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ABSTRACT 

Self-consolidating concrete (SCC) is a very significant advance in concrete technology 
and became widely spread so it may be involuntary or accidently exposed to elevated 
temperature. Artificial intelligent techniques and especially artificial neural networks 
(ANNs) had proved its efficiency to solve complex systems such as concrete exposed to 
elevated temperature that are hard to model using usual modelling techniques such as 
mathematical modelling. The purpose of this study is to present an ANN model to predict 
the residual strength of sustainable (SCC) exposed to elevated temperature and to 
investigate which of the input variable has the most important impact on the model by 
conducting the sensitivity analysis. The results are indicated that the back propagation 
network with one hidden layer comprise two hidden nodes can be effectively used to 
predict the residual strength with R2, MAPE% and AA% found to be 96.73%, 12.82% 
and 87.18% respectively. By using Garson algorithm method, the results are showed that 
fly ash content has the highest relative importance index% (R.I.I) and it was 24.6%. 

Keywords: Sustainable, Self-consolidating concrete (SCC), Artificial intelligent 
techniques, Artificial neural networks (ANNs), Sensitivity analysis. 

1. INTRODUCTION

Self-consolidating concrete is highly flowable, non-segregating concrete that can
spread into place, fill in the formwork and encapsulate the reinforcement without any 
mechanical consolidation. Self-consolidating concrete (SCC) is a new generation 
concrete that consolidates without any external effort. Due to its advantages over the 
conventional concrete, the usage of SCC increases day by day. Understanding the 
behaviour of SCC is important in the design of structures subjected to elevated 
temperature. Self-compacting concrete (SCC) is being used in high-rise buildings and 
industrial structures which may be subjected to high temperatures during operation or in 
case of an accidental fire. Therefore the proper understanding of the effects of elevated 
temperatures on the properties of SCC is necessary (ACI 237R, 2007). 

To produce this type of concrete high volume cement past is required, so high cement 
content is wanted (450–600 kg/m3) (Gao et al., 2012; Dehwah, 2012) which is not desired 
neither technically nor economically/environmentally. The hope is to make the 
construction industry proceed toward the sustainability concept and to satisfy this hope 
the substituting additives such as filling materials and mineral admixtures can be used, 
especially in SCC (Domone, 2006). The study of "green", "sustainable" or "eco-efficient" 
concrete has advanced rising attention among the major contemporary publications about 
concrete because the affairs concerning the industrial wastes recycling, durability of 
concrete, environment and the cost will place a pressure on the employment of waste 
materials (Kraus et al., 2009). So in the current study, sustainable SCC was studied by 
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using the green materials: Portland limestone cement (PLC), 
high volume class F fly ash (HVFA) and Iraqi available 
cement kiln dust (CKD). One of the typical problems that 
may face the civil engineering is the analysis of the 
behaviour of concrete subjected to elevated temperature. 
Where estimation the residual strength of concrete that may 
exposed to elevated temperature before it facing such 
situations will be very important in rescue human life and 
the property. This complicated problem, because it has a 
large number of controlling parameters, may be solved by 
using the artificial neural network (ANN). This intelligent 
technique had proved its efficiency to solve complex 
systems and some recent researches proved that as follow: 
 Eskandari and Ramin (2017), presented an artificial

neural network (ANN) to predict the compressive
strength of mortar mixtures containing different cement
strength classes of CME 32.5, 42.5, and 52.5 MPa. In
their study, a total of 810 specimens of 50-mm cubes
were constructed in order to implementing the
compressive strength test. After training the 17 neural
networks with various numbers of hidden neurons and
also two different nonlinear input activation functions
as Tanh and Logistic, the ANN 5-11-1 network with
Logistic function was chosen. Good agreement
between predicted and experimental data was observed.

 Chithra et al. (2016), constructed three models for
multiple regression analysis (MRA) and three others
for ANN to predict the compressive strength of high
performance concrete containing nano silica and
copper slag as partial cement and fine aggregate
replacement respectively. Artificial neural network
models demonstrated more accuracy and had higher
correlation than MRA models where the coefficient of
determination (R2) was 63.74%, 66.86% and 67.17%
for MRA1, MRA2 and MRA3 respectively while it was
99.46%, 99.75% and 99.51% for ANN1, ANN2 and
ANN3 respectively.

 Mashhadban et al. (2016), used PSOA (particle swarm
optimization algorithm) and ANN to predict
mechanical properties of fiber reinforced self-
compacting concrete. They conclude that ANN is a
flexible and accurate method in prediction of
mechanical properties of fiber reinforced SCC
properties. The coefficient of determination (R2)
obtained by PSOA integrated with the ANN was 99.9%.

 Wang et al. (2015), used ANN and fuzzy inference
system model (FIS) for predicting the free expansion
strain of Self-stressing concrete (SSC) under wet
curing conditions. To construct these models, 730
experimental data were gathered. The data used in the
ANN and FIS models are arranged in a format of four
input parameters that cover the water/cement ratio,
cement abundance coefficient, cross-section area of
specimens and curing time, and output parameter,
which is the free expansion strain of SSC. The results
of the analyses indicate that after successful learning

the ANN model and FIS model have good performance 
in desirable accuracy and applicability. 

 Ghafoori et al. (2013), studied several linear and
nonlinear regressions and neural network models to
estimate rapid chloride permeability of self -
consolidating concrete. These prediction models were
developed for different number of independent
variables and for selecting testing and training samples
two different strategies were adopted. The results of
their study showed the superior performance of neural
network models in comparison with the prediction
models obtained by linear and nonlinear regressions,
particularly when testing evaluations were chosen from
the boundaries of mixture proportions where the
correlation factor (CF) was found to be 99.8%.

 Parhi and Dash (2011), analyzed the dynamic behavior
of a beam structure containing multiple transverse
cracks using neural network. Results from neural
network have been presented for comparison with the
output from theoretical, finite-element, and
experimental analysis. From the evaluation of the
performance of the neural network it was observed that
the developed method can be used as a crack diagnostic
tool in the domain of dynamically vibrating structures.

 Rahman et al. (2010), outlined the application of the
multi-layer perceptron ANN, ordinary kriging (OK),
and inverse distance weighting (IDW) models in the
estimation of local scour depth around bridge piers. It
was shown that the artificial neural network model
predicts local scour depth more accurately than the
kriging and inverse distance weighting models. It was
found that the ANN with two hidden layers was the
optimum model to predict local scour depth.

2. EXPERIMENTAL WORK

2.1 Materials Characteristics 

2.1.1 Cement 
In the present study the cement used was local Portland-

lime stone cement (PLC) available in the markets, Karasta 
CEM II/A-L 42.5 R. It complies with European Standard 
EN 197-1 (2000) and Iraqi industrial license No: 3868. The 
physical and chemical characteristics of cement used in this 
study are presented in Table 1. 

