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a b s t r a c t

In this note, we consider a general 2 × 2 system of nonlinear Volterra type integral
equations. The modified Newton method (modified NM) is used to reduce the non-
linear problems into 2 × 2 linear system of algebraic integral equations of Volterra
type. The latter equation is solved by discretization method. Nystrom method with
Gauss–Legendre quadrature is applied for the kernel integrals and Newton forwarded
interpolation formula is used for finding values of unknown functions at the selected
node points. Existence and uniqueness solution of the problems are proved and accuracy
of the quadrature formula together with convergence of the proposed method are
obtained. Finally, numerical examples are provided to show the validity and efficiency of
the method presented. Numerical results reveal that the proposed methods is efficient
and accurate. Comparisons with other methods for the same problem are also presented.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The theory of approximation methods and its applications to the solution of nonlinear singular integral equations
(Nonlinear SIEs) [1–4], functional equations [5–12] and nonlinear integral equations (NIEs) [13–21] have been developed
by many authors. However, system of nonlinear integral equations is not much elaborated [22–27]. In mathematics, many
problems of differential equations, integral equations, functional equations and operator equations can be reduced to find
the roots of nonlinear operator equation of the form

P (x) = 0, (1.1)

where P is mainly nonlinear operator and x is a vector function to be determined. The exact solution of (1.1) is available
in exceptional cases ([5] and literatures cited there in). Therefore numerical methods are needed to find the approximate
solutions. One of the well-known linearization approximation method is modified Newton method [6]. It attempts to
linearize the nonlinear equation into linear equation then find the approximate solution by processing the convergent
sequence.

xn+1 = xn −
[
P ′ (x0)

]−1 P (xn) , n = 0, 1, . . . (1.2)

where x0 is an initial approximation (assume that
[
P ′ (x0)

]−1 exists).
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Each xn is an approximate solution of (1.1) and the larger the integer n more accurate solution is obtained. Generating
sequence xn in the form of (1.2) is called modified Newton method (modified NM) [7, 525]. If the sequence {xn} converges
to a root x∗ and x0 ∈ Ω is chosen close enough to x∗, then by the continuity of P ′, the operator of P ′ (xn) and P ′ (x0) will
only differ by a small amount. This is the justification of modified NM.

Some survey of literatures regarding to the convergence of modified NM are listed as follows. In 1939, Kantorovich [8]
proposed iterative method for functional equations in a Banach space and derived the convergence theorem for Newton’s
method. In 1948, he [9] suggested an extension of Newton’s method to functional spaces and established a semilocal
convergence result for Newton’s method in Banach space, which is called Kantorovich’s theorem or, more specifically,
the Newton–Kantorovich theorem (NKT). In 1949, Kantarovich [10] has stated the main theorem on the convergence
of the Newton process. In it the final conditions of the convergence of the method are given and the convergence
rate is established. There are a lot of results published with regards to convergence and error bounded for Newton’s
method under assumption of the Newton–Kantorovich theorem or under closely related ones. Further developments of
the Newton’s method can be found in [11,12].

On the solvability of nonlinear Uryson integral equation (IEs) is first carried out by Zabrejko and Majarova [13] in 1978,
in Banach space. In 1987, Zabrejko and Nguyen [14] investigated the solvability of the nonlinear algebraic equation and
sharp error estimates were obtained by means of the majorant method in the theory of modified NM. In 1991, Appell
et al. [15] applied modified NM to a nonlinear integral equation in Banach space to calculate two scalar constants and scalar
functions. This is carried out for nonlinear Uruson integral operator in spaces C and Lp, 1 ≤ p ≤ 2. In 2003, Wang [16] has
established some results on convergence of Newton’s method in Banach spaces under the assumption that derivative of the
operators satisfies the radius or center Lipschitz condition with a weak L average. In 2004, Argyros [17] has used Newton–
Kantorovich hypothesis as a sufficient condition of the convergence of Newton’s method to a solution of an functional
equation in connection with the Lipschitz continuity of the Fréchet-derivative and could be able to weakened Newton–
Kantorovich hypothesis. In 2010, Saberi and Heidari [18], developed a method of Newton–Kantorovich and quadrature rule
to solve nonlinear integral equation of the Urysohn form in a systematic procedure. In 2012, Ezquerro et al. [19] proved the
existence and uniqueness solutions of Hammerstein type equation using Newton’s method. In 2016, Eshkuvatov et al. [20]
have applied modified NM to Volterra-type nonlinear integral equations then the method of Nystrom type Gauss–Legendre
quadrature formula (QF) was used to find the approximate solution of a linear Fredholm integral equation. The existence
and uniqueness of the approximated method are proved and the convergence rate is established in Banach space. Finally
illustrative examples are provided to validate the accuracy of the presented method.

In 1996, Brunnera and Yatsenko [21] considered a system of nonlinear Volterra integral equations (VIE) with unknown
delay time⎧⎨⎩x(t) =

∫ t

y(t)
K1(t, τ , x(τ ))dτ ,∫ t

y(t) K2(t, τ , x(τ ))dτ = f (t), t ∈ [0, T ].

(1.3)

where x(τ ) and delay time y(τ ) are unknowns, where τ ∈ (−∞, 0]. The solution x(τ ) is to agree with a given initial
function i.e. x(τ ) = x0(τ ),−∞ < τ ≤ o and the unknown delay time y(τ ) obeys the initial condition y(0) = y0 < 0.
They introduced and studied polynomial spline collocation methods for systems of Volterra integral equations (1.3) with
unknown lower integral limit arising in mathematical economics. Their discretization leads to the implicit Runge–Kutta
type method. The global convergence and local superconvergence properties of this method were proved, and the theory
was illustrated by a numerical examples.

In 2003, Boykov and Tynda [22], implemented successfully modified NM to the system of nonlinear Volterra integral
equation of the form⎧⎪⎪⎨⎪⎪⎩

x(t) −

∫ t

y(t)
h(t, τ )g(τ )x(τ )dτ = 0,∫ t

y(t)
k(t, τ )[1 − g(τ )]x(τ )dτ = f (t),

(1.4)

where 0 < t0 ≤ t ≤ T , y(t) < t , with given functions h(t, τ ), k(t, τ ) ∈ C[0,∞]×[t0,∞], f (t), g(t) ∈ C[t0,∞] 0 < g(t) < 1, and
the unknown function x(t) ∈ C[0,∞] , y(t) ∈ C1

[t0,∞]. They also considered n-commodity models described by nonlinear
systems of n equations. The uniqueness and existence theorems together with rate of convergence of approximate model
were obtained for (1.3).

In 2010, Eshkuvatov et al. [23] solved numerically the system of nonlinear Volterra integral equation of the form⎧⎪⎪⎨⎪⎪⎩
x(t) −

∫ t

y(t)
h(t, τ )g(τ )x2(τ )dτ = 0,∫ t

y(t)
k(t, τ )x2(τ )dτ = f (t),

(1.5)

where 0 < t0 ≤ t ≤ T , y(t) < t , and f (t) ∈ C[t0,∞], H(t, τ ), K (t, τ ) ∈ C[t0,∞]×[t0,∞], and the unknown functions
x(t) ∈ C[t0,∞], y(t) ∈ C1

[t0,∞], and found that Eq. (1.4) has a unique solution and Newton–Kantorovich iteration converges to
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the exact solution very fast. Numerical examples are provided to show the validity and efficiency of the method presented.
In 2015, Hameed et al. [24] developed modified NM to solve the system 2 × 2 nonlinear Volterra integral equations
where the unknown function is of the logarithmic form. A new majorant function was introduced which leads to wider
convergence interval. The existence and uniqueness of approximate solution were proved and a numerical example was
provided to show the validation of the method. In 2016, Hameed et al. [25] have considered an n×n system of nonlinear
integral equations of Volterra type (nonlinear VIEs) arising from an economic model. By applying the modified NM linear
Volterra type integral equations (linear VIEs) is obtained and solved by the Nystrom type Gauss–Legendre quadrature
formula (QF). It is found that by increasing the number of collocation points in the sub-grids with fewer iterations, a
highly accurate approximate solution was obtained

The aim of the present paper is to investigate the general system of 2 × 2 nonlinear integral equation of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(t)x(t) −

∫ t

y(t)
H(t, τ )F (x(τ )) dτ = g(t),

b(t)x(t) +

∫ t

y(t)
K (t, τ )F (x(τ )) dτ = f (t),

(1.6)

where 0 < t0 ≤ t ≤ T , y(t) < t , kernels H(t, τ ), K (t, τ ) ∈ C[t0,T ]×[t0,T ], functions a(t), b(t), f (t) ∈ C[t0,T ] and unknown
functions x(t) ∈ C[t0,T ], y(t) ∈ C1

[t0,T ]
. Here F (x(t)) is a different type of nonlinear term. In an attempt to solve Eq. (1.6) the

modified NM together with Gauss–Legendre quadrature formula and Newton’s forward interpolation formula are used.

