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Abstract—recently, researchers have devoted 
prominent machine learning-based anti-phishing models to 
survive a supreme cyber-security versus phishing evolution on 
the cyberspace. Yet, such models remain incompetent to detect 
new phish in a real-time application. In this concern, this paper 
advocates an empirical analysis with the recently published 
works via a chronological validation. Chronological validation 
achieved by testing the works on three benchmarking data sets 
to appraise the causality between their detection outcomes and 
their limitations. Throughout chronological validation, the 
tested works have fallen short at detecting new phish web pages 
with an accessible detection accuracy. High to moderate faults 
and misclassifications are resulted as implications for their 
limitations and fixed real-time settings. Accordingly, this paper 
infers that by elevating the tested models in terms of using new 
and hybrid features, robust subset of features, and actively 
learned classifiers; an adaptive anti-phishing model with 
adjustable settings will be resilient against the up-to-date and 
scalable web flows. With such inferences, this paper highlights 
what future trends to develop along with depicting a taxonomy 
of current status and open problems as a guide to the 
researchers for their future achievements.   

 
Keywords: phish web page; big data; hybrid machine learning 
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I.  INTRODUCTION  

Motivating by the more illegitimate gains, phishers 
targeting users’ credentials and industries reputation on the 
cyberspace. They deploy social engineering technology to 
impersonate trustworthy websites with spoofed links for 
users misleading. Victim users catch the bait, submit their 
own credentials via spoofed links, and then phishers acquire 
their credentials for theft and illegal profits [1 and 2]. Day 
after day, the swift increasing and rapid advancement of 
phishing activities threaten cyber-security and economy [2]. 
To mitigate them, many efforts have been made by 
researchers in academia and industry to achieve effective 
anti-phishing schemes [1-4]. Among them are machine 
learning-based phishing classification models that adopt 
client side filtering with feature vectors and feature-base 
classifiers (FBCs) to inspect phish websites and warn users 

online [1, 4]. Even though, they assert accurate phishing 
classification with least faults among their competitors, they 
vary in their outcomes and performance against newly 
emerged phishes (new phishes) [5-8]. This is attributed to 
their unideal classification of on the training data sets for the 
testing task [5-8].  Thus, this paper examines the topmost 
machine learning-based anti-phishing models throughout 
experiments. Towards obtaining a proficient anti-phishing 
model, this paper appraises the experimental findings 
critically and infers what facets need to focus in the future.  

To point out the aforesaid, the remaining of this paper is 
organized as follows: Section II introduces the preliminaries 
of machine learning algorithms and a background of the 
related works. Section III presents the experimental setup, 
evaluation conditions, and the conducted experiments with 
the results. Section IV discusses the resulted findings, 
reveals what limitations to boost up. In Section V, 
conclusions and remarks are provided to contribute the 
future work.  

II. BACKGROUND 

A. Machine Learning Classifiers 

In the literature, many typical machine learning 
algorithms were applied in the anti-phishing domain, as they 
depicted in Table I of Appendix briefly. Furthermore, they 
were incorporated either in a single feature-base classifier 
(FBC) or in an ensemble feature-base classifier (EFBC) [6-
8]. FBC maps the input feature vector to the output classes by 
attributing the input feature vector V = (v1… vn) and inducts 
its relevance to either phish or not phish classes with Y = f(V, 
γ). All input feature vectors that extracted from the m-
dimensional training dataset (V1, V2,…, Vm) are induced in the 
training phase to classify the incoming instance Vnew in the 
testing phase into either phish or legitimate label [9-11]. 
Whereas, EFBC integrates several FBCs into one assembly 
such that each constituent FBC has its own features set and 
induction function that might differ from those of other 
constituents. Moreover, each constituent FBC fetches its own 
batch of data from the training data set for learning [12, 13]. 
EFBC makes its final decision for phishing classification by 
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averaging the predictions of its ensemble. Therefore, EFBC 
outperform FBC to classify phishing in practice [12, 13]. 
Although, the existing anti-phishing models utilize FBCs and 
EFBCs to tackle phish attacks; they still vary in their 
performance due to their divergence in induction functions 
[4, 12, 13].  

