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  الملخص
 اللزجـة باسـتخدام تحليـلBurgers لمعادلة الحلول اللازمنية  ةاستقراري دراسة   تتم

ــتقرارية ــول اللازمنيــة  Fourier مــن الــنمطالأس Du للحل  ثابــت و D إذ 1=
( ) 10,11 ≤≤= xxuu   الأولى في حالة كون السعة الموجية:   في حالتينAثابتة والثانية في 
 متغيرة وان النتائج التي تم الحصول عليها في حالة السعة  الثابتـةA يةجالموة  حالة كون السع  

Duالحل اللازمني: هي ) هو دوماً مستقر في حين أن الحل   1= )xuu 11  مستقر على نحـو=
 اللازمنيـان  الحـلان  ماتغيرة ه وان النتائج التي تم الحصول عليها في حالة السعة  الم          . مشروط

Du ) و 1= ) 10,11 ≤≤= xxuu هما  مستقران على نحو مشروطو .

ABSTRACT 
Stability study of stationary solutions of the viscous Burgers equation using 
Fourier mode stability analysis for the stationary solutions Du =1 , where 
D  is constant and ( ) 10,11 ≤≤= xxuu , in two cases is analyzed. Firstly
when the wave amplitude A is constant and secondly when the wave 
amplitude A is variable. In the case of constant amplitude, the results found 
to be: The solution Du =1  is always stable while the solution ( )xuu 11 =  is
conditionally stable. In the case of variable amplitude, it has been found that 
the solutions Du =1  and ( ) 10,11 ≤≤= xxuu  are conditionally stable.  

1. Introduction
Consider a system of any nature whatsoever that exists in a state S. 

We say that S is stable, in one sense or another, if small perturbations or 
changes in the system do not drastically affect the state S. For example, the 
solar system currently exists in a time–dependent state in which the planets 
move about the sun in an orderly fashion. It is known that if a small 
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additional celestial body is introduced into the system, then the original state 
is not disturbed to any significant degree. We say that the original state is 
stable to small perturbations. Similar questions of stability arise in every 
physical problem [19]. The notorious Burgers equation was the subject of 
interest study in different fields such as analytical solutions, numerical 
solutions, mathematical modeling, fluid mechanics, stability and 
bifurcation. Roy and Baker [27] presented and derived the numerical results 
using a nonlinear subgrid embedded (SGM) finite element basis for D1 , 

D2 and D3  verification/benchmark linear and nonlinear convection–
diffusion problems such as Burgers equation in steady state.  

Burns et al [8] considered the numerical stationary solutions for a 
viscous Burgers equation on the interval ( )1,0  with Neumann boundary 
conditions. Roy and Fleming [28] developed a nonlinear subgrid embedded 
(SGM) finite element basis for generating multidimensional solutions for 
convection–dominated computational fluid dynamics (CFD) applications 
and they applied them to a stationary Burgers equation. Balogh and Krstic 
[4] considered the viscous Burgers equation under recently proposed
nonlinear boundary conditions and they showed that it guarantees global
asymptotic stabilization and semi global exponential stabilization in 1H
sense. Balogh et al [5] studied the stationary solutions of a one–parameter
family of boundary control problems for a forced viscous Burgers equation.
They assumed that the forcing term possesses a special symmetry.  Allen et
al [2] studied numerically the equilibrium solutions of Burgers equation.
Moller [23] studied and conducted some numerical experiments on the D1
viscous Burgers equation in linear and nonlinear cases with the same
stationary solution.

Di Francesco and Markowich [11] studied the large time behavior 
for the viscous Burgers equation with initial data in ( )RL1 . They reduced 
the rescaled Burgers equation to the linear Fokker–Planck equation and then 
employed well known results concerning the decay in relative entropy and 
in Wassertstein metric towards stationary solutions for the Fokker–Planck 
equation. Holm and Staley [14] studied the exchange of stability in the 
dynamics of solitary wave solutions under changes in the nonlinear balance 
in a 11+  evolutionary PDE related both to shallow water waves and 
turbulence such as Burgers equation.  

Bakhtin [3] considered the existence and uniqueness of stationary 
solutions for D3  Navier–Stokes system in the Fourier space with regular 
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forcing given by a stationary in time stochastic process satisfying a 
smallness condition. The method of constructing stationary solutions is 
actually applicable for the Burgers equation. Kowalczyk et al [17] studied in 
details the linear stability analysis of homogeneous solutions to some 
aggregation models such as in viscid Burgers like equations. Konicek et al 
[16] derived a new approximate solution of the inhomogeneous Burgers
equation for real fluid in stationary state regime using Prandtl’s technique
and verified the validity of the approximate solution by comparison with the
numerical one. Roy [26] examined the numerical solutions to D1  Burgers
equation in unsteady and steady states.

In this paper, the stability of stationary solutions of viscous Burgers 
equation using Fourier mode stability analysis is investigated.   

2. The Mathematical Model
          One of the famous nonlinear diffusion equations is the generalized 
Burgers–Huxley (gBH) equation [30]:  

( )( ) )1(1 auuuuuuu xxxt −−=∈−+ δδδ βα
where aand∈,,, δβα  are constant parameters 

11,0,0,0,0 <≤−>∈>≥≥ aδβα
where ∈  is the diffusion coefficient and in fluid flow problems it represents 
the viscosity and is the reciprocal of the Reynolds number. 