2. Description of the method⎧⎪⎪⎪⎨⎪⎪⎪⎩
P1 (x(t), y(t)) = a(t)x(t) −

∫ t

y(t)
H(t, τ )F (x(τ )) dτ − g(t),

P2 (x(t), y(t)) = b(t)x(t) +

∫ t

y(t)
K (t, τ )F (x(τ )) dτ − f (t)

(2.1)

then rewrite (2.1) in the operator form

P(X) = (P1(X), P2(X)) = (0, 0) , X = (x(t), y(t)) . (2.2)

Apply the first iteration of modified NM

P ′(X0)(X − X0) + P(X0) = 0, (2.3)

to (1.6), where X0 = (x0(t), y0(t)) is the initial guess with y0(t) < t . The derivative

P ′ (X0) (X) = lim
s→0

P (X0 + sX)− P(X0)
s

,

is understood as Fréchet derivative of P at X0 = (x0(t), y0(t)) and it has the form (details is given in [24])

P ′(X0) =

⎛⎜⎜⎜⎜⎝
∂P1
∂x

⏐⏐⏐⏐
(x0,y0)

∂P1
∂y

⏐⏐⏐⏐
(x0,y0)

∂P2
∂x

⏐⏐⏐⏐
(x0,y0)

∂P2
∂y

⏐⏐⏐⏐
(x0,y0)

⎞⎟⎟⎟⎟⎠ (2.4)

where

∂P1
∂x

⏐⏐⏐⏐
(x0,y0)

= lim
s→0

1
s
(P1 (x0 + sx, y0)− P1(x0, y0)) = a(t)x(t) −

∫ t

y0(t)
H (t, τ ) F ′ (x0(τ )) x(τ ) dτ ,

∂P1
∂y

⏐⏐⏐⏐
(x0,y0)

= lim
s→0

1
s
(P1 (x0, y0 + sy)− P1(x0, y0)) = H (t, y0(t)) F (x0(y0(t))) y(t),

∂P2
∂x

⏐⏐⏐⏐
(x0,y0)

= lim
s→0

1
s
(P2 (x0 + sx, y0)− P2(x0, y0)) = b(t)x(t) +

∫ t

y0(t)
K (t, τ ) F ′ (x0(τ )) x (τ ) dτ ,

∂P2
∂y

⏐⏐⏐⏐
(x0,y0)

= lim
s→0

1
s
(P2 (x0, y0 + sy)− P2(x0, y0)) = −K (t, y0(t)) F (x0(y0(t))) y (t) .
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Substituting (2.4) into (2.3) yields

a(t)∆x(t) −

∫ t

y0(t)
H (t, τ ) F ′ (x0(τ ))∆x(τ )dτ + H (t, y0(t)) F (x0(y0(t)))∆y(t)

=

∫ y

y0(t)
H (t, τ ) F (x0(τ )) dτ − a(t)x0(t) + g(t),

b(t)∆x(t) +

∫ t

y0(t)
K (t, τ ) F ′ (x0(τ ))∆x(τ )dτ − K (t, y0(t)) F (x0(y0(t)))∆y(t)

= −

∫ t

y0(t)
K (t, τ ) F (x0(τ )) dτ − b(t)x0(t) + f (t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.5)

To solve (2.5), substitution rule is applied and arrive at

∆x(t) −
1

c(t)

∫ t

y0(t)
K1(t, τ )F ′(x0(τ ))∆x(τ )dτ = ψ0(t),

∆y(t) =
1

d(t)

[∫ t

y0(t)
K (t, τ )F ′(x0(τ ))∆x(τ )dτ

+

∫ t

y0(t)
K (t, τ )F (x0(τ ))dτ + b(t)x0(t) − f (t)

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.6)

where ∆x(t) = x1(t) − x0(t) and ∆y(t) = y1(t) − y0(t),

c(t) = a(t) + b(t)G (t) ̸= 0, d(t) = H(t, y0(t))F (x0(y0(t))) ̸= 0, ∀t ∈ [t0, T ],

K1 (t, τ ) = H (t, τ )− G (t) K (t, τ ) , G (t) =
H (t, y0(t))
K (t, y0(t))

,

ψ0(t) =
1

c(t)

[∫ t

y0(t)
K1(t, τ )F (x0(τ ))dτ − c(t)x0(t) + g(t) + f (t)G(t)

]
.

(2.7)

By solving (2.6) in terms of ∆x and ∆y we obtain (x1(t), y1(t)). Applying the modified Newton method of the form

P ′ (X0) (Xm − Xm−1)+ P (Xm−1) = 0, (2.8)

to (2.2) we obtain

a(t)∆xm(t) −

∫ t

y0(t)
H(t, τ ) F ′(x0(τ ))∆xm(τ )dτ + H(t, y0(t)) F (x0(y0(t)))∆ym(t)

=

∫ y

ym−1(t)
H(t, τ ) F (xm−1(τ )) dτ − a(t)xm−1(t) + g(t),

b(t)∆mx(t) +

∫ t

y0(t)
K (t, τ )F ′(x0(τ ))∆xm(τ )dτ − K (t, y0(t))F (x0(y0(t)))∆ym(t)

= −

∫ t

ym−1(t)
K (t, τ )F (xm−1(τ ))dτ − b(t)xm−1(t) + f (t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

Since (2.9) is a linear Volterra type integral equations, it can easily be solved in terms of ∆xm and ∆ym as follows

∆xm(t) −
1

c(t)

∫ t

y0(t)
K1(t, τ ) F ′(x0(τ ))∆xm(τ )dτ = ψm−1(t), m = 2, 3 · · ·

∆ym(t) =
1

d(t)

[∫ t

y0(t)
K (t, τ )F ′(x0(τ ))∆xm(τ )dτ

+

∫ t

ym−1(t)
K (t, τ )F (xm−1(τ ))dτ + b(t)xm(t) − f (t)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.10)

where ∆xm (t) = xm (t) − xm−1 (t) , ∆ym (t) = ym (t) − ym−1 (t) and functions c(t), d(t), G(t) and kernel K1(t, τ ) are
defined in (2.7) and

ψm−1 (t) =
1

c(t)

[∫ t

ym−1(t)
K1 (t, τ ) F (xm−1(τ )) dτ − c(t)xm−1(t) + g(t) + f (t)G (t)

]
. (2.11)
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Solving (2.9) with respect to ∆xm and ∆ym, we obtain a sequence of approximate solution (xm(t), ym(t)).

Remark 1. Assume that c(t) = b(t) + a(t)G (t) ̸= 0, ∀t ∈ [t0, T ] and the kernels H (t, τ ) and K (t, τ ) are continuous
with K (t, y0(t)) ̸= 0, ∀t ∈ [t0, T ] then the first equation of (2.10) has continuous coefficients. Since 0 < t0 ≤ y0 (t) < t
it follows that the first equation of (2.10) has a unique solution in terms of ∆xm. Once ∆xm(t) is calculated from the
first equation of (2.10) then approximate solution of (2.6) can be obtained by the method of successive approximations
xm(t) = ∆xm(t) + xm−1(t), m = 1, 2, . . .. The sequence ∆ym can be uniquely determined from the second equation of
(2.10).

3. Quadrature method and its accuracy

3.1. Gauss–Legendre quadrature method

It is known that Legendre polynomials Pn+1(x) are orthogonal on [−1, 1] with weights w (x) = 1 and its roots
Pn+1(x) = 0 are equally distributed in the interval [−1, 1] centered at x = 0. Petras [28] has shown that the efficient
numerical calculation of probably the most important quadrature formula is the Gauss–Legendre quadrature formula
(QF) on the interval [−1, 1]. Extension of Gauss–Legendre QF on any interval [a, b] is shown in [29, pp. 115] and stated
that if Gauss–Legendre quadrature formula (QF) is constructed in the form of∫ b

a
f (s)ds =

n+1∑
i=1

wif (ti) + Rn(f ), (3.1)

where ti =
b − a
2

si +
b + a
2

and

wi =
2(

1 − s2i
) [

P ′
n(si)

]2 , n+1∑
i=1

wi = 2, (3.2)

Pn+1(si) = 0, i = 1, 2, . . . , n + 1, (3.3)

then the error term of Gauss–Legendre QF is

Rn(f ) =
(b − a)2n+3(n + 1)!4

(2n + 3) [(2n + 2)!]3
f (2n+2) (ξ) , −1 < ξ < 1. (3.4)

Theorem 1 (Kythe and Schaferkotter [29, pp. 113]). Gaussian quadrature formula has precision 2n + 1 only if the points
si, i = 1, 2, . . . , n + 1 are the zeros of orthogonal polynomials φn+1(s).

