Numerous two-
dimensional photonic crystal applications focus on optical 
integrating devices, such as splitters [4], resonant cavities 
[5–7], waveguides [1, 8, 9], and waveguide bends [8–11]. 
These optical devices are crucial for the growth of photonic 
and electrical circuits. The fascinating property of photonic 
structures makes it possible to change the band structure’s 
shape (e.g., making it square or hexagonal with circle rods 
to regulate frequencies that can approach kilohertz or mega-
hertz) or structural parameters (e.g., rod radius, periodicity, 
and material) [10]. Additionally, the ability to alter the pho-
tonic lattice’s periodic structure by adding various types of 
defects, such as local resonant cavities and waveguide modes 
like this structure, allows for a significant expansion of pho-
tonic crystal applications [3, 8, 10]. The electromagnetic 
wave can be guided by its direction using waveguiding and 
bending modes [1, 8]. It is challenging to bend a photonic 
structure, though, unless the bend’s radius is much larger 
than its wavelength. This is because a significant amount 
of light is wasted. The lack of area needed for large-radius 
bends is a serious obstacle to the development of integrated 
optical “circuits” [11, 12].

As an alternative, an extremely sharp, low-loss bend in 
the waveguides trapped inside a photon crystal might greatly 
increase the integration’s density [12].

COMSOL program (version 5.5) is one of the most 
important tools for developing a full simulation of the propa-
gation of electromagnetic waves (solution of Maxwell equa-
tions) via photonic crystals. In a study on the infinite peri-
odic` photonic crystal, the Bloch bandgap mode structure of 
a regularly perforated sheet was theoretically investigated 

Abstract In the current study, we were theoretically able 
to determine the main difference between the point defect 
and linear defect of both square and hexagonal photonic lat-
tices. For the point defect, the mode is trapped No matter 
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Introduction

The periodic dielectric structures are represented by 
photonic crystals (PCs), which, because of the way light 
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by applying COMSOL program. [13]. A different approach 
is to use the COMSOL MULTIPHYDICS-based finite ele-
ment method (FEM) to theoretically analyze how an electro-
magnetic wave flows through a photonic crystal’s hexagonal 
lattice and evaluate the band structure [14]. Computational 
research using plane wave expansion (PWE) to investigate 
the photonic bandgap through the transmission of pressure 
waves generated by sound in photonic crystals square lattice 
[10]. The finite-difference time-domain (FDTD) approach 
is used to study the flat-band lattice [15]. Theoretical inves-
tigations include defect states inside the photonic crystal’s 
bandgap, which were thoroughly explored in [1, 16]. Ana-
lyzing the photonic crystals band structure with hexagonal 
and square lattices in dielectric materials, Also, evaluating 
the resonant cavities and the point defects for both lattices’ 
inner bandgap by utilizing the FEM, the PWE method [3], 
and the FDTD method [2], in addition to defect states in 
photonic crystals. Furthermore, use the multiple beam inter-
ference approach to experimentally analyze the photonic lat-
tice defect in the LiNbO3 photo-refractive crystal [17]. The 
numerical implementation of FDTD was used to build the 
photonic crystal and generate a five-channel resonant ring, 
which is useful in demultiplexer applications. [18]. This was 
done based on the analysis of the optical channel drop fil-
ter. Additionally, photonic crystal analysis was done using 
the same numerical approach as 2D optical multiplexing 
devices, which was beneficial. With an incredibly quick con-
version speed, the structure is very compactly constructed 
[19]. Square lattice photonic crystals composed of a rod of 
silicon and a background consisting of air are used in the 
creation of a compact 2 × 1 optical multiplexer for photo pro-
cessing devices [20]. A 2D photonic crystal was developed 
using PWE and FDTD techniques to operate as a base for all 
optical half subtractors [21, 22]. Moreover, FDTD and PWE 
techniques are employed in the creation of a 2D photonic 
crystal with a hexagonal lattice that functions as a decoder 
and produces a 2 × 4 optical system based on a threshold 
switching mechanism and Kerr effect [23]. Additionally, a 
2D photonic crystal was created by PWE and FDTD meth-
ods utilizing rods formed of a dielectric material—such as 
GaAs—that were submerged in an air background. Based on 
the nonlinear Kerr’s effect, this photonic crystal functions 
as a nonlinear logic gate [24]. P. Sharan et.al. designed and 
analysed a two-dimensional photonic crystal based sensor 
for three different biosensing applications, including meas-
uring the normal and abnormal levels of uric acid, glucose, 
and creatinine in the blood [25]. M.K. Chhipa et.al. [26–29] 
also used the FDTD and the PWE methods for design of a 
2D PC’s ring resonator and Channel Drop Filter (CDF) for 
optical communication networks.