Equation (1) is an extended form of the famous Huxley, Newell– 
Whitehead (NW) and Burgers equations [12]. When 0=α , equation (1) is 
reduced to the generalized Huxley or generalized Fitzhugh–Nagumo (gFN) 
equation. 

( )( ) )2(1 auuuuu xxt −−=∈− δδβ
Huxley equation is a particular case of Eq.(1) and (2) when 

1,0 == δα  and 1=δ , respectively [22]. 
( )( ) )3(1 auuuuu xxt −−=∈− β

which describes nerve pulse propagation in nerve fibers and wall motion in 
liquid crystals. The parameter a  arises in genetics and other fields, the case 
with 10 << a  is what the geneticists refer to as the heterozygote inferiority 
case [15]. Manaa and Moheemmeed studied the stability [20] and the 
numerical solution [21] of this case.  

The standard real Newell–Whitehead (rNW) equation is a special 
case of Eq. (2) and (3) when 1−=a , 1=δ and 1=δ , respectively. 
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( ) )4(1 2uuuu xxt −=∈− β
Newell and Whitehead examined this equation in 1969 [24].  

When 0=β , Eq. (1) is reduced to the generalized Burgers equation  
)5(0=∈−+ xxxt uuuu δα

The well known viscous Burgers equation is a special case of Eq.(1) 
and (5) when 0=β ,  1=δ  and 1=δ  ,respectively [18]. 

)6(0=∈−+ xxxt uuuu α
Burgers equation provides remarkable system that has been studied 

for some time by Bateman in 1915 and was extensively developed by 
Burgers in 1940 and 1948 as a simplified fluid flow model which, 
nonetheless, exhibits some of the important aspects of turbulence. It was 
later derived by Lighthill in 1956 as a second–order approximation to the 
one–dimensional unsteady Navier–Stokes equation [5]. The Burgers 
equation can be seen as a reduction of the Navier– Stokes equation to the 
case of a single space dimension. In this equation, α  controls the 
nonlinearity and ∈  stands for viscosity. It is perhaps the simplest nonlinear 
differential second order equations, and it has been considered to describe 
different physical problems such as sound waves in viscous media, the far 
field of wave propagation in nonlinear dissipative systems, shock waves, 
magnetohydrodynamic waves in media with finite electrical conductivity, 
nonlinear heat diffusion and viscous effects in gas dynamics [6]. The study 
of the viscous Burgers equation is naturally related to that of the in viscid 
Burgers equation [11]:  

)7(0=+ xt uuu α  
The heat equation corresponds to the linearized Burgers equation

)8(0=∈− xxt uu

It is known that nonlinear diffusion equations (3) and (6) play 
important roles in nonlinear physics. They are of special significance for 
studying nonlinear phenomena. If we take 1=δ  and 0,0 ≠≠ βα , 
equation (1) becomes the following Burgers–Huxley (BH) equation: 

( )( ) )9(1 auuuuuuu xxxt −−=∈−+ βα
Equation (9) shows a prototype model [30] for describing the 

interaction between reaction mechanisms, convection effects and diffusion  
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transport. Also, Burgers equation is a particular case of following 
convection–reaction–diffusion equation. 

( ) )10(1 δδ βα uuuuuu xxxt −=∈−+

The equation (10) is the generalized Burgers–Fisher (gBF) equation, 
the generalized Burgers and Burgers equations correspond to the cases 

0=β  and 0=β , 1=δ , respectively. When 0=α , equation (10) is 
reduced to the generalized Fisher equation 

( ) )11(1 δβ uuuu xxt −=∈−

when 1=δ , We have Fisher–Kolmogorov–Petrovskii–Piskunov (Fisher–
KPP) or Fisher equation [13]: 

( ) )12(1 uuuu xxt −=∈− β  
The case 1=δ in Eq.(10) is the Burgers–Fisher equation [30]:  

( ) )13(1 uuuuuu xxxt −=∈−+ βα
There is another Burgers type equation named the generalized 

Burgers–Korteweg–de Vries equation [31]: 
)14(0=+∈−+ xxxxxxt uuuuuu γα τδ

where τδα and,  are positive real numbers. It reduces to the generalized 
Burgers and Burgers equations for 0,0 == γτ  and 0,0 == γτ , 

1=δ , respectively. It also reduces to the generalized Korteweg–de Vries 
(gKdV) and standard Korteweg–de Vries (KdV) equations for 0∈=  and 

,0∈= 1=δ , respectively. 
)15(0=++ xxxxt uuuu γα δ

)16(0=++ xxxxt uuuu γα

The Burgers–Korteweg–de Vries or Burgers–KdV equation [18] is 
special case of Eq. (14) when 1=δ and 0=τ .   