Eshkuvatov et al. [20] extended Gauss–Legendre QF (3.1) to the kernel integral on the [y(ti), ti], i = 1, 2, . . . , n with

ti = t0 + ih, h =
T − t0

n
as follows∫ ti

y(ti)
K (ti, τ )x(τ )dτ =

ti − y(ti)
2

l∑
j=1

Wj(ti)x(τ ij ) + Rn+1(Kx), (3.5)

Wj(ti) = K (ti, τ ij )wj, τ ij =
ti − y(ti)

2
sj +

ti + y(ti)
2

, j = 1, 2, . . . , l,

where τ ij ̸= ti with 0 < t0 ≤ y(t) < t ≤ T0 and l refers to the number of sub partitions of the interval [y(ti), ti] ∈ [t0, T ]

and wj and sj are the roots of Legendre polynomials and weights defined by (3.2)–(3.3) respectively.
By changing variable interval into fixed interval [t0, T ] and constructing Gauss–Legendre QF in the form

Q (t) =

∫ T

t0

K (t, τ ) x (τ ) dτ =
T − t0

2

n+1∑
j=1

Wj (t) x
(
τj
)
+ Rn+1(Kx), (3.6)

Wj (t) = K
(
t, τj

)
wj, τj =

T − t0
2

sj +
T + t0

2
, j = 1, 2, . . . , n + 1,

we prove the following theorem.

Theorem 2. Let kernel K (t, τ ) and x(t) be in the class of C (2n+2) [t0, T ] then the error term of Gauss–Legendre QF (3.6) has
the form

|Rn+1(Kx)| ≤ E ≤
(T − t0)2n+3

(2n + 3)

[
1 · 2 · 3 · · · (n + 1)

(n + 1) · (n + 2) · · · (2n + 2)

]2 T (2n+2)

1 · 2 · 3 · · · (2n + 2)
, (3.7)



Z.K. Eshkuvatov, H.H. Hameed, B.M. Taib et al. / Journal of Computational and Applied Mathematics 361 (2019) 528–546 533

where E denotes the maximum modulus of the error Rn+1(Kx) and

T (q) = X (0)M(q)
t + b1X (1)M

(q−1)
t + · · · + bq−1X (q−1)M(1)

t + X (q)M(0)
t , (3.8)

X (0)
= ub

t0≤τ≤T
|x(τ )| , X (m)

= ub
t0≤τ≤T

⏐⏐⏐⏐ ∂m∂τm x(τ )
⏐⏐⏐⏐ ,

M (0)
t = ub

t0≤τ≤t≤T
|K (t, τ )| , M (m)

t = ub
t0≤τ≤t≤T

⏐⏐⏐⏐ ∂m∂tm K (t, τ )
⏐⏐⏐⏐ . (3.9)

with ub means ‘‘upper bound’’ and bi =
q!

i!(q − i)!
, i = 1, . . . , q − 1 binomial coefficients.

Proof. Due to product rule of derivative with Binomial coefficients and notations in (3.8)–(3.9) we can easily prove that⏐⏐⏐⏐ dn

dτ n
[K (t, τ )x(τ )]

⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐∂nK (t, τ )∂τ n
x(τ ) +

n−1∑
i=1

bin
∂n−iK (t, τ )
∂τ n−i

dix(τ )
dτ i

+ K (t, τ )
dnx(τ )
dτ i

⏐⏐⏐⏐⏐
≤ M (n)

t X (0)
+

n−1∑
i=1

binM
(n−i)
t X (i)

+ M (0)
t X (n)

= T n. (3.10)

and
[(n + 1)!]4

[(2n + 2)!]3
=

[(n + 1)!]2 · [(n + 1)!]2

[(n + 1)!]2 · [(n + 1)(n + 2) · · · (2n + 2)]2 · [(2n + 2)!]

=

[
1 · 2 · 3 · · · (n + 1)

(n + 1) · (n + 2) · · · (2n + 2)

]2 1
1 · 2 · · · (2n + 2)

(3.11)

From (3.4), (3.10), (3.11) and approach in [29, pp.456–457], it follows that

|Rn+1(Kx)| =

⏐⏐⏐⏐⏐⏐
∫ T

t0

K (t, τ ) x (τ ) dτ −
T − t0

2

n+1∑
j=1

Wj (t) x
(
τj
)⏐⏐⏐⏐⏐⏐

≤
(T − T0)2n+3(n + 1)!4

(2n + 3) [(2n + 2)!]3

⏐⏐⏐⏐ dn

dτ n
[K (t, τ )x(τ )]

⏐⏐⏐⏐
τ=ξ

≤
(T − t0)2n+3

(2n + 3)

[
1 · 2 · 3 · · · (n + 1)

(n + 1) · (n + 2) · · · (2n + 2)

]2 T (2n+2)

1 · 2 · 3 · · · (2n + 2)
. □

3.2. The accuracy and stability of quadrature rules

In elementary calculus one learns to evaluate a definite integral

I(f ) =

∫ b

a
ρ(x)f (x)dx, (3.12)

then the integral in (3.12) is approximated by an n-point quadrature rules, which has the form

Qn(f ) =

n∑
i=1

ωif (xi), (3.13)

where a ≤ x1 < x2 < x3 < · · · < xn ≤ b. The points xi are called nodes or abscissa, and ωi are called weights. Quadrature
rules can be constructed using polynomial interpolation. In particular, if Lagrange interpolation polynomials are used,
then the weights can be represented as

ωi =

∫ b

a
ρ(x)ℓi(x)dx, i = 1, . . . , n. (3.14)

The resulting quadrature rule is called interpolation quadrature formula (QF) [29]. An alternative method for interpolation
quadrature rules (QR) is the Gaussian quadrature rule. If Qn is an interpolatory quadrature rule, and pn−1 is the polynomial
of degree at most n− 1 interpolating a sufficiently smooth integrand function f at the knots x1, x2, . . . , xn, then the error
bound for the case of ρ(x) = 1 [30, pp. 343] can be obtained as follows

|I(f ) − Qn(f )| = |I(f ) − I(pn−1)| = |I(f − pn−1)|

≤ (b − a)∥f − pn−1∥∞ ≤
1
4
hn+1

∥f (n)∥∞, (3.15)
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where h = max{xi+1−xi : i = 1, 2, . . . , n−1}. Thus we can acquire higher accuracy by taking larger n which leads smaller
h. In fact, the bound of nth derivative of the function reveals that Qn(f ) − I(f ) → 0 as n → ∞, as well as the minimum
convergence rate we can expect, provided f (n) remains well behaved.

In addition, Michael [30, pp. 347] states that interpolatory QF constructed in the form of (3.13) can also be concerned
with the stability of a quadrature rules. Let f̂ be a perturbation to the integrand function f , then we have

|Qn(f̂ ) − Qn(f )| = |Qn(f̂ − f )| =

⏐⏐⏐⏐⏐
n∑

i=1

ωi(f̂ (xi) − f (xi))

⏐⏐⏐⏐⏐
≤

n∑
i=1

(
|ωi|.

⏐⏐⏐f̂ (xi) − f (xi)
⏐⏐⏐) ≤

(
n∑

i=1

|ωi|

)
∥f̂ − f ∥∞.

If the weights are all nonnegative, then the absolute condition number of the quadrature rule is b − a and thus the
quadrature rule is stable. If some of the weights are negative then absolute condition number can be much larger and
quadrature rule can be unstable.

Let wn(x) = (x − x1)(x − x2) · · · (x − xn) be the polynomials of degree n for the identifying nodes xk, then Gaussian QF
for the integral (3.12) the following theorems are hold.