B. Prominent Phishing Classification Models  

Among the most salient phishing detection models are 
those assisted by machine learning classifiers [2-4]. For 
instance, some researchers at Carnegie Mellon upgraded their 
former version of an anti-phishing scheme (CANTINA) to a 
hybrid feature-based scheme CANTINA+. The latter version 
was developed as an ensemble feature-base classifier 
including Naïve Bayes (NB), Support Vector Machine 
(SVM), and Logic Regression (LR) etc. Around 15 textual 
and structural features were derived from web page URL and 
web page contents as well as some online features were 
devoted to accurately classify phish exploits (92% True 
Positive Rate and 1.4% False Positive Rate) on redirecting 
web page, login form handler, and web pages hosting in 
English [14]. However, CANTINA+ encountered a trade-off 
in leveraging up-to date phish webpages due to the use of 
limited feature space to English textual features as well as re-
learning on defaults settings.  

Later, the authors in [15-16] leveraged 17 features to 
examine login form phish webpages via a developed 
classification model by using Support Vector Machine 
(SVM) classifier. Their model achieved a rationale 
performance with (99.6%) of True Positive Rate and (0.44%) 
of False Positive Rate. However, it was computationally 
intensive and time-consuming due to the use of external 
resources and less adaptive to present training data sets.  

On the other hand, the authors in [17] identified phishing 
on (2,878) Chinese e-business websites via phishing Chinese 
website detection model. They selected 15 language 
independent features exclusively to identify Chinese 
websites. Four machine learning algorithms including 
Sequential Minimum Optimization (SMO), Logic Regression 
(LR), Naïve Bayes (NB), and Random Forests (RF) were 
applied individually in an FBC. Their model performed 
(95.83%) accuracy rate on Chinese e-business websites 
solely. Thus, it was not reliable for generic phish websites 
classification due to its exclusive features and data sets. 
Oppositely, a phishing classification model was devoted in 
[18] to catch phishing in e-commerce, login form, and 
English and French webpages by using 17 ordinary various 
features and Neural Network (NN) classifier. Even though, 
achievements yielded up to 94.07% accuracy rates, high 
misclassification rates were reported. The model scarcely 
detected novel phish websites due to its inactive learning on 
imbalanced training data set.  

Then, the researchers of [19-20] learnt 212 URL features 
on an EFBC with multiple machine learning-based 
classifiers Support Vector Machine (SVM), Random Forest 
(RF), C4.5, and JRip algorithms. Their EFBC achieved 

(94.91%) and (1.44%) as detection accuracy and faults 
resectively. In spite of using big training and testing data sets, 
the used data set was imbalanced in classes and it included e-
Commerce websites exclusively. 

Then,  this phishing detection model has been examined 
on present data set that collected during 2015 [21]. As 
presented in [21] the same model has performed effectively 
on large and balanced in class distribution data set of 
(96,018) webpages that aggregated during 2015. However, 
new experiments have revealed varied outcomes and notable 
misclassification rates versus new phishes. Furthermore, 
long execution time and more complex computations have 
been encountered due to the frequent data query from 
external resources like GoogleTrends and YahooClues 
during real-time practice.  

Overall, the aforementioned achievements have lacked to 
attain holistic induction of all phishes (prevalent and new 
phishes) without deteriorating long-term performed phishing 
classification model in real-time application. So far, such 
limitation enabled phishers to intrude existing anti-phishing 
models with more advanced phish web pages for more 
damages to both users and enterprises.  

III.  EMPIRICAL STUDY 

In this section, a chronological test of the aforesaid 
phishing classification models is presented.  

A. Experimental Setup 

As presented in Table I, three data sets retrieved from 
three recently published works are used chronologically. As 
presented in Table I, they vary in terms of size, class 
distribution, phish samples, legitimate samples, data sources, 
web page functionalities and hosting languages, aggregation 
time, and data sources. Such variety attains the objective on 
which this analysis is conducted.   

TABLE I. DATA SETS WITH THEIR MERITS [1, 17, 19-21] 

Merits Data Set 1 Data Set 2 Data Set 3 
Size 52 2878 96,018 

Phishes 70% 49% 50% 
Legitimates 30% 51% 50% 

Data Source PhishTank 
/Alexa 

Chinese  
E-Business  

PhishTank 
/DMOZ 

Collection Time 25-31/7/2010 2014 2012-2015 

Web page  
Functionality 

Login Forms 
e-Business 

e-Business e-Business/ 
Homepage 
Login Forms  

Hosting Language English/ 
French/ 
German 

Chinese English/French/ 
German/Italian/ 
Spanish etc. 