By evaluating various defect states and the optical 
characteristics of periodic photonic crystals in dielectric 
materials for multiplexers-demultiplexer applications that 

are beneficial for networks optical communication, Our 
approach is innovative because it can be used to engineer 
faults in square and hexagonal photonic crystals to provide 
multiplexing and demultiplexing functions.

The distinct characteristics of these lattice structures and 
faults provide precise control over signal separation and 
manipulation as well as a wide range of design possibilities.

Overall, by enabling effective and selective multiple 
signal extraction, separation, and transmission in optical 
communication systems, the utilization of point and linear 
defects within photonic crystals with square and hexagonal 
lattices adds innovation to multiplexer and demultiplexer 
applications.

Theory

First, we try to analyze the band structure for two-dimen-
sional square and hexagonal lattices, using COMSOL 
MULTIPHYSICS Software simulation to investigate the 
wave propagation in two- dimensional a photonic crystal, 
photonic bandgap structure (eigenvalue analysis) of the 
periodic square and hexagonal lattice are analyzed by FEM 
(real space). The frequencies of Bloch waves are obtained 
from the eigenvalue solver with wave vector. The change 
in the wave vector results in dispersion relation from the 
bandgap structure. The mathematical basis of propagation 
of the electromagnetic wave in two-dimensional photonic 
crystal via an inhomogeneous medium can be described by 
Maxwell’s equations [3, 12]. Assuming that the transversal 
electric (TE) is a linear combination of the electric field, 
where the photonic crystal plane is perpendicular to the elec-
tric field [3]. Maxwell’s equations- Helmholtz equation for 
the electric field that propagates in the photonic crystal is 
given by [12, 16]:

where k0 = �∕c , � is the incident electric field angular fre-
quency on the crystal and c is the space of light in free-
space, the wavelength is � = j� + � , The photonic crystal 
relative dielectric constant for inhomogeneous structure is 
�r = (n − ik)2 . Assuming non-conducting, non-magnetic 
photonic crystal, then  �r = 1 and � = 0 . The wave vector � 
for the propagation wave is given by:

where Ez elucidate the z-component of the electric field at 
the position (r⃗ = x, y, z) . Any electromagnetic simulation 
must include boundary conditions at the interfaces that are 
represented by perfect electric conductor (PEC) boundary 

(1)∇ × �−1
r
(∇ × E) − �2

0

(

�r −
j�

��r

)

E = 0

(2)E(x, y, z) = Ẽ(x, y)Ez exp(−i𝜅zz)
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conditions. These boundary conditions serve as a mirror for 
the simulation domain and are provided by:

where n̂ represents the unit vector that is perpendicular to 
the simulation domains at all points outside the surface. The 
periodic condition of photonic crystal lattice is feature by 
Floquet periodicity of Bloch’s theorem.

Design methodology, simulation results 
and discussion

The first structure we modeled is a 2D photonic crystal 
structure unit cell square lattice. Assuming the photonic 
crystal is formed of insulating GaAs circles with radius 
r = 0.065 μm that occupy the air square lattice centers with 
lattice constant a = 0.365 μm. As we can see in Fig. 1a, for a 
given frequency range known as the band gap, the relation-
ship between the wave number and the frequency of the light 
landing on the photonic crystal is determined by the distance 
between the pillars. This prevents the light from spreading 
inside the crystal. The photonic crystal’s light frequency is 
determined by examining the unit cell’s period. Regarding 
Fig. 1b, very few wave vectors that cover the boundaries of 
the fundamental first Brillouin zone (1BZ) is included in the 