Theorem 3 (Israilov [31, pp. 347]). Gaussian QF of the form (3.13) to be exact for the polynomials of degree 2n−1 the following
two conditions need to be satisfied

1. QF (3.13) must be interpolation
2. Polynomials wn(x) should be orthogonal to any polynomials Q (x) of order less than n with the weights ρ(x) on the

interval [a, b] i.e.∫ b

a
ρ(x)wn(x)Q (x)dx = 0.

Theorem 4 (Israilov [31, pp. 350]). If f (x) ∈ C2n
[a, b] then there exists ξ ∈ [a, b] such that the error term of Gaussian QF for

the integral (3.12) with weight function the following equality holds

Rn(f ) = I(f ) − Qn(f ) =
f (2n)(ξ )
(2n)!

∫ b

a
ρ(x)[wn(x)]2dx. (3.16)

For the case [a, b] = [−1, 1] and ρ(x) = 1 error term of the Gauss–Legendre QF is

Rn(f ) =
22n+1(n!)4

(2n + 1)[(2n)!]3
f (2n)(ξ ) =

22n+1

2n + 1

[
1 · 2 · · · n

(n + 1) · (n + 2) · · · (2n)

]2 f (2n)(ξ )
(2n)!

. (3.17)

Error term (3.17) shows that for the bounded derivative of the function leads high accurate and stable QF. Unbounded
derivative of the function leads unstable QF.

4. Discretization of the modified NM

For the approximate solution of the linear system (2.5) we introduce a grid point Ω1 =

{
ti : ti = t0 + i

T − t0
n

,

i = 1, 2, . . . , n
}
where n refers to the number of partitions in [t0, T ]. Then from the system (2.10) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xm (ti)−
1

c (ti)

∫ ti

y0(ti)
K1 (ti, τ ) F ′ (x0(τ )) xm(τ )dτ

=
1

c(ti)

[∫ ti

y0(ti)
K1 (ti, τ ) F ′ (xm−1(τ )) xm−1(τ )dτ

+

∫ t

ym−1(t)
K1 (ti, τ ) F (xm−1(τ )) dτ + g (ti)+ f (ti)G (ti)

]
∆ym (ti) =

1
d (ti)

[∫ ti

y0(ti)
K (ti, τ ) F ′ (x0(τ ))∆xm(τ )dτ

+

∫ t

ym−1(t)
K (ti, τ ) F (xm−1(τ )) dτ + b (ti) xm (ti)− f (ti)

]
.

(4.1)
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Let us introduce a sub grid Ω2 at each subinterval [y0 (ti) , ti] and [ym−1 (ti) , ti] of the interval [t0, T ] such that

1. For the interval [y0 (ti) , ti], assume that ai = y0 (ti) < ti therefore [ai, ti] ⊂ [t0, T ] and we choose Legendre knot
points at each open interval (ai, ti), i.e.

τ
(k)
i =

ti − ai
2

sk +
ti + ai

2
, k = 1, 2, . . . , l, i = 1, 2, . . . , n, τ

(k)
i ̸= ti (4.2)

2. For the interval [ym−1 (ti) , ti], the grid points are chosen as

τ
(k)
i(m−1) =

ti − ym−1 (ti)
2

sk +
ti + ym−1 (ti)

2
, k = 1, 2, . . . , l, i = 1, 2, . . . , n, τ

(k)
i(m−1) ̸= ti. (4.3)

Applying Gauss–Legendre QF (3.5) for the kernel integrals in (4.1) at the Legendre grid points τ (k)i and τ (k)i(m−1) defined
by (4.2) and (4.3), we obtain

xm
(
τ
(k)
i

)
−

1

c
(
τ
(k)
i

) l∑
j=1

W (1)
kji xm

(
τ
(k)
j

)

=
1

c
(
τ
(k)
i

)
⎡⎣ l∑

j=1

W (1)
kji xm−1

(
τ
(k)
j

)
+

l∑
j=1

W (2)
kji F

(
xm−1

(
τ
(k)
j

))
+g

(
τ
(k)
i

)
+ f

(
τ
(k)
i

)
G
(
τ
(k)
i

)]
,

k = 1, 2, . . . , l, i = 1, 2, . . . , n, m = 1, 2, . . .

(4.4)

where

W (1)
kji =

ti − ai
2

K1

(
τ
(k)
i , τ

(j)
i

)
F ′

(
x0
(
τ
(j)
i

))
wj,

W (2)
kji =

ti − ym−1 (ti)
2

K1

(
τ
(k)
i , τ

(j)
i(m−1)

)
wj, m = 1, 2, . . .

(4.5)

System (4.4) can be written in matrix form as follows

DXm = Bm−1, m = 1, 2, . . . , (4.6)

where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −
1

c(τ 1i )
W (1)

11i −
1

c(τ 1i )
W (1)

12i · · · −
1

c(τ 1i )
W (1)

1ℓi

−
1

c(τ 2i )
W (1)

21i 1 −
1

c(τ 2i )
W (1)

22i · · · −
1

c(τ 2i )
W (1)

2ℓi

...
... · · ·

...

−
1

c(τ ℓi )
W (1)
ℓ1i −

1
c(τ ℓi )

W (1)
ℓ2i · · · 1 −

1
c(τ ℓi )

W (1)
ℓℓi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Xm =

⎡⎢⎢⎢⎣
xm(τ 1i )
xm(τ 2i )
...

xm(τ ℓi )

⎤⎥⎥⎥⎦ , i = 1, 2, . . . , n,

and

Bm−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
c(τ 1i )

⎡⎣ ℓ∑
j=1

W (1)
1ji xm−1(τ 1i ) +

ℓ∑
j=1

W (2)
1ji F

(
xm−1(τ 1i )

)
+ g(τ 1i ) + f (τ 1i )G(τ

1
i )

⎤⎦
1

c(τ 2i )

⎡⎣ ℓ∑
j=1

W (1)
2ji xm−1(τ 2i ) +

ℓ∑
j=1

W (2)
2ji F

(
xm−1(τ 2i )

)
+ g(τ 2i ) + f (τ 2i )G(τ

2
i )

⎤⎦
...

1
c(τ ℓi )

⎡⎣ ℓ∑
j=1

W (1)
ℓji xm−1(τ ℓi ) +

ℓ∑
j=1

W (2)
ℓji F

(
xm−1(τ ℓi )

)
+ g(τ ℓi ) + f (τ ℓi )G(τ

ℓ
i )

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If the determinant |D| ̸= 0 then (4.6) has a unique solution. Since the values of the unknown functions xm
(
τ
(k)
i

)
are known

at l Legendre grid points in each subinterval [ai, ti] for each m iteration, we can find the values of unknown function x (ti)
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using Newton forward interpolation formula

x (ti) ≃ Pl (t) = xm
(
τ
(l)
i

)
+ xm

(
τ
(l)
i , τ

(l−1)
i

)(
t − τ

(l)
i

)
+xm

(
τ
(l)
i , τ

(l−1)
i , τ

(l−2)
i

)(
t − τ

(l)
i

)(
t − τ

(l−1)
i

)
+ · · · + xm

(
τ
(l)
i , . . . , τ

(1)
i

)(
t − τ

(l)
i

)
· · ·

(
t − τ

(1)
i

)
.

(4.7)

It is known [31] that the error term of (4.7) is

∥xm (t)− Pl (t)∥ ≤
M

(l + 1)!
, (4.8)

where M = max
{⏐⏐f (l+1) (ξ)

⏐⏐ ⏐⏐⏐(t − τ
(l)
i

)
· · ·

(
t − τ

(1)
i

)⏐⏐⏐}.
From (4.8) it follows that by increasing the nodes points l the more accurate solution is obtainable, therefore the

Newton forward interpolation method can be used for small m. Since all values of xm
(
τ
(j)
i

)
are known and due to

(4.7) we have values of the unknown function x (ti) , i = 1, 2, . . . , n, then unknown values of y (ti) are defined by the
Gauss–Legendre quadrature

ym(ti) = ym−1(ti) +
1

d(ti)

⎡⎣ l∑
j=1

W (1)
ij

(
xm
(
τ
(j)
i

)
− xm−1

(
τ
(i)
i

))

+

l∑
j=1

W (2)
ij F

(
xm−1

(
τ
(i)
i(m−1)

))
+ b(ti)xm(ti) − f (ti)

⎤⎦ , (4.9)

where W 1
ij and W 1

ij are defined by (4.5).
Hence, we have found all values of (xm (ti) , ym (ti)). By the convergence iteration of modified NM

[7, pp. 532] and convergence of Gauss–Legendre QF (3.7), we obtain (xm (ti) , ym (ti)) −−−→
m→∞

(x (ti) , y (ti)).
The steps of application of the proposed method is as follows:

1. Identify operators P1 and P2 and write the given equation in the form of (2.1), i.e. P(X) = (0, 0).
2. Reduce the nonlinear problem into linear Volterra type integral equations of the form (2.5) by applying first iteration

of modified NM (2.3) i.e. P ′(X0)(X − X0) + P(X0) = 0.
3. Solve the first equation in (2.6) using Gauss–Legendre quadrature rule (3.5) at the Legendre grid points τ (k)i (4.2)

for m = 1.
4. Use Newton forward interpolation formula (4.7) to find the first value of the iteration x1(ti), i = 1, 2, . . . , n.