 
Accordingly, typical evaluation criteria such as True 

Positive Rate (TPR), False Positive Rate (FPR), and False 
Negative Rate (FNR); are used for performance evaluation as 
they depicted in Table II.  
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TABLE II. EVALUATION CRITERIA [1, 5, 7, 8] 

Criterion Description 
TPR The rate of correctly classified phishing samples: 

ேು→ು

(ேು→ುାேು→ಽ)
                    (1) 

FPR The rate of wrongly classified legitimate samples as 
phishing:  

ேಽ→ು

(ேಽ→ಽାேಽ→ು)
                     (2) 

FNR The rate of wrongly labeled phishing samples as 
legitimates: 

ேು→ಽ

(ேು→ುାேು→ಽ)
                     (3)  

Here NP→P, NL→P, NP→L, NL→L denote the number of correctly labeled 
phishing instances, the number of wrongly labeled legitimate instances, 
the number of phishing instances that are incorrectly recognized as 
legitimate, and the number of legitimate instances that are identified 
correctly as legitimate respectively 

 

B. Results and Discussion 

Empirically, the detection performance of the tested 
models have varied across the three data sets as plotted in Fig 
1. That, in turn, demonstrates how the tested models could 
learn on small and/or large, imbalanced and/or balanced data 
sets via training and testing tasks. Also, the empirical analysis 
addresses the issue of filtering typical and new phish web 
pages in the testing task. More precisely, Data Set 1 [3] was 
imbalanced in phish/not phish class distribution despite of its 
divergence in web page functionalities as presented in Table 
I. Data Set 2 was bigger in size than Data Set 1 and it 
involved Chinese e-Business websites solely [17]. It was 
utilized to classify Chinese login forms, redirecting web 
pages, and e-Business homepages. Whereas, Data Set 3 was 
the biggest in size and the most balanced in class distribution 
among its competitors. In addition, it covered up different 
web page functionalities and hosting languages.  

As presented in Fig. 1(a), learning the past and present 
data sets by the tested models is still questionable to 
accurately detect a phish (w) emerged at time (T+Ω) on a data 
set (W) fetched at time (T). Yet, almost tested classification 
models need a period of time (Ω) to learn (W) and to build 
phishing classification settings for the fetched web page on 
the incoming data set. Escalating accuracies of classification 
in Figure 1(a) imply that the emerged phish (w) might be 
short-living and it taken down by its phisher during the period 
of time (Ω).  Furthermore, the emerging time (Ω) could be a 
long time horizon that misled the detection of the tested 
models against new phishes. As such, the results plotted in 
Figure 1(a), point out that (Ω) was a long time spent to re-
learn the tested classification models on the incoming data 
flow. This is due to the divergent aggregating time of all the 
examined data sets as depicted in Table I. That, in turn, makes 
the sense to assess the FBCs and EFBCs of the tested models 
in the term of active learning crosswise scalable web flows. 

Consequently, Fig. 1(b) shows a variation of FPRs among 
the tested models from high to low and mild rates across all 
benchmarking datasets. This is attributed to the Goodness, 
Stability, Similarity and Phishness Indication Ratio (PIR) of 
the chosen features [25-28]. Furthermore, almost tested 

models were devoted without using a robust subset of 
features that resulted in a features weighting mechanism 
or feature subset selecting strategy. 
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(a) Percentage of True Positive Rate 
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(b) Percentage of False Positive Rate 
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(c) Percentage of False Negative Rate 

Fig. 1. Performance outcomes of chronological validation 

 
Excepting, the tested models that adopted in [17 and 18] 

applied selection methods but they were limited to leverage 
maximum relevance of features to phishing class and 
minimum redundancy of features in the learning data sets as 
selection criteria [26 and 27]. Indeed, a feature subset of both 
maximum relevant and minimum redundant features will 
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afford potential effects that heighten performance and 
diminish errors despite of what features are included in its 
compactness [28]. In this concern, the tested model that 
adopted by [18] achieves high levels of TPR with the lowest 
level of  FPR across all data sets as presented in Fig. 1 (a) and 
Fig. 1(b). This is because of selecting the most informative 
features for detection by using three features ranking 
strategies such as Information Gain (IG), Correlation-Based 
Feature Selection (CFS) and Chi-Squared (χ2) which depend 
on features interdependencies as a selection criterion.  