(3)�n × �⃗E = 0

square lattice’s unit cell. One can trace the 1BZ symmetry 
points from Γ to X to M and back to Γ. We investigated the 
eigenfrequency of the electromagnetic wave model, Doman 
frequency, utilizing COMSOL SOFTWARE PROGRAMM. 
We put the boundary condition at the interfaces is selected 
as a perfect electric conductor (PEC) to avoid unphysical 
reflections. Then we put the periodic condition of the square 
lattice by using the Floquet Bloch wave vector periodicity 
at the boundary for wave vectors kx and ky. Using meh 
elements (mesh free triangular) with finer mesh physics-
controlled, as shown in Fig. 1c. From the simulation results, 
As seen in Fig. 2a–c, we determined the five eigenvalues of 
the z-component of the electric field  (Ez) for the transversal 
electric polarization (TE) of the first Brillouin zone (1Bz) in 
the square lattice unit cell. The frequency of the Bloch waves 
is determined from the solution of the eigenvalues. Problems 
with changing the wave vector with frequency result in dis-
persion relation which forms the band diagram of square 
lattice unit cell, as seen in Fig. 2d. Displaying the first five 
lower bands demonstrates the absence of any electromag-
netic waves (i.e., a state of no frequency range propagation) 
between the third and fourth bands. As a result, this region is 
characterized as a photonic crystal bandgap at the symmetry 
points represented by Γ, X, and M.

The second structure, we modeled unit cell of two-dimen-
sional photonic crystal structures for hexagonal lattice, by 
following the same steps the previous way of unit cell of 

1BZ

=a

=a

(c)(a) r

Fig. 1  Using COMSOL software to model the unit cell of a square lattice (a), the special symmetry points Γ, X, and Μ of the 1st BZ unit cell of 
a square lattice (b). Free triangular mesh of unit cell (c)
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square lattice but geometry varies to hexagonal lattice, as 
shown in the Fig. 3. From the simulation results, we found 
the five eigenvalues of z-component of the electric field ( Ez ) 
for the transversal electric polarization (TE) of the hexago-
nal lattice unit cell first Brillouin zone, as presented in the 
Fig. 4. Although there is overlap inside the bands between 
the five and four bands, it is still possible to see us clearly on 
the band diagram, demonstrates that there is no Bloch wave 
propagation in the bandgap-corresponding frequency range.

Defect states in two‑dimensional square 
and hexagonal periodic of photonic crystal

After modeling the bandgap structure of the complete 
structure photonic crystal, as is known, there are no modes 
allowed within the bandgap structure; the density of the 
states denoting the number of available modes per unit 
frequency is zero (this means reflects the light of certain 
frequency). Trying to break the periodic symmetry of the 

lattice by perturbing the lattice creating a defect in the struc-
ture of photonic crystal, such as point or line defects by 
removing single rod to create a single localized mode or by 
removing set of closely rods guide for the light frequencies 
inside the bandgap of the photonic crystal structure [1, 12], 
such these defects are especially important for telecommu-
nication application that allows one to localized light about 
these defects within the bandgap of photonic crystal [3]. By 
eliminating a single rod from the square lattice, we produce 
a cavity point that is essentially surrounded by reflecting 
walls; such a cavity is important for controlling light and 
localized one mode within bandgap with a narrow frequency 
range, shows the light bounces in the defect area, trapped 
by surrounding bandgap, the light cannot leakage because 
of bandgap and we can localize the mode to the defect area 
[1, 3].

There could be a linear flaw. By altering a linear unit cell, 
it is possible to guide light from one place to another. The 
goal is to create a waveguide from a perfect photonic crystal 
by modifying the linear defects in a unit cell. Then, the light 

(c)

(a)

(b)

Fig. 2  Contour: distribution of Electric field norm (V/m) for first 
the five eigenvalues of  Ez modes in the unit cell for special symmetry 
points Γ, Χ and Μ (a–c), and in (d) the dispersion relation (b and 
diagram) of frequency as function the wavenumber k after swept from 