Corresponding value of y1(ti) can be defined by the formula (4.9) for m = 1.
5. To find the next iteration values of (xm(ti), ym(ti)),m = 2, 3, . . . , i = 1, 3, . . . , n we reduce the given nonlinear

problem into linear Volterra integral equation of the form (2.9) by applying modified NM (2.8), i.e. P ′(X0)(Xm −

Xm−1) + P(Xm−1) = 0.
6. Repeat steps 3–5 by changing the corresponding formula for any m and obtain the approximate values of

(xm(ti), ym(ti)).

5. Convergence analysis

For the convergence of the proposed method we construct new majorant function and based on this the few theorems
will be proved with regard to the successive approximations which are characterized by system (2.9). Let us introduce
the following classes of functions.

• C[t0,T ] the set of all continuous functions f (t) defined on the interval [t0, T ],
• C[t0,t]×[t0,T ] the set of all continuous functions S(t, τ ) defined on the region [t0, T ] × [t0, T ],
• C = {X : X = (x(t), y(t)) : x(t), y(t) ∈ C[t0,T ]},
• C̆[t0,T ] = {y(t) ∈ C1

[t0,T ]
: y(t) < t}.

In addition, define the following norms

∥x∥ = max
t∈[t0,T ]

|x(t)|, ∥∆X∥C = max{∥∆x∥C[t0,T ]
, ∥∆y∥C[t0,T ]

},

∥ X∥C1 = max{∥x∥C[t0,T ]
, ∥x′

∥C[t0,T ]
},

∥ X∥C = max{∥x∥C[t0,T ]
, ∥y∥C[t0,T ]

},

∥H(t, τ )∥ = H1, ∥H ′

τ (t, τ )∥ = H ′

1, ∥K (t, τ )∥ = H2, ∥K ′

τ (t, τ )∥ = H ′

2,
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min
t∈[t0,T ]

|y0(t)| = H3, ∥x′

0∥ = max
t∈[t0,T ]

|x′

0(t)| = H ′

3, ∥g∥ = max
t∈[t0,T ]

|g(t)| = H4, ∥f ∥ = max
t∈[t0,T ]

|f (t)| = H5

∥F(x0(t))∥ = max
t∈[t0, T ]

|F(x0(t))| = c1,
F′(x0(t))

 = max
t∈[t0, T ]

⏐⏐F′(x0(t))
⏐⏐ = c2,F′′(x0(t))

 = max
t∈[t0, T ]

⏐⏐F′′(x0(t))
⏐⏐ = c3, ∥G(t)∥ = max

t∈[t0, T ]

|G(t)| = c4, max
⏐⏐⏐⏐ 1
c(t)

⏐⏐⏐⏐ ≤ s0.

Let

η1 =max
{

H1c3(T − H3), H1c2, H ′

1c1 + H1H ′

3c2,

H2c3(T − H3), H2c2, H ′

2c1 + H2H ′

3c2

}
.

(5.1)

and

M = c2H1 + c2c4H4. (5.2)

Introducing the real valued function

ψ(t) = (t − t0)2 − (ζ + η)(t − t0) + ζη, (5.3)

where ζ , η > 0 are real coefficients and considering the following equations

X = S(X), (5.4)

t = φ(t), (5.5)

The calculation of coefficients ξ and η of the majorant function (5.3) is due to Theorem 7 where the initial guess
(x0(t), y0(t)) must be in Ω0 = (∥X − X0∥ ≤ r), provided that

min {ξ + t0, η + t0} ≤ r ≤ max {ξ + t0, η + t0} . (5.6)

We define the majorant function as follows.

Definition 1 (Kantorovich and Akilov [7]). We say that (5.5) majorizes (5.4) if

∥S(X0) − X0∥ ≤ φ(t0) − t0, (5.7)

∥S ′(X)∥ ≤ φ′(t), when ∥X − X0∥ ≤ t − t0. (5.8)

Theorem 5. Let the nonlinear operator P(X) = 0 in (2.2) is defined in an open set Ω = {X ∈ C([t0, T ]) : ∥X − X0∥ < R} and
has continuous second derivative in a closed set Ω0 = {X ∈ C([t0, T ]) : ∥X − X0∥ ≤ r} such that T = t0 + r ≤ t0 + R. Assume
the following conditions are satisfied

1. ∥Γ0P(X0)∥ ≤
ζη

ζ + η
,

2. ∥Γ0P ′′(X)∥ ≤
2

ζ + η
, when ∥X − X0∥ ≤ t − t0 ≤ r,

then ψ(t) in (5.3) is a majorant function for the nonlinear operator P(X) defined by (2.1).

Proof. Rewrite Eqs. (1.1) and (5.3) in the form

t = φ(t), φ(t) = t + c0ψ(t), (5.9)
X = S(X), S(X) = X − Γ0P(X), (5.10)

where c0 = −
1

ψ ′(t0)
=

1
ζ + η

and Γ0 = [P ′(X0)]−1.

We need to show that Eqs. (5.9) and (5.10) satisfy the majorizing conditions (5.7) and (5.8). Indeed

∥S(X0) − X0∥ = ∥ − Γ0P(X0)∥ ≤
ζη

ζ + η
= φ(t0) − t0. (5.11)

Now, to show that ∥X − X0∥ ≤ t − t0, t ∈ [t0, T ] = [t0, t0 + r], we consider a sequence{
Xn+1 = S(Xn), n = 0, 1, . . .
tn+1 = φ(tn), n = 0, 1, . . . (5.12)
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Due to (5.11)–(5.12), we obtain

∥X1 − X0∥ = ∥S(X0) − X0∥ ≤ φ(t0) − t0 = t1 − t0 ≤ r,

hence X1 ∈ Ω0. Assume that it has already been shown that X1, X2, . . . , Xn ∈ Ω0 and that

∥Xk+1 − Xk∥ ≤ tk+1 − tk, k = 0, 1, . . . , n − 1. (5.13)

To show that Xn+1 ∈ Ω0 we write X and t for the corresponding points in [Xn−1, Xn] and [tn−1, tn]{
X = Xn−1 + τ (Xn − Xn−1), τ ∈ (0, 1)
t = tn−1 + τ (tn − tn−1), τ ∈ (0, 1). (5.14)

In view of (5.13)–(5.14), we obtain

∥X − X0∥ = ∥Xn−1 + τ (Xn − Xn−1) − X0∥

= ∥τ (Xn − Xn−1) + Xn−1 − Xn−2 + Xn−2 + · · · + X1 − X0∥

≤ τ∥Xn − Xn−1∥ + ∥Xn−1 − Xn−2∥ + · · · + ∥X1 − X0∥

≤ τ (tn − tn−1) + tn−1 − tn−2 + · · · + t1 − t0
≤ τ (tn − tn−1) + tn−1 − t0 = t − t0.

Since ∥X − X0∥ ≤ t − t0, with utilizing the remark in [7, 504]

Xn+1 − Xn = S(Xn) − S(Xn−1) =

∫ Xn

Xn−1

S ′(X)dX . (5.15)

we have

∥S ′(X)∥ = ∥S ′(X) − S ′(X0)∥ ≤

∫ X

X0

∥S ′′(Y )∥dY =

∫ X

X0

∥Γ0P ′′(Y )∥dY

≤

∫ t

t0

c0ψ ′′(τ )dτ =

∫ t

t0

2
ζ + η

dτ =
2

ζ + η
(t − t0) = φ′(t). (5.16)

Due to Eqs. (5.15) and (5.16) we see that

∥Xn+1 − Xn∥ =


∫ Xn

Xn−1

S ′(X)dX

 ≤

∫ tn

tn−1

φ′(t)dt = φ(tn) − φ(tn−1) = tn+1 − tn.