2.1.2 Aggregates 
As fine aggregate natural sand was used in this work. The 

grading, physical and chemical properties of the sand used 
are shown in Table 2. It has a fineness modulus of 2.5 and 
within the grading zone 3. A crushed gravel with a 
maximum size of 20 mm was used as a coarse aggregate, 
the grading, physical and chemical properties of gavel used 
are shown in Table 3. Both types of aggregate were 
conformed to the Iraqi specification No.45 / 1984. 
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Table 1. Chemical and physical characteristics of Portland limestone cement (PLC) used a 

Oxides or property PLC test 
results 

Requirement of EN 197-1 
(2000) 

Requirement of Iraqi industrial license 
No: 3868 b 

SiO2 18.8 - - 
Al2O3 4.8 - - 
Fe2O3 2.7 - - 
CaO 61.9 - - 
MgO 2.5 - ≤ 5.0% 

SO3 2.6 ≤ 4.0% ≤ 2.5% if C3A less than 5% 
≤ 2.8% if C3A more than 5% 

Na2O 0.2 - - 
K2O 1.1 - - 

(Na2O)eq.
c 0.92 - - 

L.O.I (Loss on Ignition) 4.5 - - 
Fineness (m2/Kg) 390 - - 

Initial setting time (min.) 128 ≥ 60.0 ≥ 45.0 
Final setting time (hr.) 3.3 - - 

2 days compressive strength 
(MPa) 23 ≥ 20.0 ≥ 20.0 

28 days compressive strength 
(MPa) 49 ≥ 42.5 ≥ 42.5 

a Chemical analysis and physical properties were carried out in the laboratory of Al – Kufa cement mill. 
b Limit by ICOSQC (Iraqi central organization for standardization & quality control). 
c (Na2O) eq. = Na2O+0.658 K2O. 

Table 2. Grading and some physical and chemical properties of sand used 
Sieve size (mm) Cumulative passing % Limits of Iraqi specification No.45/1984, zone 3 

4.75 97 90-100
2.36 89 85-100
1.18 75 75-100
0.60 60 60-79
0.30 22 12-40
0.15 5 0-10

Property Test results 
Specific gravity 2.58 -

Sulfate content (SO3) % 0.21 ≤ 0.5 
Absorption % 1.82 - 

Materials finer than sieve No. 200 1.4 ≤ 5.0 
Fineness modulus 2.5 - 

Table 3. Grading and some physical and chemical properties of gravel used 
Sieve size (mm) Cumulative passing% Limits of Iraqi specification No. 45/1984 

37.5 100 100 
20 100 95-100
10 39 30-60
5 3 0-10

Property Test results 
Specific gravity 2.62 -

Sulfate content (SO3) % 0.03 ≤ 0.1 
Absorption % 0.7 - 

2.1.3 Chemical Admixture 
A high performance superplasticizer based on modified 

polycarboxylic ether which is commercially famous 
(GLENIUM 54) was used, for the liquefaction of the 

concrete mixtures to achieve the desired workability, 
throughout this study as a "high range water reducing 
admixture" (HRWRA). It complies with ASTM C494 
(2005). 
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Table 4. Chemical analysis and physical properties of the fly ash and cement kiln dust a 
Oxides or property Fly ash Cement kiln dust ASTM C618-05 (2005) Class F requirement 

SiO2 50.5 16.7 SiO2 + Al2O3 + Fe2O3 ˃ 70 
Al2O3 22.7 4.5 
Fe2O3 9.3 2.0 
CaO 10.8 44.5 
MgO 1.2 1.3 - 
Na2O 1.0 0.3 - 
K2O 0.8 3.7 - 
TiO2 0.7 - - 
SO3 1.5 5.5 5.0 max. 

Loss on ignition 1.2 20.0 6.0 max. 
Specific gravity 2.12 - - 

Specific surface area (m2/kg) 420 565 - 
a Chemical analysis and physical properties were carried out in the laboratory of Al – Kufa cement mill. 

Table 5. Characteristics of polypropylene fibres used* 
Property Values 

Specific gravity 0.91g/cm³ 
Melting point 160 °C 
Fibre diameter 18 µm 

Fibre length 12 mm 
Colour White 

Addition rate 0.6 kg/m³ 
Tensile strength 320-400 MPa

*According to manufacturer (Basf Chemical Company).

2.1.4 Fly Ash 
Fly ash used in present study was obtained from Turkey. 

The physical and chemical properties of fly ash are 
tabulated in Table 4. It can be seen from Table 4 that the fly 
ash used is considered as class F fly ash as per ASTM C618 
standard (2005). 

2.1.5 Cement Kiln Dust 
Cement kiln dust (CKD) is a by-product of cement 

production. Table 4 indicates the chemical composition and 
Fig. 1 shows the scanning electron microscopy (SEM) of the 
cement kiln dust used in this research. SEM is a type of 
electron microscope that produces images of a sample by 
scanning the surface with a focused beam of electrons. The 
electrons interact with atoms in the sample, producing 
various signals that contain information about the surface 
topography and composition of the sample. 

2.1.6 Polypropylene Fibre 
Monofilament polypropylene fibres were used in this 

work. It was provided from market and it is commercially 
known "RHEOFIBRE". Table 5 shows its characteristics. 

2.2 Specimens Production and Heating and Cooling 
Procedure 

Fourteen different SCC mixes were investigated in this 
study seven without and seven with polypropylene fibre. 
Table 6 shows the mixture proportions of these mixes. After 

appropriate mixing procedure that recommended by Long 
et al. (2014), Thanh and Ludwig (2015), all concrete mixes 
were casted in the 10 cm cubic moulds without any vibration 
and instantaneously covered with plastic wrap and kept 

Fig. 1. SEM for CKD used 

undisturbed for 24 hr. in laboratory circumstances. After 24 
hr., specimens were removed from the moulds and placed 
in curing tank until 28 day then the specimens were placed 
in lab conditions until the age of 91 day. At the age of 91 
day, specimens were placed in the manufactured electrical 
furnace which has a capacity of 1200°C (the temperature 
inside the furnace was at the room temperature at the time 
of putting the specimens) then heat was applied at a rate of 
5°C /min until the desired temperature was reached. In 
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Table 6. Mix proportions of the concrete mixes 

Mix ID Mixture proportions (kg/m3) 
Cement Fly ash Cement kiln dust Water Sand Gravel W/P a SP b 

REF 500 - - 180 800 800 0.36 0.8 
40FA 300 200 - 180 800 800 0.36 0.7 
50FA 250 250 - 180 800 800 0.36 0.6 
60FA 200 300 - 180 800 800 0.36 0.55 

20CKD 400 - 100 180 800 800 0.36 0.9 
30CKD 350 - 150 180 800 800 0.36 1.1 

50B 250 150 100 180 800 800 0.36 0.9 
a W/P : water / powder : water / (cement + FA +CKD) 
b SP : superplasticizer : (Lit/100Kg cementitious material) 

addition to room temperature four temperature degrees were 
investigated (200°C, 400°C, 600°C and 800°C). After 
reaching the target temperature, the specimens were 
remained at this temperature for two hours as shown in Fig. 
2. To ensure that the specimens were reached to the
maximum temperature two type "K" thermocouples were
placed at the surface of the specimens and the temperature
was read by using a digital "ELE" thermometer as shown in
Fig. 3. For cooling the specimens two techniques were
adopted in the present study and they were slow cooling (in
air) and rapid cooling (in water). The compressive strength
test was performed according to the BS EN 12390-3:2002,
by using ELE digital compression machine of 2000 KN. The 
number of the specimens produced was 126 (14 × 4 × 2) +
(14 × 1) as shown in appendix (A) and each number
represents the average of three specimens.