0 to 0.5, show five photonic bands of unit cell in the square lattice. 
There is a frequency range that corresponds to a bandgap in the struc-
ture that is limited between the band three and band four; there is no 
propagation of Bloch waves in this range
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Fig. 3  a COMSOL software modelling the unit cell of hexagonal lattice, b free triangular mesh of unit cell, c the special symmetry points Γ, M, 
and K of the hexagonal lattice unit cell

M K

Fig. 4  Contour: Electric field norm (V/m) distribution for the first 
five eigenvalues of Ez modes in the unit cell of special symmetry 
points Γ, M, and K for the 1st BZ unit cell of hexagonal lattice (a–b), 
and in (c) the dispersion relation (b and diagram) of frequency as 
function the wavenumber k after swept from 0 to 0.5, show five pho-
tonic bands of unit cell in the hexagonal lattice, this structure shows 

one bandgap between the third and the four bands for TE- polarized 
wave can be clearly seen in the band diagram, although there is over-
lap in-band between the five and four bands. Shows there is no propa-
gation of Bloch waves in this range of frequency that corresponds to 
the bandgap
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will propagate in the waveguide with frequency inside the 
bandgap and confined to the linear defect area. This descrip-
tion happened when one row of rods is removed from the 
square lattice [1].

Simulation results and discussion

Point defect localized light in two square lattice 
photonic crystal

To begin, we are modelling a two-dimensional square pho-
tonic lattice with COMSOL software to remove a single 
rod from the band structure of a square lattice composed 
of dielectric rods gallium arsenide material (n = 3.48) is 

embedded in air (n = 1), with lattice constant a = 0.56 µm 
and rods radius r = 0.23a, as illustrated in Fig. 5a, which it 
represents the geometric design of the structure and hence 
the input and output characteristics of the light used dur-
ing the square lattice crystal structure. While Fig. 5b, repre-
sents the type of mesh chosen in this design. The numerical 
result showed that the Surface: electric field norm ( V∕m ) 
and Surface: the electric field, z- component ( V∕m ) in (c and 
d) and the Surface and Contour height expression of them 
in (e and f) for the wavelength 1.55 µm of a point defect 
/ resonant inside bandgap formed as result of the remov-
ing a single rod from the square lattice, which shows the 
field is trapped as a single localized mode state around the 
point defect inside the bandgap and the light cannot escape 
but bounce in the defect area. In (g and h) the electric field 

(a)

(g)

Fig. 5  The geometry of removing the single rod from the two-dimen-
sional square lattice, lattice constant a = 0.56 μm and the rods radius 
r = 0.23a in the air (a) Finite triangular element mesh (b) at the wave-
length 1.55 µm. (c) The electric field norm ( E ) (d) the electric field 
( Ez ) z-component ( V∕m ) (e and f) Are the height expression of (E) 
and (Ez) which shows the localized mode about the defect in a square 

lattice; the field is trapped as a single localized mode state around the 
point defect inside the bandgap and it dissolves quickly as we move 
away from the defect site, this mode has a monopole state with single 
nodal plan formed defect and rotational symmetry with perfect crys-
tal. In (g and h) the (E) and  (Ez) in unit (V/m) as function to the Arc 
length
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norm ( V∕m ) and Electric field, z-component (V/m) as func-
tion to the Arc length, this defect in the cavity supports one 
mode consisting of frequency �a∕2�c = a∕� =0.361 for the 
wavelength 1.55 µm, we observe the fields bouncing back 
and forth through the defect, so light cannot escape and is 
trapped around the defect, the mode degrades dramatically 
in the photonic crystal. In fact, theoretical modeling using 
COMSOL software shows the results visually interesting 
and intuitive with respect to the resonant cavity, this design 
can be exploited and may be useful for light control applica-
tions within a narrow frequency band.