)17(0=+∈−+ xxxxxxt uuuuuu γα
 which reduces to the Burgers and KdV equations when 0=γ and 0∈= , 
respectively.  
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3. Introduction to the Burgers Type Equations
Burgers type equations are famous nonlinear equations which, 

appear in different scientific fields and play significant role in the study of 
the nonlinear evolution equations in applied mathematics. Satsuma– 
Burgers–Huxley (SBH) equation [9], [10] considers another type of the 
Burgers type equation with reaction term:  

( ) ( )( ) )18(131 3 dbuuuuuu xxxt ++−∈−=∈−∈−−
where 0, ≠db . Burgers equation corresponds to the case .1∈=  When 

3/1∈= , SBH equation reduces to Fitzhugh–Nagumo–Kolmogorov– 
Petrovskii–Piskunov (FN–KPP) equation, which arises in population 
dynamics and other fields 

( ) )19(
3
2

3
1 3 dbuuuu xxt ++−






=






−

The case 0∈= , corresponds to the first order equation  
( ) )20(3 dbuuuuu xt ++−=−

One of the important models related to both shallow water waves 
and to turbulence is the b–equation [14]:  

)21(0=∈−++ xxxxt mubmmum

with ...,3,2,1,0,2 mmm=−= buum xxσ .The equation (21) contains a 
family of equations. For ,0,0 == σb equation (21) is reduced to Burgers 
equation. The case 2=b  restricts (21) to the Cammassa–Holm (CH) 
equation 

)22(02 =∈−++ xxxxt mmuumm

The case 3=b  is the Degasperis–Procesi (DP) equation  
)23(03 =∈−++ xxxxt mmuumm

Let us consider the generalized Burgers equation (5), this equation is 
named generalized since it contains the quantity δu  in the convection term 

.xuuδα We can get another generalized Burgers equations by changing the 
properties of the nonlinear term .xuuδα  The generalizations of Burgers and 

Evolution
n 

Viscosity
y 

Stretching Convection
n 
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Burgers–Huxley equations, for which only relaxation of the assumption of 
weak nonlinearity is made. This means that no change in the original 
equations is made to introduce other effects, like including a new term to 
describe dispersion for instance, but just changing the nonlinear properties 
of the original system, for the generalized Burgers equation, for example, 
the consideration of the dynamics of diffusion in media where nonlinearity 
is not just restricted to the simplest case. If we replace the nonlinear term 

xuuδα in (5), we get another generalized Burgers equation [6]:  
( ) )24(0=∈−+ xxxt uuugu

 

where ( )ug  is a smooth function of u . The Burgers equation (6) is
obtained with the linear function ( ) uug α= . Like the Burgers equation (6), 
the generalized Burgers equation (24) also combines nonlinearity and 
diffusion, but now nonlinearity is controlled by ( )ug  and may vary 
according to the model one considers, note that the Burgers equation is 
defined with the simplest nontrivial function ( )ugg = . If we take 

( ) 23 uug α=  in (24), we get: 
)25(3 2

xxxt uuuu ∈−+ α  
This equation is named the modified Burgers equation, since it 

contains nothing but the change 23uu →  in its nonlinear term. Equation 
(24) can be written in the form:

)26(0=∈−+ xxxt ufu
 

and for ( )uff = , we get:

)27(0=∈−+ xxxt uu
du
dfu

This form is interesting since it allows a natural extension to systems 
where two or more configurations interact with each other. The equation 
(27) can be extended to the system of two coupled Burgers type equations

)28(
0
0





=∈−+
=∈−+

xxxt

xxxt

vgv
ufu

where ( ) ( )txvvandtxuu ,, ==  are the two interacting configurations. For 
( ) ( )vuggandvuff ,, == , we can write (28) as: 
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)29(
0

0





=∈−++
=∈−++

xxxvxut

xxxvxut

vvgugv
uvfufu

The generalized Burgers equation (24) can be further extended to the 
following form  

( ) )30(uxxxtxxxt fufuoruhuu
du
dfu ββ =∈−+=∈−+

where ( ) ( )uhhanduff ==  are smooth functions. Equation (30) 
represents another generalized Burgers–Huxley or generalized Burgers–
Fisher equations, which differ from the equations (1) and (10) by changing 
the nonlinear term. If we take ( ) ( )uhuf =  this is very interesting since we 
can relate the equation (30) to relativistic 11+  dimensional systems of 
scalar fields, and so we can get different equations and solutions given in 
terms of different functions ( )uff = . If we take ( ) ( ) ( )2uuuhuf −== α  in
(30), we have: 

( ) ( ) )31(3 22 uuuuuu xxxt −=∈−−+ αβα
which is named the modified Burgers–Huxley (mBH) equation. Equation 
(30) can be further generalized to the case where several configurations
interact with each other. In the case of two configurations ( )txu ,  and

( )txv , , equation (30) is extended to the following system of pair of coupled
Burgers–Huxley equations [6]:

( )
( )

)32(
,

,





=∈−++

=∈−++

vufvufvfv

vufuvfufu

xxxuxvt

xxxvxut

β

β

If KdV and Burgers–Huxley equations are added, we get the 
generalized KdV–Burgers–Huxley (gKdVBH) equation [7]: 

( ) )33(uhugfu xxxxxxt =+++ γ
where handgf ,  are smooth functions in u. It contains several interesting 
particular cases. For ( ) 0=uh , it corresponds to the generalized KdV–
Burgers (gKdVB) equation: 

)34(00 =+++=+++ xxxxxuuxutxxxxxxt uugufuorugfu γγ

For ( ) ( )vuggandvuff ,, == , we get the
standard (KdVB) equation (17). The (KdV) and Burgers equations were 
first added [7] to describe properties of waves in liquid–filled elastic tubes. 
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For ( ) ( ) ( ) 0,3 =∈−== uhanduuguuf α , it represents the modified KdVB 
(mKdVB) equation: 

)35(03 2 =+∈−+ xxxxxxt uuuuu γα
For g  trivial, i.e. 0=g , we get the generalized KdV–Huxley 