Fig. 2. Heating cycles imposed 

Fig. 3. Measuring the specimen temperature by using ELE 
thermometer 

3. CONSTRUCTION THE PREDICTION
MODEL

There are many applications that support the adoption of
neural networks such as MATLAB, SPSS, Pythia and 
NeuroSolutions. In this study Neuframe Version 4 software 
was used to build the model because Neuframe is the 
leading neural networks simulation environment and it 
offers object oriented and soft to usage approach to solve 
problems using intelligent tools (Alzwainy et al., 2015). Fig. 
4 shows the general components of Neuframe 4 software 
which is assembled to find the connection amongst the 
independent variables (inputs) and the dependent variables 
(output). The methodology for developing the prediction 
model by Neuframe 4 program has five phases as described 
below (Alzwainy, 2008): 

Fig. 4. Typical objects of NEUFRAME 4 software 

3.1 Model Inputs and Outputs 
The first step is to identify the input data and the output 

data and classified them whether it is quantity data or quality 
data. In this study seven independent variables were 
considered as input layer and one dependent variable which 
represents the output layer as shown in Fig. 5 and Table 7. 
The Neuframe 4 software equips Microsoft Excel sheet as 
shown in Fig. 4 (Datasheet1) which will contain the input 
and output data. 

Type k 
thermocouple 
temperature 

sensor 
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Table 7. Description of models factors 
Type of variables Code Variables Unit Class of data 

Independent variables 

V1 Cement content Kg/m3 Quantity data 
V2 Superplasticizer content Lit/100 Kg cementitious materials Quantity data 
V3 Fly ash content Kg/m3 Quantity data 
V4 Cement Kiln Dust content Kg/m3 Quantity data 

V5 Type of cooling Water cooling = 0 
Air cooling = 1 Quality data 

V6 Polypropylene fibres Without fibre = 2 
With fibre = 3 Quality data 

V7 Temperature degree Celsius Quantity data 
Dependent variable Y Compressive strength MPa Quantity data 

Table 8. Effect of data division on performance of ANN model 
Data division % Training error% Testing error% Correlation (R)% (R2) % training testing querying 

80 10 10 7.41 14.83 95.31 90.85 
80 5 15 6.25 16.47 84.55 71.5 
80 15 5 6.68 17.69 96.03 92.23 
77 10 13 6.98 17.06 92.29 85.18 
77 13 10 7.04 17.14 95.55 91.30 
77 15 8 5.93 18.15 84.94 72.15 
75 15 10 6.72 16.12 94.79 89.86 
75 10 15 6.59 14.49 84.22 70.94 
75 20 5 6.59 13.67 78.06 60.93 
75 5 20 6.83 17.30 87.76 77.02 
72 20 8 6.91 14.06 85.23 72.64 
70 20 10 6.87 13.75 95.15 90.54 
70 10 20 6.87 17.04 87.66 76.85 
70 15 15 6.00 14.13 84.86 73.02 
70 18 12 6.83 16.99 92.35 85.29 
70 22 8 6.84 17.24 85.84 73.69 
69 21 10 7.03 15.16 95.07 90.4 
68 20 12 7.25 14.54 95.1 90.44 
68 18 14 6.99 15.48 86.10 74.13 
68 22 10 7.46 17.12 92.09 84.81 

Table 9. Effect of distribution method on the performance of ANN 
Data division % Division type Training error

% 
Testing error 

% R% R2% Training Testing Querying 
70 20 10 Blocked 6.94 13.51 94.24 88.82 
70 20 10 Striped 6.87 13.75 95.15 90.54 
70 20 10 Random 6.74 17.54 81.o2 65.64 

3.2 Pre-processing and Data Partition 
For effective utilize from artificial neural system it is very 

important to split the information into three groups: training 
group where the learning is done on this set of data and it is 
used to determine the weights. The second group is the 
testing group where this set of data is utilized for assessing 
the generalization capability of the grid and assessing the 
execution of the network, and the testing error which is very 
important. The latest group is the validation group and this 
set of data is used for generalization to make the best output 
for unknown examples. In the present study, by using the 

data tools1 as shown in Fig. 4 and depend on the lowest 
testing error which is 13.75% and the maximum correlation 
coefficient (R) which is 95.15% the top data partition is 70% 
for training group, 20% for testing group and 10% for 
validation group as tabulated in Table 8. Thus, this division 
was selected in building the model. By using the same 
object (the data tools1) as shown in Fig. 4 there are three 
distribution types (Blocked, Striped and Random) and it is 
important to choice the best distribution and it was “Striped” 
as tabulated in Table 9. 
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3.3 Scaling of Data 
Before the data are supplied to the network it is 

significant to preprocess the data in an appropriate formula 
and this done as soon as the existing data had been allocated 
into their subsets (i.e. training, testing and validation). This 
operation is required to guarantee that all inputs take the 
same concern through the training course. Additionally, pre-
processing generally accelerates the training process. 
Transformation, data scaling and normalization are different 
methods for preprocessing. As the boundaries of the 
activation functions used in the hidden stratum and output 
stratum ranged between (-1) to (1) for the tanh activation 
function as in Equation (1) and between (0) to (1) for the 
sigmoid activation function as in Equation (2) so it is 
important to scale the output data, to be adequate with these 
boundaries (Shahin et al., 2002). 
Scaled value (Zn) Tanh = (2 * (Z - Zmin) / (Zmax - Zmin) -1  (1) 
Scaled value (Zn) Sigmoid = (Z - Zmin) / (Zmax - Zmin)    (2) 

Where Z is the original value. 

3.4 Model Performance 

3.4.1 Model Architecture 
There are two types of learning; these are supervised and 

unsupervised learning. The supervised learning network is 
used in current study, because it has the input data with the 
related needed output data so the net can teach to estimate 
the connection amongst two variables by training. Chosen 
the optimal number of the stratums and the number of the 
processing elements in every layer is very important stage 
in building the model. Generally, in any neural network 
there are always one layer represents the input variables and 
one layer represents the output variables. The number of 
model inputs and outputs controlled the number of 
processing elements in the input and output stratums 
respectively (Shahin et al., 2002). For determining best 
ANN architecture, no united philosophy is found. In this 
study a trial-and-error method were utilized to find the 
number of the hidden stratums and the number of its nodes 
and it was found that one hidden layer was the best and 
beginning with one hidden neuron and then increasing the 
quantity of the neurons as shown in Table 10. The network 

with two hidden nodes has the lowest training and testing 
errors and they were 5.03% and 13.49% respectively and 
the highest correlation coefficient (R) was 98.72%. So the 
optimal architecture for the network is shown in Fig. 5. 

3.4.2 Activation (transfer) Function 
In neural networks, the transfer function (may be linear 

or nonlinear) is the function which designates the output 
behaviour of a node. There are three main kinds of 
activation functions can be utilized to convert input signal 
into output and these are linear function, sigmoid function 
and hyperbolic tangent function. In this study the effect of 
using various activation function was investigated as shown 
in Table 11. It is clearly form this table that the top action of 
the network attained when using the sigmoid transfer 
function in both hidden and output layers where it has the 
lowest training and testing error and they were 5.03% and 
13.49% respectively and the highest correlation coefficient 
(R) was 98.72%.