Thus, we have proved (5.13) holds for k = n. On the other hand

∥Xn+1 − X0∥ ≤ ∥Xn+1 − Xn∥ + ∥Xn − Xn−1∥ + · · · ∥X1 − X0∥

≤ (tn+1 − tn) + (tn − tn−1) + · · · + (t1 − t0) = tn+1 − t0 ≤ T − t0 = r.

Hence Xn+1 ∈ Ω0 and ψ(t) is a majorant function for P(X) = 0. □

Theorem 6 (Kantorovich and Akilov [7, pp. 529]). Let us consider

P(X) = 0, X ∈ Ω = (∥X − X0∥ < R),

and assume that the operator P has continuous second derivative in a closed ball Ω0 = (∥X − X0∥ ≤ r). Assume that the real
valued function

ψ(t) = 0. t ∈ [t0, t0 + t ′], t ′ = t0 + r,

has twice continuously differentiable on the interval [t0, t0 + t ′]. Suppose the following conditions are satisfied

1. there exists a continuous linear operator Γ0 = [P ′(X0)]−1,
2. c0 = −

1
ψ ′(t0)

> 0,
3. ∥Γ0P(X0)∥ ≤ c0ψ(t0),
4. ∥Γ0P ′′(X0)∥ ≤ c0ψ ′′(t0) if ∥X − X0∥ ≤ t − t0 ≤ r,
5. Eq. (6) has a root t ∈ [t0, t ′], t ′ = t0 + r,
6. ψ(t ′) ≤ 0.

Then if (6) has a unique root in [t0, t0 + t ′] then (6) has only one solution in Ω0 as well as modified NM for Eqs. (6) and (6)
starting with X0 and t0 respectively, converges and yields solution X∗ and t∗ of these equations, where

∥X∗
− X0∥ ≤ ∥t∗ − t0∥.
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Main theorem for the proposed method is as follows:

Theorem 7. Let the functions f (t), g(t) ∈ C[t0,T ], x0(t) ∈ C1
[t0, T ], and the kernels H(t, τ ), K (t, τ ) ∈ C1

[t0,T ]×[t0,T ]
and

(x0(t), y0(t)) ∈ Ω0. If

1. Γ0 =
[
P ′(X0)

]−1 exists and continuous linear operator with ∥Γ0∥ ≤ s0MeM(T−H3), where M is defined by (5.2)

2. ∥∆X∥ ≤
ζη

ζ + η
, ζ and η are given in (5.3)

3. ∥Γ0P ′′(X)∥ ≤
2

ζ + η
, with ∥P ′′(X)∥ ≤ η1,

4. Eq. (5.3) has a root t ∈ [t0, t ′], t ′ = t0 + r where min{ζ + t0, η + t0} < r < max{ζ + t0, η + t0}, with φ(t ′) ≤ t ′.

Then the system (1.6) has a unique solution X∗
= (x∗, y∗) ∈ Ω0 and the sequence Xm(t) = (xm(t), ym(t)), m ≥ 0 of successive

approximations

∆xm(t) −
1

c(t)

∫ t

y0(t)
K1(t, τ )F′(x0(τ ))∆xm(τ )dτ = ψm−1(t),

∆ym(t) =
1

d(t)

[∫ t

y0(t)
K (t, τ )F′(x0(τ ))∆xm(τ )dτ

+

∫ t

ym−1(t)
K (t, τ )F(xm−1(τ ))dτ + b(t)xm(t) − f (t)

]
,

converges to the solution X∗. The rate of convergence is given by

∥X∗
− Xm∥ ≤

(
2ζ
ζ + η

)m

ζ ,

when ζ + t0 is the minimum zero of (5.3), i.e ζ < η, otherwise

∥X∗
− Xm∥ ≤

(
2η
ζ + η

)m

η,

whenever η + t0 is the minimum zero of (5.3), i.e η < ζ .

Proof. First, we need to prove that the first equation of system (2.5) has a unique solution ∆x∗(t) in terms of resolvent
kernel Γ0, provided that c(t) = a(t) + b(t)G(t) ̸= 0, K (t, y0(t)) ̸= 0, ∀t ∈ [t0, T ] and K1(t, τ ) which is defined by (2.6),
is a continuous function. Then ∆ym(t) can be uniquely determined from the second equation of (2.5). Assume that the
integral operator U : C[t0, T ] → C[t0, T ] is given by

Z = U(∆x), Z(t) =
1

c(t)

∫ t

y0(t)
K2(t, τ )∆x(τ )dτ , (5.17)

where K2(t, τ ) = K1(t, τ )F′(x0(τ )), and according to (5.17), the first equation of the system (2.5) can be represented as

∆xm − U(∆xm) = ψm−1(t). (5.18)

The solution ∆x∗ of (5.18) is written in terms of ψ0 by the formula

∆x∗
= ψ0 + B(ψ0), (5.19)

where B is an integral operator and can be expanded as a series in powers of U [7, pp. 378],

B(ψ0) = U(ψ0) + U2(ψ0) + · · · + Un(ψ0) + · · · , (5.20)

and it is found that the powers of U are also integral operators. Indeed

Zn = Un, Zn(t) =
1

c(t)

∫ t

y0(t)
K (n)
2 (t, τ )∆x(τ )dτ , (n = 1, 2, . . .), (5.21)

where K (n)
2 is the iterated kernel operator with K (n)

2 (t, u) = K2(t, u)K
(n−1)
2 (u, τ ), n = 1, 2, . . .. Substituting (5.20)–(5.21)

into (5.19) we get an expression for the solution of (5.18) in the form of

∆x∗
= ψ0(t) +

∞∑
j=1

∫ t

y0(t)
K (j)
2 (t, τ )ψ0(τ )dτ . (5.22)
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Next, we proof that the series in (5.22) is convergent uniformly for all t ∈ [t0, T ]. Since

|K2(t, τ )| = |K1(t, τ )F′(x0(τ ))| = |K1(t, τ )||F′(x0(t))|

≤

[
|H(t, τ )| + |K (t, τ )||G(t)|

]
|F′(x0(t))|

≤
(
H1 + c4H2

)
c2 = M.

Then by mathematical induction we obtain⏐⏐K (2)
2 (t, τ )

⏐⏐ ≤

∫ t

y0(t)

⏐⏐K2(t, u)K2(u, τ )
⏐⏐du ≤

M2(T − H3)
(1)!

,

⏐⏐K (3)
2 (t, τ )

⏐⏐ ≤

∫ t

y0(t)

⏐⏐K2(t, u)K
(2)
2 (u, τ )

⏐⏐du ≤
M3(T − H3)2

(2)!
,

...⏐⏐K (n)
2 (t, τ )

⏐⏐ ≤

∫ t

y0(t)

⏐⏐K2(t, u)K
(n−1)
2 (u, τ )

⏐⏐du ≤
Mn(T − H3)n−1

(n − 1)!
, (n = 1, 2, . . .),

then

∥Un
∥ = max

t∈[t0,T ]

∫ t

y0(t)

⏐⏐K (n)
2 (t, τ )

⏐⏐
c(t)

dτ ≤
s0Mn(T − H3)(n−1)

(n − 1)!
.

Therefore the nth root test of the sequence implies

n
√

∥Un∥ ≤
M(T − H3)1−

1
n n
√
s0

n√(n − 1)!
→n→∞ 0.

As a result

ρ =
1

limn→∞
n√
∥Un∥

= ∞

and the first equation of the system (2.5) has no characteristic values. Since the series in (5.22) converges uniformly,
solution of (5.19) can be expressed in terms of resolvent kernel of the form

∆x∗
= ψ0 +

∫ t

y0(t)
Γ0(t, τ )ψ0(τ )dτ , (5.23)

where

Γ0(t, τ ) =

∞∑
j=1

K (j)
2 (t, τ ), (5.24)

is the resolvent kernel which is uniquely determined by K (j)
2 (t, τ ), so there is a unique solution∆x∗(t) for the first equation

of system (2.5). Then there is a unique value ∆y(t) of the second equation of system (2.5). Since the series in (5.24) is
convergent therefore

∥Γ0∥ = ∥B(ψ0)∥ ≤

∞∑
j=1

∥U j
∥ ≤ s0

∞∑
j=1

M j (T − H3)j−1

(j − 1)!
≤ s0MeM(T−H3).

To evaluate the validity of second condition of (2.5), let us describe the operator equation

P(X) = 0, (5.25)

as in (5.10) and its successive approximations is

Xn+1 = S(Xn), (n = 0, 1, 2, . . .). (5.26)

For the initial condition X0 we have

S(X0) = X0 − Γ0P(X0).