(gKdVH) equation since it is similar to the generalized BH equation but 
with diffusion term present in the BH case changed by the dispersion term 
present in the KdV case. The equation (34) can also be extended to a system 
of coupled gKdVB equations in the form [7]: 

)36(
0

0





=+++

=+++

xxxxxxt

xxxxxxt

vgfv

ugfu

γ

γ

Here ( ) ( )vuggandvuff ,, ==  are odd in u  and even in v , and 
( ) ( )vuggandvuff ,, ==  are even in u and odd in v , in order to preserve 

the symmetries in the ( )vu ,  space of the original equations. These smooth 
functions allow us to write the above equations in the form: 

( )
( )

( )
( )

)37(

0
2

2

2

0
2

2

2














=+++

+++++

=+++

+++++

xxxuxvvvgxvxuuvg

xuuugxxvvgxxuugxvvfxuuftv

xxxuxvvvgxvxuuvg

xuuugxxvvgxxuugxvvfxuuftu

γ

γ

The nonlinear differential equations in the generic form [25]: 
( ) ( ) )38(uAuuuuPu xxxxxxt =+∈−+ γ

with polynomial functions defined as: 

( ) ∑
=

=
Np

i
iiupuP

0
)39(

( ) ∑
=

=
Np

i
iiuauA

0
)40(

The general form of equation (38) allows the identification of 
several interesting cases. For instance, the gKdVBH equation is recovered 
from Eq.(38) for 

( ) ( ) ( ) ( )uAuhandugugup
du
df

o =∈−== ,, .
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Furthermore, the standard KdVB equation corresponds to identifying 
( ) ( ) 0, == uAanduuP α , and the modified KdVB equation [25] requires 
( ) ( ) 0,3 2 == uAanduuP α , with the particular case 0∈=  accounting

respectively for the standard and modified KdV equations: 
)41(03 2 =++ xxxxt uuuu γα

Equation (41) represents the mKdV equation. On the other  
hand, the BH equation represents the situation in which 

( ) ( ) ( )uhuAanduuP === ,0, γα . 
( ) )42(uhuuuu xxxt =∈−+ α

with the case ( ) 0=uh  corresponding to the standard Burgers equation , 
which has an important connection with the deterministic Kardar–Parisi–
Zhang (KPZ) equation in one spatial dimension, known to provide the 
evolution of the profile of a growing interface or a domain wall of general 
nature. Eq.(42) sometimes is named the inhomogeneous Burgers equation or 
Burgers equation with reaction term [29] but when ( ) 0=uh  it is named the 
homogeneous Burgers equation.  

4. The Non-dimensional Transformations
For non-dimensional form, we introduce the following non-

dimensional quantities: 

Lx
L

t
t

L

x
x ≤≤=′=′ 0,,

α

By substituting these dimensionless quantities in (6), we get: 

10,0
Re
1

≤′≤=−+ ′′′′ xuuuu xxxt  

Here ∈/Lα  represents the Reynolds number if we set ∈= /Re Lα  and omit 
the primes in the equation in above, we get: 

)43(0
Re
1

=−+ xxxt uuuu

( ) ( ) 0,10,,1,,0 >≤≤−== axatuatu
The equation (43) with the boundary conditions represents the non-

dimensional Burgers equation in x  and t . 

5. Fourier Mode Stability Analysis
Let the solution of equation (43) has the following form [19]: 
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( ) ( ) ( ) )44(,, 21 txuxutxu +=
where ( )xu1  is the steady state solution and ( )txu ,2  is the disturbance or 
perturbation . 

Substitute (44) in (43), with its boundary condition, we have: 

( ) )45(0
Re
1

Re
1

2
2

2

2
1

2
21

21
2 =

∂
∂

−−







∂
∂

+++
∂

∂
x
u

dx
ud

x
u

dx
du

uu
t

u

0
2
2

2

Re

1
2
1

2

Re

12
2

1
2

2
1

1
1

2 =
∂

∂
−−

∂

∂
++

∂

∂
++

∂

∂
⇒

x

u

dx

ud

x

u
u

dx

du
u

x

u
u

dx

du
u

t

u
 

If we separate the two cases, we obtain the following two equations: 

)46(0
Re
1

2
2

2
2

2
1

2
2

1
2 =

∂
∂

−
∂

∂
++

∂
∂

+
∂

∂
x
u

x
u

u
dx
du

u
x

u
u

t
u

)47(0
Re
1

2
1

2
1

1 =−
dx

ud
dx
du

u

 ( ) ( ) 10,1,0 11 ≤≤−== xauau
By linearizing equation (46), we have: 

)48(0
Re
1

2
2

2
1

2
2

1
2 =

∂
∂

−+
∂
∂

+
∂

∂
x
u

dx
duu

x
uu

t
u

Equation (47) represents the stationary or steady state viscous Burgers 
equation. The analytical solution of equation (47) is: 

( ) ( )( ) ( )( ) ( ) )49(0,1/1 Re5.0Re5.0Re
1 >++−= −−− aeOeeaxu axaxa

where ( )ReaeO −  is the order of exponentially small error terms [23] in
satisfying the boundary conditions . Equation (49) represents the steady 
state or stationary solution of Burgers equation. Under certain boundary 
conditions, the solution of the viscous Burgers equation, Eq. (6) approaches 
a unique stationary solution, ( )xu1 , if the initial conditions ( )0,xu  are 
sufficiently close. The equilibrium solution takes the form of a viscous 
shock located at the center of the domain.  