3.4.3 Training (learning) of the Network 
The purpose of training the network is to aid it to 

generalize future data and produce the most perfect answers. 
By adjusting the connection weights the system will learn 
new knowledge where changing the mass of every 
connection will make the net offers an enhanced estimation 
of the preferred output. The learning capability of a neural 
network is controlled by the algorithmic method selected for 
training and by its architecture (Haykin, 2001). There are 
many types of algorithms used in the training process but 
the most popular one is the back propagation algorithm (BP) 
which was adopted in the current study. The influence of the 
internal factors (momentum term and learning rate) that 
governing the back propagation algorithm on the action of 
the two hidden layer nodes model was studied in current 
work and it is shown in Table 12 and Table 13 respectively. 

From these tables it is clearly that the best momentum 
term and learning rate were 0.8 and 0.2 respectively, since 
they provided the best performance of the network where 
the testing error was the lowest (13.49) and the correlation 
coefficient (R) was the highest (98.72%). So these 
parameters were used in building the model. 

Table 10. Effect of hidden layer nodes number on the performance of ANN 
No. of nodes Training error % Testing error % R% R2% 

1 6.87 13.75 95.15 90.54 
2 5.03 13.49 98.72 97.46 
3 5.54 12.9 96.57 93.26 
4 5.14 13.01 98.38 96.78 
5 5.79 13.88 97.7 95.46 
6 5.13 13.40 98.09 96.22 
7 5.36 21.63 97.40 94.87 
8 5.32 15.84 98.10 96.25 
9 5.33 19.33 97.44 94.96 

10 5.29 14.74 97.25 94.58 
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Table 11. Impact of transfer function on the performance of ANN 
Parameters 

effect 
Transfer function Training 

error % 
Testing 
error % R% R2% Hidden layer Output layer 

Division 
selected  
(striped) 

No. of hidden 
layer nodes 

(2) 
Momentum rate 

(0.8) 
learning rate 

(0.2) 

Sigmoid Sigmoid 5.03 13.49 98.72 97.46 

Sigmoid Tanh 52.32 52.87 16.46 2.71 

Tanh Sigmoid 5.59 14.81 96.81 93.73 

Tanh Tanh 52.32 33.80 63.67 40.54 

Table 12. Impact of momentum term on the performance of ANN 

Parameters effect Momentum 
term 

Training 
error % 

Testing error 
% R% R2% 

Division selected 
(striped) 

No. of hidden layer 
nodes 

(2) 
learning rate (0.2) 

transfer function in the 
hidden layer (sigmoid) 
transfer function in the 

output layer 
(sigmoid) 

0.7 5.28 13.49 98.71 97.44 

0.8 5.03 13.49 98.72 97.46 

0.85 4.90 13.49 98.69 97.40 

0.9 5.27 13.49 98.58 97.19 

0.95 5.24 13.49 97.84 95.74 

Table 13. Impact of learning rate on the performance of ANN 

Parameters effect Learning rate Training 
error % Testing error % R% R2% 

Division selected 
(striped) 

No. of hidden layer 
nodes 

(2) 
Momentum rate (0.8) 
transfer function in 

the hidden layer 
(sigmoid) transfer 

function in the output 
layer 

(sigmoid) 

0.05 5.47 13.01 98.68 97.38 
0.1 5.29 13.17 98.71 97.43 

0.15 5.35 13.33 98.70 97.42 
0.2 5.03 13.49 98.72 97.46 

0.25 5.22 13.65 98.71 97.43 
0.3 5.22 13.82 98.69 97.39 
0.4 5.55 14.18 98.65 97.32 
0.5 5.40 14.68 98.60 97.23 
0.6 5.77 15.31 98.59 97.21 
0.7 6.88 16.07 98.66 97.35 
0.8 5.89 16.98 98.65 97.32 

Training of the network was ended when either the 
average error value fell below a pre-limited value (in this 
study 5% was selected) or the number of training epochs 
overstepped a pre-defined threshold (in this study 10000 
epochs was selected). As soon as the training of the network 
is completed, it can be used to estimate the output for given 
set of input values. 

3.5 ANN Model Equation 
The connection weights amongst the input stratum nodes 

and the hidden stratum nodes in addition to the connection 
weights between the hidden stratum nodes and the output 
stratum node which were gained by the optimum network 
can be used to translate the network into a simple formula 
by the aid of the threshold or "bias" of the hidden and 
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output nodes. Fig. 5 and Table 14 show the connection 
weight and the threshold level of the network. Depending 
on sigmoid transfer function Equation (3) and the 
connection weights and bias from Table 14 the equation of 
compressive strength prediction can be expressed as follow: 
𝑓𝑓 = 1

1 + 𝑒𝑒𝑒𝑒𝑝𝑝−𝑥𝑥�                               (3)
Where x is the weighted sum of the inputs from the 

previous layer to a specific node. 
𝑌𝑌 = 1

1+ 𝑒𝑒(1.857 + 4.478tanh(𝑥𝑥1) − 4.771 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥2)           (4) 
Where: 

X1= [(𝛳𝛳8) +  (𝑤𝑤8−1 ∗ 𝑉𝑉1) +  (𝑤𝑤8−2 ∗ 𝑉𝑉2) + (𝑤𝑤8−3 ∗
𝑉𝑉3) +  (𝑤𝑤8−4 ∗ 𝑉𝑉4) + (𝑤𝑤8−5 ∗ 𝑉𝑉5) + (𝑤𝑤8−6 ∗ 𝑉𝑉6) +
 (𝑤𝑤8−7 ∗ 𝑉𝑉7) ]                                (5) 
X2= [(𝛳𝛳9) +  (𝑤𝑤9−1 ∗ 𝑉𝑉1) + (𝑤𝑤9−2 ∗ 𝑉𝑉2) +  (𝑤𝑤9−3 ∗
𝑉𝑉3) +  (𝑤𝑤9−4 ∗ 𝑉𝑉4) +  (𝑤𝑤9−5 ∗ 𝑉𝑉5) + (𝑤𝑤9−6 ∗ 𝑉𝑉6) +

(𝑤𝑤9−7 ∗ 𝑉𝑉7) ]                                (6) 
So: 

X1= [ -1.046 + 0.325*V1 – 0.083*V2 – 2.395*V3 + 1.733*V4 
– 0.141*V5 – 0.379*V6 + 0.316*V7 ]               (7) 
X2= [ -0.161 + 0.813*V1 + 2.161*V2 + 0.425*V3 - 0.472*V4 
+ 0.246*V5 -0.043*V6 – 1.665*V7 ]                (8)

Here, it is necessary to take attention that all input
variables (V1, V2, V3, V4, V5, V6, and V7) in Equation (5) 
and Equation (6) had been transformed to standard values 
ranging between (0 and 1) as it is demanded by the 
Neuframe v.4 software. So in order to calculate the 
estimated value of the compressive strength in real value the 
input variables must be re-scaled by using Equation (2) and 
the training data minimum and range used in the ANN 
model. Lastly, the final form of the equation of the 
compressive strength estimation will be as follow: 

𝑌𝑌 = 62
1+ 𝑒𝑒(1.857 + 4.478tanh(𝑥𝑥1) − 4.771 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥2) + 13 (9) 

Where: 
Y= estimated compressive strength (MPa) 
X1= {–0.4327 + 0.0011*V1 – 0.151*V2 – 0.008*V3 + 
0.0115*V4 – 0.141*V5 – 0.379*V6 + 0.0004*V7}    (10) 
X2= {–2.72 + 0.0027*V1 + 3.929*V2 + 0.0014*V3 – 
0.0031*V4 + 0.246*V5 – 0.043*V6 – 0.0022*V7}    (11) 

For better clarifying the employment of the prediction 
equation, the following numerical example can be used: 
Data given: (V1 = 350, V2 = 1.1, V3 = 0, V4 = 150, V5 = 1, 
V6 = 3, and V7 = 800). The predicted compressive strength 
value using Equation (9) will be 19.5 MPa. This predicted 
value show good comparison with actual value of measured 
compressive strength (17.0 MPa). 