From the first condition of Theorem 2 we have

∥∆X∥ = ∥X1 − X0∥ = ∥S(X0) − X0∥ = ∥Γ0P(X0)∥ ≤ φ(t0) − t0 =
ζη

ζ + η
.
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Since ψ(t) is a majorant function of P(X) = 0, from the second condition of Theorem 2, we have

∥Γ0P ′′(X)∥ ≤ c0ψ ′′(t) =
2

ζ + η
.

Moreover, we need to show that ∥P ′′(X)∥ ≤ η1 for all X ∈ Ω0 where η1 is defined in (5.1). It is known that the second
derivative P ′′(X0)(X, X) of the nonlinear operator P(X) is expressed by 3-dimensional array P ′′(X0)XX = (D1,D2)(X, X),
which is called bilinear operator, that is

P ′′(X0)(X, X) = lim
s→0

1
s

[
P ′(x0 + sX) − P ′(X0)

]
=

{
lim
s→0

1
s

[(
∂P1
∂x

(x0 + sx, y0 + sy) −
∂P1
∂x

(x0, y0)
)
x

+

(
∂P1
∂y

(x0 + sx, y0 + sy) −
∂P1
∂y

(x0, y0)
)
y

]
,

lim
s→0

1
s

[(
∂P2
∂x

(x0 + sx, y0 + sy) −
∂P2
∂x

(x0, y0)
)
x

+

(
∂P2
∂y

(x0 + sx, y0 + sy) −
∂P2
∂y

(x0, y0)
)
y

]}
.

=

{
lim
s→0

1
s

[(
∂2P1
∂x2

(x0, y0)sx +
∂2P1
∂y∂x

(x0, y0)sy +
1
2

(
∂3P1
∂x3

(x0 + θsx, y0 + δsy)s2x2

+ 2
∂3P1
∂x2∂y

(x0 + θsx, y0 + δsy)s2x y +
∂3P1
∂y2∂x

(x0 + θsx, y0 + δsy)s2y
))

x

+

(
∂2P1
∂x∂y

(x0, y0)sx +
∂2P1
∂y2

(x0, y0)sy +
1
2

(
∂3P1
∂x2∂y

(x0 + θsx, y0 + δsy)s2x2

+ 2
∂3P1
∂x∂y2

(x0 + θsx, y0 + δsy)s2x y +
∂3P1
∂y3

(x0 + θsx, δsy)s2y2
))

y

]
,

lim
s→0

1
s

[(
∂2P2
∂x2

(x0, y0)sx +
∂2P2
∂y∂x

(x0, y0)sy +
1
2

(
∂3P2
∂x3

(x0 + θsx, y0 + δsy)s2x2

+ 2
∂3P2
∂x2∂y

(x0 + θsx, y0 + δsy)s2x y +
∂3P2
∂y2∂x

(x0 + θsx, y0 + δsy)s2y
))

x

+

(
∂2P2
∂x∂y

(x0, y0)sx +
∂2P2
∂y2

(x0, y0)sy +
1
2

(
∂3P2
∂x2∂y

(x0 + θsx, y0 + δsy)s2x2

+ 2
∂3P2
∂x∂y2

(x0 + θsx, y0 + δsy)s2x y +
∂3P2
∂y3

(x0 + θsx, δsy)s2y2
))

y

]}

=

(
∂2P1
∂x2

(x0, y0)xx +
∂2P1
∂y∂x

(x0, y0)yx +
∂2P1
∂x∂y

(x0, y0)xy +
∂2P1
∂y2

(x0, y0)yx,

∂2P2
∂x2

(x0, y0)xx +
∂2P2
∂y∂x

(x0, y0)yx +
∂2P2
∂x∂y

(x0, y0)xy +
∂2P2
∂y2

(x0, y0)yx

)
,

where θ, δ ∈ (0, 1), so we have

P ′′(X0)(X, X) =
(
D1 D2

) (x
y

)(
x
y

)
,
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where

D1 =

⎛⎜⎜⎝
∂2P1
∂x2

⏐⏐⏐
(x0,y0)

∂2P1
∂y∂x

⏐⏐⏐
(x0,y0)

∂2P1
∂x∂y

⏐⏐⏐
(x0,y0)

∂2P1
∂y2

⏐⏐⏐
(x0,y0)

⎞⎟⎟⎠ ,

D2 =

⎛⎜⎜⎝
∂2P2
∂x2

⏐⏐⏐
(x0,y0)

∂2P2
∂y∂x

⏐⏐⏐
(x0,y0)

∂2P2
∂x∂y

⏐⏐⏐
(x0,y0)

∂2P2
∂y2

⏐⏐⏐
(x0,y0)

⎞⎟⎟⎠ .
Then the norms of every components of D1 and D2 have the estimate∂2P1∂x2

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐− ∫ t

y0(t)
H(t, τ )x(τ )x(τ )F′′(x0(τ ))dτ

⏐⏐⏐⏐ ≤ H1c3(T − H3), ∂2P1∂x∂y

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐H(t, y0(t))x(y0(t))F′(x0(y0(t)))y(t)
⏐⏐⏐⏐ ≤ H1c2, ∂2P1∂y∂x

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐H(t, y0(t))x(y0(t))F′(x0(y0(t)))y(t)
⏐⏐⏐⏐ ≤ H1c2,∂2P1∂y2

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐[H ′

τ (t, y0(t))F(x0(y0(t)))

+ H(t, y0(t))F′(x0(y0(t)))x′

0(y0(t))
]
y(t)y(t)

⏐⏐⏐⏐ ≤ H ′

1c1 + H1H ′

3c2,

∂2P2∂x2

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐ ∫ t

y0(t)
K (t, τ )x(τ )x(τ )F′′(x0(τ ))dτ

⏐⏐⏐⏐ ≤ H2c3(T − H3), ∂2P2∂x∂y

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐− K (t, y0(t))x(y0(t))F′(x0(y0(t)))y(t)
⏐⏐⏐⏐ ≤ H2c2, ∂2P2∂y∂x

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐− K (t, y0(t))x(y0(t))F′(x0(y0(t)))y(t)
⏐⏐⏐⏐ ≤ H2c2,∂2P2∂y2

 = max
∥X∥≤1,∥X∥≤1

⏐⏐⏐⏐− [
K ′

τ (t, y0(t))F
′(x0(y0(t)))

+ K (t, y0(t))F′(x0(y0(t)))x′

0(y0(t))
]
y(t)y(t)

⏐⏐⏐⏐ ≤ H ′

2c1 + H2H ′

3c2.

Therefore, all the second derivatives exist and bounded,

∥P ′′(X)∥ ≤ η1. (5.27)

Let us consider the discriminant of equation ψ(t) = 0

D = ζ 2 − 2ζη + η2 = (ζ − η)2,

and the two roots of ψ(t) = 0 are r1 = min{ζ + t0, η + t0} and r2 = max{ζ + t0, η + t0}. Therefore, when r1 < r < r2
implies

ψ(r) ≤ 0,→ φ(r) ≤ r, (5.28)

then under the assumption of fourth condition; i.e., min{ζ + t0, η + t0} is the unique solution of ψ(t) = 0 in [t0, t ′] and
from Theorem 3 it follows that X∗ is the unique solution of operator equation (1.6) and

∥X∗
− X0∥ ≤ t∗ − t0,

where t∗ is a unique solution of ψ(t) = 0 in [t0, r], r1 = min{ζ + t0, η + t0} < r < r2 = max{ζ + t0, η + t0}. As for the
rate of convergence, let us consider Eq. (5.9). Its successive approximation is

tm+1 = φ(tm), m = 0, 1, 2, . . .

where

φ(tm) = tm +
1

ζ + η
ψ ′(tm).
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To estimate the difference between t∗ and the successive approximation tm

t∗ − tm = φ(t∗) − φ(tm−1) = φ′( ˜tm)(t∗ − tm−1), (5.29)

where, ˜tm ∈ (tm−1, t∗) and

φ′(t) = 1 + c0ψ ′(t) =
2

ζ + η
(t − t0), (5.30)

therefore, in the case of ζ + t0 is the minimum root of Eq. (5.3)

φ′( ˜tm) =
2

ζ + η
( ˜tm − t0) ≤

2
ζ + η

(t∗ − t0) =
2ζ
ζ + η

,

then

t∗ − tm ≤
2ζ
ζ + η

(t∗ − tm−1),

t∗ − tm−1 ≤
2ζ
ζ + η

(t∗ − tm−2),

...

t∗ − t1 ≤
2ζ
ζ + η

(t∗ − t0),

consequently,

t∗ − tm ≤

(
2ζ
ζ + η

)m

ζ .