The rate of convergence is determined by the eigen values jµ  of the 
associated linearized problem. 

( ) )50(...Re,0 32
Re

1 >>>−>=− − µµµ beO
where 0>b  is a constant independent of ∈  . The solution will approach the 
steady state approximately as te 1µ , hence for small values of ∈ , this will 
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become an extremely slow process. The equation (47) has another constant 
solution DDu ,1 = is constant. The unsteady state solution of Burgers
equation after dimensionalizing and scaling by α  is [26]: 

( ) ( ) ( )( ) ( ) ( )( ) )51(/exp/cosh//sinh/2, 22 LtLxLxLtxu ∈−+∈−= αααα

5.1. Stability Analysis in the Case of Constant Amplitude 
We assume that the perturbation has the following form [19]: 

( ) ( ) )52(,2
ctxikeAtxu −=

1,,0,0 21 −=+=>> iiccckA
where Ais the wave amplitude , k  is the wave, number c  is the wave 
velocity . If 02 <c  the disturbance will decay as ∞→t  and the solution is 
stable, but if 02 >c  the disturbance will grow as ∞→t  and the solution is 
unstable. The case 02 =c , gives the neutral stability curve, which separates 
between the stable and unstable regions, 2c  is called the stability indicator 
[22]. 
Substitute (52) in (48), and after some mathematical manipulation, we get:   

Re
1 1

121
k

dx
du

k
iucic −−−=+−

Equating the real and imaginary parts , we have : 

)53(Re/Re 12
2

11















 +−=

=

k
dx
du

kc

uc

Now, we shall study the following two cases: 

(a) When Du =1 , where D  is constant, this leads to 01 =
dx
du , substitute in 

(53), we get: 
( ) )54(0Re/2 <−= kc

Hence, the constant stationary solution Du =1  is always stable. 
(b) When ( ) ( ) ( )( ) ( )( )5.0Re5.0Re

11 1/1 −− +−== xaxa eeaxuxu  as shown in Fig.(1),  

then ( ) ( )( )( )25.0Re5.0Re21 1/Re2 −− +−= xaxa eea
dx
du
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Figure (1) shows the stationary solution ( )xuu 11 = when
10,1Re,1 ≤≤== xa  

Here, in above we neglect the error term since it is small [23].   

For simplicity, we put ( )xf
dx
du

−=1  in (53), we have: 

( )( )[ ] )55(Re/Re2
2 kxfkc −−=

where ( ) ( ) ( )( )( ) 01/Re2
25.0Re5.0Re2 >+= −− xaxa eeaxf

From Equation (55), we have  
(i) If ( )xfk Re2 < , then 02 >c  and the solution is unstable.  
(ii) If ( )xfk Re2 > , then 02 <c  and the solution is stable.  
(iii) If ( )xfk Re2 = , then 02 =c , which gives the neutral stability curve as 
shown in Fig. (2):

( ) ( ) ( )( )( ) )56(1/Re)(2Re 25.0Re5.0Re2 −− +== xaxa eeaxfk
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 Figure (2) 
The neutral stability curve in (56) for the stationary solution  ( )xuu 11 =

when  10,1Re,1 ≤≤== xa  

5.2. Stability Analysis in the Case of Variable Amplitude 
We assume the disturbance to have the following form [19], [1]: 

( ) ( ) ( ) )57(,2
ctxikexAtxu −=

Substitute (57) in (48), and neglect the imaginary part in the 
resulting equation, we have: 

( ) ( ) ( ) )58(0ReReRe 2
12

1 =





 ++−′−′′ xAkc

dx
du

kxAuxA

Equation (58) can be written in the following form: 
( ) ( ) ( ) )59(0Re 1 =−′−′′ xAxAuxA λ

( ) ( ) aAaA −== 1,0

2
12 ReRe kc

dx
du

k ++=λ

The characteristic equation of Eq. (59) is:  
)60(0Re 1

2 =−− λmum
which has the following solutions: 
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( ) )61(2/4ReRe 2
111 





 +−= λuum

( ) )62(2/4ReRe 2
112 





 ++= λuum

According to the sign of λ  Eq. (59) has the following three
analytical solutions: 

(i) If  ,0,..0 >=> HHei λλ  then (61) and (62) become:

( ) 2/4ReRe 2
111 





 +−= Huum  

( ) 2/4ReRe 2
112 





 ++= Huum

The general solution of Eq. (59) in this case is: 
( ) xmxm CeBexA 21 +=  

Now, we have the following two cases:  
(a) When DDu ,1 = is constant by using the boundary conditions, we get:

)63(
21 




−=+

=+

aCeBe
aCB

mm

By solving the algebraic system (63), we have: 
( ) ( )( ) ( ) ( )( ) 21211212 ,/1,/1 mmmmmmmm eeeeeaCeeeaB ≠−+=−+−=

( ) ( )( ) ( ) ( )( ) )64(11/ 122121 xmmxmmmm eeeeeeaxA +−+−=
(b) When ( ) ( )( ) ( )( ))1/(1 5.0Re5.0Re