Fig. 5. Structure of the optimal ANN 

Table 14. Weights and threshold (ϴ) of the optimal ANN 

Hidden layer node Wji (weight from node (i) in the input layer to node (j) in the hidden layer) Hidden layer threshold
(ϴj) 

J = 8 

i = 1 i = 2 i = 3 i = 4 

-1.0460.325 -0.083 -2.395 1.733 
i = 5 i = 6 i = 7 

-0.141 -0.379 0.316 

J = 9 

i = 1 i = 2 i = 3 i = 4 

-0.1610.813 2.161 0.425 -0.472
i = 5 i = 6 i = 7 - 
0.246 -0.043 -1.665

Output layer node Wji (weight from node (i) in the hidden layer to node (j) in the output layer) Output layer threshold
(ϴj) 

J = 10 i = 8 i = 9 - - -1.857-4.478 4.771 - -
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Table 15. Verification of the model 
Obs. V1 V2 V3 V4 V5 V6 V7 Y actual Y equation 

1 250 0.6 250 0 1 3 600 45.8 48.1 
2 200 0.55 300 0 0 3 400 43.5 44.5 
3 350 1.1 0 150 1 2 400 25.0 35.4 
4 300 0.7 200 0 0 3 800 32.6 36.4 
5 250 0.6 250 0 1 2 200 68.5 74.4 
6 400 0.9 0 100 1 2 800 18.3 14.5 
7 350 1.1 0 150 0 3 600 21.9 23.2 
8 300 0.7 200 0 1 3 200 71.6 75.0 
9 350 1.1 0 150 0 2 400 23.6 26.9 
10 500 0.8 0 0 0 2 800 33.6 38.8 
11 250 0.6 250 0 0 2 600 37.2 37.6 
12 200 0.55 300 0 1 3 200 64.8 72.2 
13 300 0.7 200 0 0 2 800 30.5 37.5 

the coefficient of correlation (R) = 98.35% 

4. MODEL VERIFICATION

There are many important statistical measures that may
be applied to assess the performance and accuracy of the 
built model (Salah et al., 2019; Nidal et al., 2020; Ibraheem 
et al., 2020) 

1. Mean percentage error (MPE): give an idea about the
agreement between predicted and real values.

𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ �𝐴𝐴−𝐸𝐸
𝐴𝐴
� / 𝑛𝑛� ∗ 100 %    (12) 

2. Root mean squared error (RMSE)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑(𝐸𝐸−𝐴𝐴)2

𝑛𝑛
    (13) 

3. Mean absolute percentage error (MAPE)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ �|𝐴𝐴−𝐸𝐸|

𝐴𝐴
� ∗ 100%�  / 𝑛𝑛    (14) 

4. Average accuracy percentage (AA%): give the
accuracy degree of the model.

𝐴𝐴𝐴𝐴% = 100 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀    (15) 
5. The coefficient of correlation (R)
6. The coefficient of determination (R2)

Where: A is the actual value, E is the estimated value and
n is number of cases for validation. 

The last two coefficients (R and R2) were used to measure 
how well the model outputs match the real value (target) 
while RMSE and MAPE were used to measure the average 
error of the model. It can be seen from Table 15 and Fig. 6 
that the estimated compressive strength has a very good 
correlate with the actual value and the coefficient of 
correlation (R) and the coefficient of determination (R2) 
were 98.35% and 96.73% respectively. 

According to the statistical measures that tabulated in 
Table 16 it can be seen that the mean absolute percentage 
error (MAPE) and average accuracy percentage (AA%) are 
found to be 12.82% and 87.18% respectively. So, it can be 
concluded that the built model has a good performance in 
compressive strength prediction. 

Table 16. Statistical measures for model 
Description Result 

MPE -9.61
RMSE 5.08
MAPE 12.82
AA% 87.18

R 98.35
R2 96.73

5. SENSITIVITY ANALYSIS OF THE ANN
MODEL INPUTS

The ANN were used to develop the predictive model by
feeding the input variables to the network and an output was 
estimated but there is an additional question that important 
to know. Which of the input variables have the most 
important influence on the predicted value (output)? The 
sensitivity analysis offers the answer for this question. 

There are several techniques can be utilized to find the 
relative importance index of the input variables such as 
connection weights method, most squares method and 
Garson Algorithm method. In the present study Garson 
Algorithm method was used. It is important to know that in 
this method the absolute values of the final connection 
weights are used. The main steps of the Garson Algorithm 
method is as follow: 

1. Prepare the final weights of the connections (amongst
the input neurons and the hidden neurons) and
(amongst the hidden neurons and the output neuron)
from Table 14.

2. By multiplying the absolute value of the hidden-
output linking weight by the absolute value of the
hidden-input linking weight of all input variables find
the product Pij for every hidden neuron, the result
shown in below.
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Fig. 6. Correlation between the actual and predicted 
compressive strength 

J = 8 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 
1.455 0.372 10.725 7.76 0.631 1.697 1.415 

J = 9 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 
3.879 10.31 2.028 2.252 1.174 0.205 7.944 

3. Find Qij for each hidden node (by dividing Pij) for
each variable by summation of Pij for all variables.
The results as shown below:

J = 8 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 
0.028 0.007 0.207 0.151 0.012 0.033 0.027 

J = 9 v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 
0.075 0.199 0.039 0.043 0.023 0.004 0.153 

4. Find Sj for each input node (by summation of the Qij)
for the same input node). For example S1 = 0.028 +
0.075 = 0.103. The results as shown below:

v = 1 v = 2 v = 3 v = 4 v = 5 v = 6 v = 7 
0.103 0.206 0.246 0.194 0.035 0.036 0.180 

5. To get the relative importance index% (R.I.I) divided
Sj for each input variable by the summation of all the
input variables (here is equal to 1). The result will be
as below:

R.I.I% V1 V2 V3 V4 V5 V6 V7
10.3 20.6 24.6 19.4 3.5 3.6 18 

Rank 5 2 1 3 7 6 4 

These results shown in Fig. 7 indicate that the variables 
(V3, V2, V4 and V7) have the most important influence on 
the predicted model with a relative importance index 
(24.6%, 20.6%, 19.4% and 18%) respectively. 

Fig. 7. Relative importance index % of the input variables 

6. CONCLUSIONS

This study experimentally determined the residual
compressive strength of sustainable self-consolidating 
concrete under elevated temperature. The experimental data 
are modelled through neural networks by Neuframe v.4 
software and the following conclusion can be extracted: 
 The optimum ANN is selected with 5.03% and 13.49%

training and testing errors respectively and 98.72%
correlation.

 The best data division is found to be 70% for training
set, 20% for testing set and 10% for validation with
striped data division. Back propagation algorithm is
used in the learning process. Sigmoid transfer function
is used in both hidden and output layers with two
hidden neurons.