It implies

∥X∗
− Xm∥ ≤ (t∗ − tm) =

(
2ζ
ζ + η

)m

ζ .

In the same manner, if η the minimum root of Eq. (5.3) we have

∥X∗
− Xm∥ ≤ (t∗ − tm) =

(
2η
ζ + η

)m

η. □

6. Numerical results and discussion

First, let us refer to the notations used here: n is the number of partitions on [t0, T ], ℓ is the number of sub-partition
on (y0(ti), ti) and (ym−1(ti), ti), i = 1, 2, . . . , n, where m is the number of iterations, and

ϵx = max
t∈(0,1]

⏐⏐⏐xm(t) − x∗(t)
⏐⏐⏐,

ϵy = max
t∈(0,1]

⏐⏐⏐ym(t) − y∗(t)
⏐⏐⏐.

Example 1. Consider the system of nonlinear equation

x(t) −

∫ t

y(t)
tτ sin(x(τ ))dτ = t + t sin

( 9
10

t
)

−
9
10

t2 cos
( 9
10

t
)

− t sin(t) + t2 cos(t),

x(t) +

∫ t

y(t)
t2τ 2 sin(x(τ ))dτ = t +

81
100

t4 cos
( 9
10

t
)

− 2t2cos
( 9
10

t
)

−
9
5
t3 sin

( 9
10

t
)

− t4cos(t) + 2t2cos(t) + 2t3 sin(t), t ∈ (0, 1]. (6.1)

The exact solution is

x∗(t) = t,

y∗(t) =
9
10

t.

The initial guess is chosen as

x0(t) =
t2

4
,

y0(t) =
t
2
.
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Table 1
Numerical results for (6.1).
n = 2, ℓ = 5, h = 0.5.

m ϵx ϵy

2 0.00485 0.00167
3 5.87048E − 004 1.57273E − 004
4 7.14562E − 005 1.48333E − 005
5 8.69208E − 006 1.39864E − 006
6 1.05741E − 006 1.31881E − 007

11 2.81707E − 011 9.81992E − 013

Since c2 = 1, c4 =
2
t20
, H1 = 1, H3 = 0, H4 =

49
10

we have M = 1 +
49
5t20

, therefore

∥Γ0∥ ≤

(
1 +

49
5t20

)
exp

(
1 +

49
5t20

)
, 0 < t0 ≤ 1.

The boundedness of Γ0 implies continuity and existence. Conditions 2 and 3 of Theorem 7 hold because of the majorant
function ψ(t). Since ψ(t) = 0 has two roots namely

t1 = t0 + ζ , t2 = t0 + η, t0 ∈ (0, 1].

We assume that 1 = ζ < η = 4 and t0 > 0, then t0 + 1 < r < t0 + 4. Thus conditions of Theorem 4 hold so that the
successive approximation Xn+1 = S(Xn) converges to X∗ according to consequence of Theorem 7.

In Example 1, the coefficients of majorant function (5.3) are (ξ = 1, η = 4) are also chosen according to Theorem 7
provided that t0 ∈ (0, 1]. When t0 = 0.1, then the majorant function will be

ψ(t) = (t − 0.1)2 − 5(t − 0.1) + 4,

which has non-negative real two roots r1 = ξ + t0 = 1 + 0.1 = 1.1 and r2 = η+ t0 = 4 + 0.1 = 4.4, then 1.1 ≤ r ≤ 4.1.
For the approximate computation, discretization formulas (4.4)–(4.5) and (4.8) are used for the values of n = 2, l = 5
and m = {2, 3, 4, 5, 6, 11}. Table 1 shows that eleven iterations are needed for xm(t) and ym(t) to be very close to x∗(t)
and y∗(t) respectively. The fourth and fifth columns of Table 1 refer to the absolute values of difference between the
exact solutions x∗(t) and y∗(t) with the iterated solutions xm(t) and ym(t) respectively, and m to be least value such that
|x∗(t) − xm(t)| ≤ ϵx and |y∗(t) − ym(t)| ≤ ϵy.

Example 2. Consider the system of nonlinear equation

x(t) −

∫ t

y(t)
t τ log(|x(τ )|)dτ = et −

t2

3
,∫ t

y(t)
τ log(|x(τ )|)dτ =

t
3
, t ∈ [10, 15]. (6.2)

The exact solution is

x∗(t) = et ,

y∗(t) =
3
√
t3 − t,

and the initial guess is

x0(t) = e10(t − 9),
y0(t) = 0.6t + 4.

In a similar way of Example 1, it can be shown that all conditions (1)− (4) of Theorem 4 hold and therefore the successive
approximation Xn+1 = S(Xn) converges to X∗.

Since H(t, τ ) = tτ , K (t, τ ) = τ , G(t) = t, a(t) = 1, b(t) = 0 we have K1(t, τ ) = 0, c(t) = 1 in (2.5) and it is
crucial to note that the first equation of (2.5) has the form

xm(t) =
1

c(t)
(g(t) + f (t)G(t)) = et = x∗(t)

which is identical with the exact solution.
Table 2 shows that xm(t) coincides with the exact x∗(t) from the first iteration due to kernel K1 (t, τ ) ≡ 0 in (2.6),

whereas only six iterations are needed for ym(t) to be very close to y∗(t).
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Table 2
Numerical results for (6.2).
n = 2, ℓ = 5, h = 0.5.

m ϵx ϵy

1 0.00 0.0029
2 0.00 4.3597E−006
3 0.00 3.1061E−008
4 0.00 1.0140E−009
5 0.00 1.2541E−010
6 0.00 3.9968E−011

Table 3
Numerical results for the system (6.3).
n = 50, h = 0.1, ℓ = 5, t ∈ [10, 15]

m Boykov and Tynda [22] Modified Newton method

εx εy εx εy

1 7.11E − 12 6.31E − 03 0 8.61E − 5
2 8.14E − 12 6.26E − 06 0 6.99E − 7
3 6.12E − 15 6.19E − 09 0 5.69E − 09
4 3.29E − 15 6.12E − 12 0 4.67E − 11
6 3.00E − 15 7.80E − 14 0 4.10E − 13

Example 3 (Boykov and Tynda [22]). Consider the system of nonlinear Volterra integral equations

x(t) −

∫ t

y(t)
t (tτ )x(τ )dτ = 0∫ t

y(t)
τx(τ )dτ = 6, t ∈ [10, 15]. (6.3)

where the exact solution is

x∗(t) = 6t,

y∗(t) =
3
√
t3 − 3,

and the initial guess is

x0(t) =
t
2
,

y0(t) = 0.9t < t. (6.4)

It can be easily shown that K1(t, τ ) = 0 in (2.5) and

xm(t) =
1

c(t)
(g(t) + f (t)G(t)) = 6t = x∗(t)

identical with the exact solution. Approximate solution of ym(t) can be obtained with the second equation of (2.5). The
summary is given in Table 3. Comparisons are also made and is shown in Table 3. In fact xm(t) coincides with the exact
x∗(t) from the first iteration due to kernel K1 (t, τ ) ≡ 0 in (2.6) whereas only six iterations are needed for ym(t) to be very
close to y∗(t). In Example 3, Boykov [22] did not show how to choose the initial guess, moreover for the proposed method
we have chosen the initial guess as shown in (6.4). The proposed method is comparable with the Boikov’s method.

7. Conclusion

In this note, the modified Newton method is presented to solve a general 2 × 2 system of Volterra type integral
equations. New majorant function is introduced and certain conditions are imposed in ensuring the uniqueness of the
solution. Moreover by choosing the nonlinear function F (x(t)) in different forms we are able to solve many types of
nonlinear system of integral equations of Volterra type. We have proposed a new idea by introducing a subgrid collocation
points τ (k)i and τ (k)i(m−1) which lie in the intervals (y0 (ti) , ti) and (ym−1 (ti) , ti) respectively. Gauss–Legendre QF is used for
each sub-grid intervals. Numerical examples (Tables 1–3) revealed that the accuracy of the modified NM can be achieved
by a few numbers of iterations. It is observed that if kernel K1(t, τ ) = 0 in (2.6) then iterations xm(t) coincides with the
exact solution and iteration ym(t) is approached to exact solutions for a small number of iteration m.
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