11
−− +−== xaxa eeaxuu

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) 2/40Re0Re0,2/40Re0Re0

1/11,1/10
2

112
2

111

Re5.0Re5.0
1

Re5.0Re5.0
1






 ++=





 +−=

+−=+−= −−

HuumHuum

eeaueeau aaaa

( ) ( ) ( )( ) ( ) ( ) ( )( ) 2/41Re1Re1,2/41Re1Re1 2
112

2
111 





 ++=





 +−= HuumHuum

By using the boundary conditions, we obtain:  
( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )11111111 21211212 ,/1,/1 mmmmmmmm eeeeeaCeeeaB ≠−+=−+−=

In this case the general solution has the form:  
( ) ( ) ( )( )( ) ( )( ) ( )( )( ) )65(11/ 122121 1111 xmmxmmmm eeeeeeaxA +−+−=  

(ii) If 0=λ , then 121 Re,0 umm ==
The general solution is:  

( ) xueCBxA 1Re+=
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By using the boundary conditions, we get: 

)66(
1Re





−=+

=+

aeCB
aCB

u

By solving the system (66), we have: 
( ) ( )( ) ( )( ) 1,1/2,1/1 1111 ReReReRe ≠−=−+−= uuuu eeaCeeaB

(a) When Du =1 , the general solution is: 
( ) ( ) ( )( ) ( )( ) 1,1/21/1 ReReReReRe ≠−+−+−= DDxDDD eeeaeeaxA

(b) When ( )( ) ( )( )5.0Re5.0Re
1 1/1 −− +−= xaxa eeau , the general solution is:

( ) ( )( ) ( )( )( ) ( )( )( ) ( ) ( ) 1,1/21/1 1Re1Re1Re1Re1Re 11111 ≠−+−+−= uxuuuu eeeaeeaxA

The case 0=λ  is the case of the constant amplitude, which is 
discussed in (5.1).   
(iii) If 0<λ , let 0, >−= RRλ , then we have the following cases:
(1) When ( ) Ru 4Re 2

1 > , then the solution as in the case (i).
(2) When, ( ) Ru 4Re 2

1 = then the general solution is:

( ) 2
Re

2
Re 11 xuxu

eCxeBxA +=
By using the boundary conditions, we obtain: 

( ) 2
Re

2
Re

2
Re

2
Re

2
Re 11111

/11,/1,
xuuuuu

exeeaxAeeaCaB































+−=


















+−==

(a) When Du =1 , then the general solution is: 

( ) 2
Re

2
Re

2
Re

/11
DxDD

exeeaxA































+−=

(b) When ( )( ) ( )( ))1/(1 5.0Re5.0Re
1

−− +−= xaxa eeau , then 

( )
( ) ( )

2
1Re

2

11Re

/2

11Re

11

xu

ex

u

e

u

eaxA





















































+−=

(3) When ( ) Ru 4Re 2
1 < , let ( ) 0,4Re 2

1 >−=− EERu , then
( ) ( ) 2/Re,2/Re 1211 iEumiEum +=−=

The general solution is: 
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( ) ( )( ) ( )( )xEeCxEeBxA
xuxu

2/sin2/cos 2
Re

2
Re 11

+=
By using the boundary conditions, we have: 

( ) ( )( ) aECEaeaB
u

−=+= 2/sin2/cos, 2
Re 1

For simplicity and to determine the value of 2c , we take 1,1 == aC  and 
after some mathematical manipulation, we get: 

( )( )2Re1 1sin 1 −= −− ueE

( )( ) ( ) ( ) ⇒−





 ++=−=−= −− 2

12
122

1
2Re1 ReReRe4Re41sin 1 ukc

dx
du

kuReE u

( )( ) ( ) )67(Re4/Re1sinRe44 2
1

2Re112
2

1 













 −−−+−= −− kue

dx
du

kc u

Equation (67) has the following three cases:  

(i) If ( )( ) ( )2
1

2Re112 Re1sinRe44 1 ue
dx
duk u +−<+ −− , then 02 >c  and the 

solution is unstable.  

(ii) If ( )( ) ( )2
1

2Re112 Re1sinRe44 1 ue
dx
duk u +−>+ −− , then 02 <c  and the 

solution is stable.  

(iii) If ( )( ) ( )2
1

2Re112 Re1sinRe44 1 ue
dx
duk u +−=+ −− , then 02 =c  , which 

gives the neutral stability curve: 

( )( ) ( )

( )( ) ( )
dx
du

ue

dx
du

uek

u

u

12
1

2Re1

12
1

2Re1

Re4Re1sin

)68(4/Re4Re1sin

1

1

>+−







 −+−=

−−

−−

Now, we shall apply the results in above to the following two cases: 
(a) When ( ) DDxu ,1 =  is constant, we have      

( )( ) ( )( )[ ] )69(Re4/Re1sin4 22Re12
2 kDekc D −−−−= −−

From equation (69), we have the following three cases: 
(i) If ( )( ) ( )22Re12 Re1sin4 Dek D +−< −− , then 02 >c  and the solution is 
unstable.
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(ii) If ( )( ) ( )22Re12 Re1sin4 Dek D +−> −− , then 02 <c  and the solution is 
stable.
(iii) If ( )( ) ( )22Re12 Re1sin4 Dek D +−= −− , then 02 =c , which gives the 
neutral stability curve as shown in Fig. (3):

( )( ) ( )( ) )70(4/Re1sin 22Re1 Dek D +−= −−

Figure (3) 
The neutral stability curve in (70) for the stationary solution  

( ) Dxu =1  when  10,1Re,1 ≤≤== xD  

(b) When ( ) ( )( ) ( )( )( ))1(/1 5.0Re5.0Re
11

−− +−== xx eexuu , we have       
( ) ( )( )( ) ( )( ) )71(Re4/Re1sinRe44 2

1
2Re112

2
1 















 −−−+−= −− kxue
dx

xdu
kc xu

From equation (71), we have the following three cases: 

(i) If
( ) ( )( )( ) ( )( )2

1
2Re112 Re1sinRe44 1 xue

dx
xduk xu +−<+ −− , then 02 >c  

and the solution is unstable.  