As well as show the field is concentered in the point cav-
ity and rapidly decay as moving far from the defect site. 
Despite the creation of a defect within the lattice that breaks 
the crystal’s translational symmetry. To enable the crystal 
to restore the same point symmetries, a variety of imperfec-
tions are still present. In our model we have proven this, we 
show after taking out a single rod from the photonic lattice, 
the rotational symmetry property is remained unchanged for 
the lattice, this means that we can stay rotate by 90° about 
the z-axis. Now, trying to model other simulations to pre-
dict other types of defects in square lattice photonic crystal 
by just adjusting the rod radii to r = 0.108a. By decreasing 
the rod radius, a wide fundamental gap between the first 

and second bands is obtained, see Fig. 6a, b. The numeri-
cal findings revealed a sharp peak centered at the resonant 
cavity and demonstrated that the localized mode is tightly 
confined to the defect by a broad bandgap between the first 
and second band as seen in Fig. 6c, d. Figure 6e, f shows 
the electric field norm (V/m) and the electric field (Ez) of z 
component (V/m) as function to the Arc length.

This mode monopole state formed defect (with a single 
nodal plane and high symmetry) is pushed up from the die-
lectric band. This finding is helpful because, in most cases, 
one can work as close to the maximum localized mode cen-
tered on the point defect as possible with a wide gap. For 
modeling the large rod radii, such as r = 0.34a, 0.44a and 
0.55a as shown in Figs. 7, 8, and 9, Consequently, higher-
order modes with a greater number of planes initially draw 
into the bandgap’s gap, the different types of defect of 
higher-order modes depending on the amount of increase 
of rod radii, such as dipole, hexapole and high-order states 
of dipole are doubly degenerate, while other like quadru-
ple and of high-order states of monopole is non-degenerate 
states [30]. The high-order modes appear in Figs. 7 and 8a 
and b when the rod radii are increased to r = 0.34 and 0.44, 
respectively. These dipole states are doubly degenerate and 
formed by a 90° rotation. On Fig. 9, when the rod radii are 

Fig. 6  Electric field norm (E) and the electric field (Ez) of z compo-
nent (V/m) in (a and b), and the height expression of them in (c and 
d) of removing single rod from the two-dimensional square lattice 
with the lattice constant 0.56 µm and small rod radii r = 0.108a in air, 
show the localized mode are strongly confined about the defect by a 

wide bandgap, see also the sharp peak centered at the resonance cav-
ity. This mode monopole state formed defect (with a single nodal plan 
and high symmetry) is pushed up from the dielectric band. In (e and 
f) the electric field norm (V/m) and the electric field (Ez) of z compo-
nent (V/m) as function to the Arc length
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Fig. 7  Electric field norm ( E ) and the electric field z component ( Ez ) 
( V∕m ) in (a and b), and the height expression of them in (c and d) of 
removing single rod from the two-dimensional square lattice with the 
lattice constant a = 0.56 µm and large rod radii r = 0.34a in air, show 

the high-order appears as dipole state is doubly degenerate which 
formed by 90° rotation. In (e and f) the electric field norm ( V∕m ) and 
the electric field ( Ez ) of z component ( V∕m ) as function to the Arc 
length

Fig. 8  Electric field norm ( E ) and the electric field z component ( Ez ) 
( V∕m ) in (a and b), and the height expression of them in (c and d) of 
removing single rod from the two-dimensional square lattice with the 
lattice constant a = 0.56 µm and large rod radii r = 0.44a in air, show 

the high-order appears as dipole state is doubly degenerate which 
formed by 900 rotation. (e, f) represent ( E ) and ( Ez ) respectively, as 
function to the Arc length
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increased to r = 0.55, two states appear, one of which is a 
quadrupole state and the other is a second-order monopole 
state with an additional node in the radial direction. These 
states are non-degenerate states.

Next, we are modeling a hexagonal lattice with the aid 
of COMSOL program, the same procedures we follow in 
the formation of point defects within the bandgap of the 
photonic crystal to create a single localized state within the 
bandgap. By removing a single rod from the 2D square lat-
tice with a = 0.685 µm and small rod radius r = 0.2256a in 
air. Figure 10a represents the geometry of hexagonal lat-
tice, Fig. 10b represent the finite element triangular mesh. 
Figure 10c, d represent the numerical result showed that 
the electric field norm ( E ) and ( Ez ) the electric field z-com-
ponent of monopole state respectively, formed as result of 
the removing a single rod. Figure 10 (e, f) shows the field 
trapped as a single localized mode state around the point 
defect inside the bandgap and the light cannot escape but 
bounce in the defect area, the rotational symmetry property. 
Figure 10 (g, h) shows the electric field norm and the electric 
field z-component as function to the Arc length. The results 
show the monopole state formed as result the removing a 
single rod and this defect in the cavity supports one single 
mode consisting of frequency �a∕2�c = a∕� =0.4419 for 
the wavelength 1.55 µm. This result is helpful because, in 
most cases, a large gap can be used to get the maximum 
localized mode centered on the point defect.