 The built model from ANN has a very good
performance in compressive strength prediction as it
has mean absolute percentage error (MAPE) and
average accuracy percentage (AA%) of 12.82% and
87.18% respectively.

 The sensitivity analysis by using Garson Algorithm
indicates that fly ash content has the highest relative
importance index% and it was 24.6%.
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Appendix (A). Total laboratory data 

No. 
Actual data Data 

partition Y V1 V2 V3 V4 V5 V6 V7 
1 68.7 500 0.8 0 0 1 3 200 T 
2 69.5 500 0.8 0 0 1 2 200 T 
3 75.1 500 0.8 0 0 1 3 200 T 
4 70.4 500 0.8 0 0 0 3 200 T 
5 65 500 0.8 0 0 1 2 400 T 
6 69.8 500 0.8 0 0 0 2 400 T 
7 70.5 500 0.8 0 0 0 3 400 T 
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8 62.6 500 0.8 0 0 1 2 600 S 
9 65.7 500 0.8 0 0 1 3 600 V 
10 62.7 500 0.8 0 0 0 2 600 T 
11 58.4 500 0.8 0 0 1 2 800 T 
12 33.6 500 0.8 0 0 0 2 800 T 
13 64.2 300 0.7 200 0 1 3 200 T 
14 66.7 300 0.7 200 0 0 2 200 T 
15 67.3 300 0.7 200 0 0 3 200 T 
16 65.5 300 0.7 200 0 1 2 400 T 
17 65.5 300 0.7 200 0 1 3 400 S 
18 63.7 300 0.7 200 0 0 2 400 S 
19 62.8 300 0.7 200 0 0 3 400 V 
20 62.2 300 0.7 200 0 1 3 600 T 
21 60.1 300 0.7 200 0 0 2 600 T 
22 61.5 300 0.7 200 0 0 3 600 T 
23 41.3 300 0.7 200 0 1 2 800 T 
24 30.5 300 0.7 200 0 0 2 800 T 
25 67.3 250 0.6 250 0 1 2 200 T 
26 68.5 250 0.6 250 0 1 2 200 T 
27 68.3 250 0.6 250 0 1 3 200 S 
28 63.6 250 0.6 250 0 0 2 200 S 
29 66.4 250 0.6 250 0 0 3 200 V 
30 64.4 250 0.6 250 0 1 3 400 T 
31 57.2 250 0.6 250 0 0 3 400 T 
32 43.4 250 0.6 250 0 1 2 600 T 
33 45.8 250 0.6 250 0 1 3 600 T 
34 37.2 250 0.6 250 0 0 2 600 T 
35 36.6 250 0.6 250 0 1 2 800 T 
36 29.5 250 0.6 250 0 0 2 800 S 
37 65.8 200 0.55 300 0 1 2 200 S 
38 67.3 200 0.55 300 0 1 3 200 V 
39 64.8 200 0.55 300 0 1 3 200 T 
40 60.3 200 0.55 300 0 0 3 200 T 
41 55.6 200 0.55 300 0 1 2 400 T 
42 40.1 200 0.55 300 0 0 2 400 T 
43 43.5 200 0.55 300 0 0 3 400 T 
44 42.1 200 0.55 300 0 1 3 600 T 
45 35.2 200 0.55 300 0 0 2 600 T 
46 30.2 200 0.55 300 0 1 2 800 S 
47 32.5 200 0.55 300 0 1 3 800 S 
48 64.7 400 0.9 0 100 1 3 200 V 
49 59.3 400 0.9 0 100 1 2 200 T 
50 52.7 400 0.9 0 100 0 2 200 T 
51 65.5 400 0.9 0 100 0 3 200 T 
52 45.3 400 0.9 0 100 1 2 400 T 
53 27.2 400 0.9 0 100 0 2 400 T 
54 49.1 400 0.9 0 100 0 3 400 T 
55 25.2 400 0.9 0 100 1 2 600 T 
56 23.8 400 0.9 0 100 0 2 600 S 
57 25.4 400 0.9 0 100 0 3 600 S 
58 18.3 400 0.9 0 100 1 2 800 V 
59 15.5 400 0.9 0 100 0 2 800 T 
60 50.7 350 1.1 0 150 1 2 200 T 
61 55.8 350 1.1 0 150 1 3 200 T 
62 35.1 350 1.1 0 150 1 2 200 T 
63 58.5 350 1.1 0 150 1 3 200 T 
64 25 350 1.1 0 150 1 2 400 T 
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65 23.6 350 1.1 0 150 0 2 400 S 
66 28.4 350 1.1 0 150 0 3 400 S 
67 25.8 350 1.1 0 150 1 3 600 V 
68 20.5 350 1.1 0 150 0 2 600 T 
69 16.2 350 1.1 0 150 1 2 800 T 
70 13.1 350 1.1 0 150 0 2 800 T 
71 64.8 250 0.9 150 100 1 2 200 T 
72 69 250 0.9 150 100 1 2 200 T 
73 75.2 250 0.9 150 100 1 3 200 T 
74 67.6 250 0.9 150 100 0 2 200 T 
75 63.1 250 0.9 150 100 1 2 400 S 
76 60.7 250 0.9 150 100 0 2 400 S 
77 65.6 250 0.9 150 100 0 3 400 V 
78 59.2 250 0.9 150 100 1 3 600 T 
79 53.5 250 0.9 150 100 0 2 600 T 
80 55.1 250 0.9 150 100 0 3 600 T 
81 46.1 250 0.9 150 100 1 2 800 T 
82 30.2 250 0.9 150 100 0 2 800 T 
83 46.4 500 0.8 0 0 0 3 800 T 
84 31.3 250 0.6 250 0 0 3 800 T 
85 31.4 200 0.55 300 0 0 3 800 S 
86 16.6 400 0.9 0 100 0 3 800 S 
87 13.8 350 1.1 0 150 0 3 800 V 
88 32.5 250 0.9 150 100 0 3 800 T 
89 67.8 500 0.8 0 0 0 2 200 T 
90 62.6 500 0.8 0 0 0 3 600 T 
91 60.9 500 0.8 0 0 1 3 800 T 
92 32.6 300 0.7 200 0 0 3 800 T 
93 64.1 300 0.7 200 0 1 2 600 T 
94 71.6 300 0.7 200 0 1 3 200 S 
95 68.8 250 0.6 250 0 1 3 200 S 
96 58.5 250 0.6 250 0 1 2 400 V 
97 39.7 250 0.6 250 0 0 3 600 T 
98 65.6 200 0.55 300 0 0 2 200 T 
99 48.5 200 0.55 300 0 1 3 400 T 