(ii) If
( ) ( )( )( ) ( )( )2

1
2Re112 Re1sinRe44 1 xue

dx
xduk xu +−>+ −− , then 02 <c  

and the solution is stable.  
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(iii) If
( ) ( ) ( )( )21Re

2
11Re1sin1Re424 xu

xu
e

dx

xdu
k +−

−−=+ 













 , then 02 =c , 

which gives the neutral stability curve 
( )( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )
dx

xdu
xue

dx
xdu

xuek

xu

xu

12
1

2Re1

12
1

2Re1

Re4Re1sin

)72(4/Re4Re1sin

1

1

>+−








 −+−=

−−

−−

6. Conclusions
The main conclusions from this study in the case of constant 

amplitude are:  
(1) The steady state solution Du =1 , where D  is constant, is always stable.  
(2) The stationary solution ( ) ( )( ) ( )( ))1/(1 5.0Re5.0Re

11
−− +−== xaxa eeaxuu  is 

stable if ( ) ( )( )( )25.0Re5.0Re22 1/Re)(2 −− +> xaxa eeak  i.e. the solution
( )xuu 11 = in above is conditionally stable and the neutral stability curve is:

( ) ( )( )( )25.0Re5.0Re2 1/Re)(2 −− += xaxa eeak
The results in the case of variable amplitude are:  
(1) The equilibrium solution Du =1 , where D  is constant, is stable if:  

( )( ) ( )22Re12 Re1sinRe4 Dek D +−> −−  and the neutral stability curve is:

( )( ) ( )( ) 4/Re1sin 22Re1 Dek D +−= −−

(2) The equilibrium state solution ( ) ( )( ) ( )( )( )5.0Re5.0Re
11 1/1 −− +−== xx eexuu  is

stable if ( ) ( )( )( ) ( )( )2
1

2Re112 Re1sinRe44 1 xue
dx

xduk xu +−>+ −−  and the neutral 

stability curve is:  
( ) ( )( ) ( )

( ) ( )( ) ( )
dx

xdu
xu

xu
e

dx

xdu
xu

xu
ek

1Re42
1Re

2
11Re1sin

4/1Re42
1Re

2
11Re1sin

>+−
−−

−+−
−−=
































 









Mohammad Sabawi 

38 

REFERENCES 
[1] Al–Obaidi, M. F. and Ibrahim, B. M., (2001), “Stability Analysis

and Chaos in a Bend Duct”, Raf. J. Sci., Vol. 12, No. 1, PP. 91–99.
[2] Allen, E.; J. Burns, ; D. S. Gilliam,  J. Hill, and V. I. Shubov  (2002)

“The Impact of Finite Precision Arithmetic and Sensitivity on the
Numerical Solution of Partial Differential Equations”, J.
Mathematical and Computer Modeling, 35, No. 11–12, PP. 1165–
1195.

[3] Bakhtin, Y. (2004) “Existence and Uniqueness of Stationary Solutions
for D3  Navier–Stokes System with Small Random Forcing via
Stochastic Cascades”,  http://www.mccme.ru/~bakhtin/statsolu.pdf.

[4] Balogh, A., and M. Krstic (2000) “Burgers’ Equation with Nonlinear
Boundary Feedback: 1H  Stability”, Well–Posedness and Simulation,
Mathematical Problems in Engineering, Vol. 6, and PP.189–200.

[5] Balogh, A. ; D. S. Gilliam, and V. I. Shubov (2001) “Stationary
Solutions for a Boundary Controlled Burgers’ Equation”,
Mathematical and Computer Modelling, 33, PP. 21–37.

[6] Bazeia, D. (1998) “Chiral Solutions to Generalized Burgers and
Burgers–Huxley Equations”, Preprint MIT–CTP 2714, solv–int /
9802007.

[7] Bazeia, D. and E. P. Raposo (1998) “Travelling Wave Solutions in
Nonlinear Diffusive and Dispersive Media”, Preprint MIT–CTP
2734, solv–int / 9804017.

[8] Burns, J.; A. Balogh ; D. S. Gilliam, and V. I. Shubov (1998)
“Numerical Stationary Solutions for a Viscous Burgers’ Equation”, J.
Mathematical Systems, Estimation and Control, Vol., 8, No.2,
PP.1–16.

[9] Common, A. K. and M. Musette (2001) “Non–Integrable Lattice
Equations Supporting Kink and Soliton Solutions”, Euro. J. Appl.
Math.,  Vol. 12, PP. 709–718.