Now, trying to simulate another photonic crystal with 
large rod radius to predict other types of defects, such as 
the higher-order modes. Increasing the number of planes 
initially pulls down into the gap within bandgap in hexago-
nal lattice photonic crystal by just adjusting the rod radii to 
r = 0.525a, 0.71a and 0.86a, as shown in Fig. 11. The numer-
ical results showed different types of defects of higher-order 
modes. For rod radius of r = 0.525a formed the dipole states 
have doubly degenerate state. While increasing to r = 0.71a 
formed the second-order monopole states with the nodal 
plane in the radial direction are non-degenerate states, and 
the second–order dipole states are doubly degenerate with 
other states. By increasing to r = 0.86a formed a second-
order monopole states, which are non-degenerate states with 
nodal plane in the radial direction. Dipole states have doubly 
degenerate with the other state, second–order dipole states 
are doubly degenerate with other states and the quadrupole 
states are non-degenerate states with nodal planes lying 
along the-x and-y axes and quadrupole-diagonal states are 
non-degenerate states with diagonal nodal planes.

We conclude from the creating of a point defect within 
both square and hexagonal lattice, that the electric field 
is well localized and trapped around the defect with high 
amplitude, and then we observe the decay of the field 
amplitude as we move away from the defect area. In both 
lattices, the mode defect appears to be monopole state with 

Fig. 9  Electric field norm ( E ) and the electric field z component ( Ez ) 
( V∕m ) in (a and b), and the height expression of them in (c and d) of 
removing single rod from the two-dimensional square lattice with the 
lattice constant a = 0.56 µm and large rod radii r = 0.55a in air, show 

appear two state the quadrupole states and the second- order mono-
pole states with an extra node in the radial direction, these states are 
non-degenerate states. (e, f) represent ( E ) and ( Ez ) respectively, as 
function to the Arc length
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a single plane in the defect area and with rotational sym-
metry with a small rod radius [1]. In fact, we have been 
able to successfully design different types of localized 
states defects within the bandgap by increasing the rod 
radius, such as the dipole states, second-order monopole 
states, quadrupole states, and second-order dipole states, 
and determine the same important properties of photonic 
crystal, regardless of type of square or hexagonal lattice 
using COMSOL software. We additionally found that the 
modes appear to be the result of assembling localized 
states into a lattice.

Line defect localized light in two square and hexagonal 
lattice photonic crystals

Aiming to use COMSOL software simulation to model 
two-dimensional square and hexagonal photonic lattices 
in order to design the removal of a row of rods from 
the band structure of square and hexagonal lattices that 
are composed of dielectric rods of (n = 3.48) embed-
ded in air (n = 1), with the lattice constants a = 0.68 µm 
and a = 0.542 µm and the rods with radius r = 0.2a and 
r = 0.256a respectively, as shows in Figs. 12 and 13a, b. 
Figures 12 and 13a show the geometric design for building 

Fig. 10  (a) The geometry of removing the single rod from the 2D 
hexagonal lattice, with the a = 0.685  μm and the rods with radius 
r = 0.2256a in the air (b) the finite triangular element mesh at the 
wavelength 1.55  µm. (c and d), the electric field norm ( E ) and the 
electric field ( Ez ) z-component respectively, (e and f) the height 