100 29.3 200 0.55 300 0 0 2 800 T 
101 68.1 400 0.9 0 100 1 2 200 T 
102 69.4 400 0.9 0 100 1 3 200 T 
103 46.6 400 0.9 0 100 1 3 600 T 
104 29.5 350 1.1 0 150 0 2 200 S 
105 26.5 350 1.1 0 150 1 3 400 S 
106 21.9 350 1.1 0 150 0 3 600 V 
107 67.4 250 0.9 150 100 1 3 200 T 
108 64.5 250 0.9 150 100 1 2 600 T 
109 68.4 250 0.9 150 100 1 3 400 T 
110 58.3 400 0.9 0 100 1 3 400 T 
111 38.4 250 0.6 250 0 1 3 800 T 
112 62.6 200 0.55 300 0 1 2 200 T 
113 39.8 300 0.7 200 0 1 3 800 T 
114 66.2 500 0.8 0 0 1 2 200 S 
115 66 300 0.7 200 0 1 2 200 S 
116 55.5 250 0.6 250 0 0 2 400 V 
117 37.5 200 0.55 300 0 0 3 600 T 
118 19.5 400 0.9 0 100 1 3 800 T 
119 16.9 350 1.1 0 150 1 3 800 T 
120 69.8 250 0.9 150 100 0 3 200 T 
121 44.7 250 0.9 150 100 1 3 800 T 
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122 65.4 500 0.8 0 0 1 3 400 T 
123 40 200 0.55 300 0 1 2 600 T 
124 61.1 300 0.7 200 0 1 2 200 S 
125 22.1 350 1.1 0 150 1 2 600 S 
126 44.8 350 1.1 0 150 0 3 200 V 

T = training, S = testing, V = validation 
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	 Wang et al. (2015), used ANN and fuzzy inference system model (FIS) for predicting the free expansion strain of Self-stressing concrete (SSC) under wet curing conditions. To construct these models, 730 experimental data were gathered. The data used ...
	 Ghafoori et al. (2013), studied several linear and nonlinear regressions and neural network models to estimate rapid chloride permeability of self -consolidating concrete. These prediction models were developed for different number of independent va...
	 Parhi and Dash (2011), analyzed the dynamic behavior of a beam structure containing multiple transverse cracks using neural network. Results from neural network have been presented for comparison with the output from theoretical, finite-element, and...
	 Rahman et al. (2010), outlined the application of the multi-layer perceptron ANN, ordinary kriging (OK), and inverse distance weighting (IDW) models in the estimation of local scour depth around bridge piers. It was shown that the artificial neural ...
	2. Experimental work
	2.1 Materials Characteristics
	2.1.1 Cement



	In the present study the cement used was local Portland-lime stone cement (PLC) available in the markets, Karasta CEM II/A-L 42.5 R. It complies with European Standard EN 197-1 (2000) and Iraqi industrial license No: 3868. The physical and chemical ch...
	2.1.2 Aggregates

	As fine aggregate natural sand was used in this work. The grading, physical and chemical properties of the sand used are shown in Table 2. It has a fineness modulus of 2.5 and within the grading zone 3. A crushed gravel with a maximum size of 20 mm wa...
	Table 1. Chemical and physical characteristics of Portland limestone cement (PLC) used a
	Table 2. Grading and some physical and chemical properties of sand used
	Table 3. Grading and some physical and chemical properties of gravel used
	2.1.3 Chemical Admixture
	A high performance superplasticizer based on modified polycarboxylic ether which is commercially famous (GLENIUM 54) was used, for the liquefaction of the
	concrete mixtures to achieve the desired workability, throughout this study as a "high range water reducing admixture" (HRWRA). It complies with ASTM C494 (2005).
	Table 4. Chemical analysis and physical properties of the fly ash and cement kiln dust a
	Table 5. Characteristics of polypropylene fibres used*
	2.1.4 Fly Ash

	Fly ash used in present study was obtained from Turkey. The physical and chemical properties of fly ash are tabulated in Table 4. It can be seen from Table 4 that the fly ash used is considered as class F fly ash as per ASTM C618 standard (2005).
	2.1.5 Cement Kiln Dust

	Cement kiln dust (CKD) is a by-product of cement production. Table 4 indicates the chemical composition and Fig. 1 shows the scanning electron microscopy (SEM) of the cement kiln dust used in this research. SEM is a type of electron microscope that pr...
	2.1.6 Polypropylene Fibre

	Monofilament polypropylene fibres were used in this work. It was provided from market and it is commercially known "RHEOFIBRE". Table 5 shows its characteristics.
	2.2 Specimens Production and Heating and Cooling Procedure

	Fourteen different SCC mixes were investigated in this study seven without and seven with polypropylene fibre. Table 6 shows the mixture proportions of these mixes. After appropriate mixing procedure that recommended by Long et al. (2014), Thanh and L...
	Fig. 1. SEM for CKD used
	undisturbed for 24 hr. in laboratory circumstances. After 24 hr., specimens were removed from the moulds and placed in curing tank until 28 day then the specimens were placed in lab conditions until the age of 91 day. At the age of 91 day, specimens w...
	Table 6. Mix proportions of the concrete mixes
	addition to room temperature four temperature degrees were investigated (200 C, 400 C, 600 C and 800 C). After reaching the target temperature, the specimens were remained at this temperature for two hours as shown in Fig. 2. To ensure that the specim...
	Fig. 2. Heating cycles imposed
	Fig. 3. Measuring the specimen temperature by using ELE thermometer
	3. Construction the prediction model

	There are many applications that support the adoption of neural networks such as MATLAB, SPSS, Pythia and NeuroSolutions. In this study Neuframe Version 4 software was used to build the model because Neuframe is the leading neural networks simulation ...
	Fig. 4. Typical objects of NEUFRAME 4 software
	3.1 Model Inputs and Outputs

	The first step is to identify the input data and the output data and classified them whether it is quantity data or quality data. In this study seven independent variables were considered as input layer and one dependent variable which represents the ...
	Table 7. Description of models factors
	Table 8. Effect of data division on performance of ANN model
	Table 9. Effect of distribution method on the performance of ANN
	3.2 Pre-processing and Data Partition

	For effective utilize from artificial neural system it is very important to split the information into three groups: training group where the learning is done on this set of data and it is used to determine the weights. The second group is the testing...
	data tools1 as shown in Fig. 4 and depend on the lowest testing error which is 13.75% and the maximum correlation coefficient (R) which is 95.15% the top data partition is 70% for training group, 20% for testing group and 10% for validation group as t...
	3.3 Scaling of Data

	Before the data are supplied to the network it is significant to preprocess the data in an appropriate formula and this done as soon as the existing data had been allocated into their subsets (i.e. training, testing and validation). This operation is ...
	Scaled value (Zn) Tanh = (2 * (Z - Zmin) / (Zmax - Zmin) -1  (1)
	Scaled value (Zn) Sigmoid = (Z - Zmin) / (Zmax - Zmin)    (2)
	Where Z is the original value.
	3.4 Model Performance
	3.4.1 Model Architecture


	There are two types of learning; these are supervised and unsupervised learning. The supervised learning network is used in current study, because it has the input data with the related needed output data so the net can teach to estimate the connectio...
	3.4.2 Activation (transfer) Function

	In neural networks, the transfer function (may be linear or nonlinear) is the function which designates the output behaviour of a node. There are three main kinds of activation functions can be utilized to convert input signal into output and these ar...
	3.4.3 Training (learning) of the Network

	The purpose of training the network is to aid it to generalize future data and produce the most perfect answers. By adjusting the connection weights the system will learn new knowledge where changing the mass of every connection will make the net offe...
	From these tables it is clearly that the best momentum term and learning rate were 0.8 and 0.2 respectively, since they provided the best performance of the network where the testing error was the lowest (13.49) and the correlation coefficient (R) was...
	Table 10. Effect of hidden layer nodes number on the performance of ANN
	Table 11. Impact of transfer function on the performance of ANN
	Table 12. Impact of momentum term on the performance of ANN
	Table 13. Impact of learning rate on the performance of ANN
	Training of the network was ended when either the average error value fell below a pre-limited value (in this study 5% was selected) or the number of training epochs overstepped a pre-defined threshold (in this study 10000 epochs was selected). As soo...
	3.5 ANN Model Equation