[10] Common, A. K. and M. Musette (2001) “Exact Solutions of Non–
Integrable Lattice Equations”, J. Phys. A: Math. Gen. 34, PP. 10401–
10410.

http://www.mccme.ru/~bakhtin/statsolu.pdf


Stability Study of Stationary… 

39 

[11] Di Francesco, M. and P. A. Markowich (2002) “Entropy Dissipation 
and Wasserstein Metric Methods for the Viscous Burgers’ Equation: 
Convergence to Diffusive Waves”, http://www.mat.univie.ac.at/~ 
wittg  /preprints /papers/48.pdf.

[12] `Estevez, P. G. and P. R. Gordoa  (1990) “ Painleve Analysis of the 
Generalized Burgers–Huxley Equation”, J. Phys. A: Math. Gen. 23, 
PP. 4831–4837.

[13] Fisher, R. A., (1937), “The Wave of Advance of Advantageous 
Genes”, Ann. Eugenics, Vol. 7, PP. 355–369.

[14] Holm, D. D. and M. F. Staley (2003) “Nonlinear Balance and 
Exchange of Stability in Dynamics of Solitons, Peakons, Ramps/
Cliffs and Leftons in a 1+1 Nonlinear Evolutionary PDE”, Accepted 
for Phys. Lett. A, to appear,http://www.math.lanl.gov/~staley/1–29–
03HS .pdf .

[15] Kawahara, T. and M. Tanaka (1983) “Interactions of Traveling 
Fronts: An Exact Solution of a Nonlinear Diffusion Equation”, Phys. 
Lett., Vol. 97A, No. 8, pp. 311–314 .

[16] Konicek, P.; M. Bednarik, and M. Cervenka (2004) “Active 
Harmonic Suppression in the Nonlinear Acoustical Resonator”, 
http://www.univ.gda.pl/~osa/material/Art–pdf/57a%20konicek.pdf.

[17] Kowalczyk, R.; A. Gamba, and L. Preziosi (2004) “On the Stability of 
Homogeneous Solutions to Some Aggregation Models”, Discrete and 
Continuous Dynamical Systems Series B, Vol. 4, No. 1, PP. 203–
220.

[18] Landa, P. S. (1996)Nonlinear Oscillations and Waves in Dynamical 
Systems, Kluwer Academic Publishers.

[19] Logan, J. D. (1987) Applied Mathematics, John Wiley & Sons.
[20] Manaa, S. and M. Sabawi (2005) “Stability Analysis for Steady 

State Solutions of Huxley Equation”, Accepted for Raf. J. Sci., to 
appear.

[21] Manaa, S. and M. Sabawi (2005) “Numerical Solution and Stability 
Analysis of Huxley Equation”, Accepted for Raf. J. Sci., to appear. 

http://www.mat.univie.ac.at/~
http://www.math.lanl.gov/~staley/1
http://www.univ.gda.pl/~osa/material/Art


Mohammad Sabawi 

40 

[22] Moheemmeed, M. Sabawi (2005) “Stability Analysis and 
Numerical Solution of Huxley Equation”, M. Sc. Thesis, Iraq, Mosul 
University.

[23] Moller, J. (2001) “An Investigation of the Recursive Projection 
Method on a Scalar Linear and Non–Linear Partial Differential 
Equation”,http://www.nada.kth.se/~jmoller/Publications/TRITANA01
18.pdf.

[24] Newell, A. C. and J. A. Whitehead, (1969) “ Finite Bandwidth, 
Finite Amplitude Convection”, J. Fluid Mech., Vol. 38, Part 2, 
PP. 279–303.

[25] Raposo, E. P. and D. Bazeia, (1999) “Exact Kink Solitons in the 
Presence of Diffusion, Dispersion, and Polynomial Nonlinearity”, 
Phys. Lett. A 253, PP. 151–160.

[26] Roy, C. J. (2005) “Numerical Solutions to Burgers Equation”, 
http://www.eng.auburn.edu/department/ae/ClassWebPages/INTRO–
CFD/Spring2005/Projects/project1.mod2.pdf.

[27] Roy, S. and A. J. Baker  (1997) “A Non–Linear, Sub–Grid 
Embedded Finite Element Basis for Accurate Monotone Steady CFD 
Solutions”, Int. J. Numer. Heat Transf., Vol. 31, PP. 135–176.

[28] Roy, S. and M. Fleming (1999) “Nonlinear Subgrid Embedded 
Element–Free Galerkin Method for Monotone CFD Solutions”, San 
Francisco, California, USA, Proceedings of the 3rd  ASME / JSME 
Joint Fluids Engineering Conference, July 18–23.

[29] Satsuma, J. (1987) “ Exact Solutions of Burgers’ Equation with 
Reaction Terms, In: Ablowitz, M., Fuchssteiner, B. and Kruskal, M.,
(Editors), Topics in Soliton Theory and Exact Solvable Nonlinear 
Equations”, Singapore, World Scientific,  PP. 255–262.

[30] Wang, X. Y.; Z. S. Zhu, and Y. K. Lu, (1990) “ Solitary Wave 
Solutions of the generalised Burgers–Huxley Equation”, J. Phys. A: 
Math. Gen. 23, PP. 271–274.

[31] Yang, Z. J. (1994) “Traveling Wave Solutions to Nonlinear 
Evolution and Wave Equations”, J. Phys. A: Math. Gen. 27, PP. 
2837–2855.  

http://www.nada.kth.se/~jmoller/Publications/TRITANA01
http://www.eng.auburn.edu/department/ae/ClassWebPages/INTRO