expression of both ( E ) and ( Ez ) respectively. The sharp peak centered 
at the resonance cavity. This mode monopole state formed defect 
(with a single nodal plane and high rotational symmetry) is pushed up 
from the dielectric band. (g and h) ( E ) and ( Ez ) respectively, as func-
tion to the Arc length
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a linear defect inside the crystal with a square and hexago-
nal structure. While Figs. 12 and 13b shows choosing the 
appropriate mesh for engineering design. The numerical 
result showed that the ( E ) and ( Ez ) with linear defect is 
formed by removing row of rods to create a line defect 
to make a path to guide the light inside the band gape in 
one direction within the plane for which discrete guided 
translation symmetry as shown in Figs. 12 and 13c, d. Fig-
ures 12 and 13e, f shows the height expression of ( E ) and 
( Ez ) for wavelengths 1.55 μm, in creating a line defect to 
make a path to guide the light inside the band gape in one 
direction. The results show in the figures a single guided 
mode inside the band gap by a single curved waveguide 
in a square and hexagonal photonic crystal composed of 
frequencies ωa/2πc = a/λ = 0.438 and 0.349 for square and 
hexagonal lattices respectively. While the Figs. 12 and 13g 
and h, represent the electric field norm (V/m) and the elec-
tric field (Ez) of z component (V/m) as function to the Arc 
length.

Linear defect modeling demonstrates the photonic crys-
tal ability to guide the light in one direction. By removing 
row of rods resulting in single-mode waveguide; it has the 
property of most single-mode being guided at a given fre-
quency within the band structure. On the other hand, create a 
linear defect that produces a discrete guided band, the mode 
represented by that band is evanescent inside the photonic 
crystal and at the same time trapped inside the defect. In 
other words, outside of the bandgap, the modes are extended 
within the crystal, and inside the bandgap, the localized state 
of the defect area is introduced.

These features determine how the electric field is con-
fined or steered within the photonic crystal for both point 
and line defects. The presence of flaws can cause the pro-
duction of defect states, which can be seen in field plots 
as localized enhancements or changes in field distribution. 
The lattice configuration (square or triangular) affects the 
photonic band structure and, as a result, the field patterns 
surrounding the flaws.

Fig. 11  (a and b) Electric field norm and the electric field z− compo-
nent respectively (c and d) the height expression of them in removing 
single rod from the 2D hexagonal lattice with a = 0.685 μm and large 
rod radii r = 0.525a, r = 0.71a, r = 0.68a in air, (c, d) show the differ-
ent localized states, such as dipole states are doubly degenerate with 
the other state when the radius increase to 0.525a. (a1, b1, c1 and d1) 
The second-order monopole states are non-degenerate states and the 

second order dipole states are doubly degenerate with other states for 
r = 0.71a. (a2,b2,c2 and d2) for r = 0.86a the different states, such as 
the second-order monopole states are non-degenerate states, dipole 
states have doubly degenerate with the other state, second– order 
dipole states are doubly degenerate with other states and the quadru-
pole states are non-degenerate states and quadrupole-diagonal states 
both are non-degenerate states with diagonal nodal planes
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Conclusions

From the result, we were able to determine the main dif-
ference theoretically between the point defect and linear 
defect of both square and hexagonal photonic lattice. 
For the point defect, the mode is trapped wherever its 
frequency is within the band structure. As for the linear 
defect, the mode is localized to one direction propagation 
along with the defect, serving as a channel along where 

the light is propagated, rather than just a space that traps 
light. In addition, when creating a point defect inside the 
bandgap, the amplitude of the electric field is large and 
concentrated around the defect region and decays quickly 
as we move away from the site of the defect. While creat-
ing a line defect inside the bandgap, the amplitude of the 
electric field will continue to propagate in one direction to 
the end of the path of the line defect within the photonic 
crystal bandgap.

Fig. 12  The geometry of removing the row from the two-dimen-
sional square lattice to carve a waveguide out of perfect photonic 
crystal, with the lattice constant 0.68 μm , and the rods radius r = 0.2a 
in the air for square lattice (a) and finite triangular element mesh 
(b) at the wavelength 1.55 µm. In (c and d), the electric field norm 

( E ) and the electric field ( Ez ) of z-component ( V∕m ) and the height 
expression of them in (e and f), carve a line defect to create a path to 
guide the light inside the band gape in one direction. In (g and h) the 
electric field norm (E) (V/m) and the electric field (Ez) of z compo-
nent (V/m) as function to the Arc length
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