	The connection weights amongst the input stratum nodes and the hidden stratum nodes in addition to the connection weights between the hidden stratum nodes and the output stratum node which were gained by the optimum network can be used to translate th...
	𝑓=,1-1+,𝑒𝑥𝑝-−𝑥..                              (3)
	Where x is the weighted sum of the inputs from the previous layer to a specific node.
	𝑌=,1-1+ ,𝑒-(1.857 + 4.478,tanh-,,𝑥-1... − 4.771 𝑡𝑎𝑛ℎ (,𝑥-2.)..           (4)
	Where:
	X1= ,,(𝛳-8.)+ ,(𝑤-8−1.∗,𝑉-1.)+ ,(𝑤-8−2.∗,𝑉-2.)+ ,(𝑤-8−3.∗,𝑉-3.)+ ,(𝑤-8−4.∗,𝑉-4.)+ ,(𝑤-8−5.∗,𝑉-5.)+ ,(𝑤-8−6.∗,𝑉-6.)+ ,(𝑤-8−7.∗,𝑉-7.) .                                (5)
	X2= ,,(𝛳-9.)+ ,(𝑤-9−1.∗,𝑉-1.)+ ,(𝑤-9−2.∗,𝑉-2.)+ ,(𝑤-9−3.∗,𝑉-3.)+ ,(𝑤-9−4.∗,𝑉-4.)+ ,(𝑤-9−5.∗,𝑉-5.)+ ,(𝑤-9−6.∗,𝑉-6.)+ ,(𝑤-9−7.∗,𝑉-7.) .                                (6)
	So:
	X1= [ -1.046 + 0.325*V1 – 0.083*V2 – 2.395*V3 + 1.733*V4 – 0.141*V5 – 0.379*V6 + 0.316*V7 ]               (7)
	X2= [ -0.161 + 0.813*V1 + 2.161*V2 + 0.425*V3 - 0.472*V4 + 0.246*V5 -0.043*V6 – 1.665*V7 ]                (8)
	Here, it is necessary to take attention that all input variables (V1, V2, V3, V4, V5, V6, and V7) in Equation (5) and Equation (6) had been transformed to standard values ranging between (0 and 1) as it is demanded by the Neuframe v.4 software. So in ...
	𝑌=,62-1+ ,𝑒-(1.857 + 4.478,tanh-,,𝑥-1... − 4.771 𝑡𝑎𝑛ℎ (,𝑥-2.)..+13      (9)
	Where:
	Y= estimated compressive strength (MPa)
	X1= {–0.4327 + 0.0011*V1 – 0.151*V2 – 0.008*V3 + 0.0115*V4 – 0.141*V5 – 0.379*V6 + 0.0004*V7}    (10)
	X2= {–2.72 + 0.0027*V1 + 3.929*V2 + 0.0014*V3 – 0.0031*V4 + 0.246*V5 – 0.043*V6 – 0.0022*V7}    (11)
	For better clarifying the employment of the prediction equation, the following numerical example can be used:
	Data given: (V1 = 350, V2 = 1.1, V3 = 0, V4 = 150, V5 = 1, V6 = 3, and V7 = 800). The predicted compressive strength value using Equation (9) will be 19.5 MPa. This predicted value show good comparison with actual value of measured compressive strengt...
	Fig. 5. Structure of the optimal ANN
	Table 14. Weights and threshold (ϴ) of the optimal ANN
	Table 15. Verification of the model
	4. Model verification

	There are many important statistical measures that may be applied to assess the performance and accuracy of the built model (Salah et al., 2019; Nidal et al., 2020; Ibraheem et al., 2020)
	1. Mean percentage error (MPE): give an idea about the agreement between predicted and real values.
	𝑀𝑃𝐸=,∑,,𝐴−𝐸-𝐴../ 𝑛.∗100 %                 (12)
	2. Root mean squared error (RMSE)
	𝑅𝑀𝑆𝐸=,,,∑(𝐸−𝐴)-2.-𝑛..                            (13)
	3. Mean absolute percentage error (MAPE)
	𝑀𝐴𝑃𝐸=,∑,,,𝐴−𝐸.-𝐴..∗100%. / 𝑛               (14)
	4. Average accuracy percentage (AA%): give the accuracy degree of the model.
	𝐴𝐴%=100−𝑀𝐴𝑃𝐸                         (15)
	5. The coefficient of correlation (R)
	6. The coefficient of determination (R2)
	Where: A is the actual value, E is the estimated value and n is number of cases for validation.
	The last two coefficients (R and R2) were used to measure how well the model outputs match the real value (target) while RMSE and MAPE were used to measure the average error of the model. It can be seen from Table 15 and Fig. 6 that the estimated comp...
	According to the statistical measures that tabulated in Table 16 it can be seen that the mean absolute percentage error (MAPE) and average accuracy percentage (AA%) are found to be 12.82% and 87.18% respectively. So, it can be concluded that the built...
	Table 16. Statistical measures for model
	5. Sensitivity analysis of the ANN model inputs

	The ANN were used to develop the predictive model by feeding the input variables to the network and an output was estimated but there is an additional question that important to know. Which of the input variables have the most important influence on t...
	There are several techniques can be utilized to find the relative importance index of the input variables such as connection weights method, most squares method and Garson Algorithm method. In the present study Garson Algorithm method was used. It is ...
	1. Prepare the final weights of the connections (amongst the input neurons and the hidden neurons) and (amongst the hidden neurons and the output neuron) from Table 14.
	2. By multiplying the absolute value of the hidden-output linking weight by the absolute value of the hidden-input linking weight of all input variables find the product Pij for every hidden neuron, the result shown in below.
	Fig. 6. Correlation between the actual and predicted compressive strength
	3. Find Qij for each hidden node (by dividing Pij) for each variable by summation of Pij for all variables. The results as shown below:
	4. Find Sj for each input node (by summation of the Qij) for the same input node). For example S1 = 0.028 + 0.075 = 0.103. The results as shown below:
	5. To get the relative importance index% (R.I.I) divided Sj for each input variable by the summation of all the input variables (here is equal to 1). The result will be as below:
	These results shown in Fig. 7 indicate that the variables (V3, V2, V4 and V7) have the most important influence on the predicted model with a relative importance index (24.6%, 20.6%, 19.4% and 18%) respectively.
	Fig. 7. Relative importance index % of the input variables
	6. Conclusions

	This study experimentally determined the residual compressive strength of sustainable self-consolidating concrete under elevated temperature. The experimental data are modelled through neural networks by Neuframe v.4 software and the following conclus...
	 The optimum ANN is selected with 5.03% and 13.49% training and testing errors respectively and 98.72% correlation.
	 The best data division is found to be 70% for training set, 20% for testing set and 10% for validation with striped data division. Back propagation algorithm is used in the learning process. Sigmoid transfer function is used in both hidden and outpu...
	 The built model from ANN has a very good performance in compressive strength prediction as it has mean absolute percentage error (MAPE) and average accuracy percentage (AA%) of 12.82% and 87.18% respectively.
	 The sensitivity analysis by using Garson Algorithm indicates that fly ash content has the highest relative importance index% and it was 24.6%.
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