In Fig. 1(c) the tested models perform very high to 
moderate and then mild FNRs across all data sets. This is 
attributed to their variations in the amount and the type of 
features that they used for detection. Almost tested models 
applied few and conventional features rather than many and 
new phishing features; i.e. the up-to-minute features that 
exploited by phishers in their fake web pages. Indeed, fewer 
features used to train the data sets lead up to fewer phish 
patterns to be characterized. For example, the tested model 
developed by [17] detected Chinese e-business websites with 
the aid of 12 features that explored exclusively for such type 
of phishes. Thus, it reports the highest FNR across the scaling 
data sets via the chronological test as plotted in Fig.1(c). That 
implies it misclassifies the other phish patterns.  

On the other hand, the use of conventional features by the 
tested models led to partial characterization of phish web 
pages. As can be seen in Fig. 1(c), all tested models achieved 
misclassification costs against some phishes cross all the 
testing data sets. This is due to their inabilities to inspect 
novel phish web pages as the data set growing in the size and 
advancing in the types of phish web pages. That, in turn, 
justifies why phishers still mislead phishing induction criteria 
of the applied classification models, and bypass the existing 
anti-phishing schemes. Then, phishers cause potential 
damages to the computer systems while they gain more 
profits day by day. Overall, as the training data grows in size, 
evolving in phish/legitimate class distribution, and aging in 
aggregation; the tested models fall short to classify phishing 
effectively, see Table II in Appendix. 

IV. INFERENCES 

Based on empirical study, this paper infers that all the 
tested models are still insufficient to induce an effective 
phishing classification in a chronological test. Thus, this 
section restates what factors are needed to promote an 
effective classification as taxonomy in Fig. 2 highlights. 
Factors could be as follows:   
 New features along with the conventional ones should be 

utilized in the tested anti-phishing models. Byproduct, 
deploying the new features that crafted by phishers in 
phishing induction will reveal a misclassification cost-
effective anti-phishing model. In addition, the variety and 
big amount of features will promote a holistic 
characterization of phish exploitations, i.e. phishing 
induction on all kinds of phish web pages [22-24].  

 Selecting the robust subset of informative features 
according to their interdependencies will highly constrain 
the power to feature values’ heterogeneity, features’ 
relevance and redundancy to the trained data sets as well 
as inducing phishness on the testing web page flows [25-
28].  

 Training Big Data. Learning the anti-phishing models on 
big data sets will mitigate the problems of class imbalance 
that may cause misleading induction on the incoming web 
flows in the real-time practice [29]. If the classification 
model applies fixed induction settings that might classify 
phishes mistakenly as legitimates. Further, it uses classic 
features that are in common between phishes and other 
attacks like ham, and spam [26, 28]. Then, a sub-optimal 
real-time phishing detection will be achieved. Thus, fixed 
and inadequate induction settings will lead to inaccurate 
classification of phish web pages among other types of 
attacks and then non-zero learning faults will be the 
byproduct. 

 

 
Fig. 2. Taxonomy of phishing classification models 

 
 Hybrid machine learning algorithm. It refers to the 

integration of different decision making criteria. As such 
each criterion exploits a different set of induction 
parameters or settings that work in a different manner. 
Hybrid algorithm is significant to better classify phishes 
on time with zero-false classification rates [30]. This is 
attributed to the hybridity of machine learning algorithms 
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delegating their merits without compromising their 
demerits that might incur impressions to the induction of 
phishing.  

 Actively learned classifiers can instate the expected future 
errors by selecting the batch of instances that expected to 
decrease the future error [30]. As such, minimal detection 
faults and misclassifications will be obtained due to the 
frequent alteration to the induction settings. However, 
almost tested phishing classification models applied 
inactive classifiers that train batches of data 
chronologically. Therefore, active learned FBCs or 
EFBCs are required to re-train data sets that reveal the 
best and up-to-date induction settings.  

 Adaptive model is that reconfigures its induction settings 
dynamically [11, 30]. Adaptable induction confirmed by 
inspecting new and unknown patterns of phishing during 
the real-time experience [30]. Throughout the empirical 
study, the tested models achieved mild to moderate 
misclassifications because the induction biases were still 
default and unalterable during the testing phase. They 
leverage the same features and the same functions of their 
classifiers frequently across the three data sets. 
Byproduct, they are not adaptive to new phishes.  

V. CONCLUSIONS 
This paper studies the prominent machine learning-based 

phishing classification models via a chronological test across 
three different data sets. Findings attributed the variations in 
performance of the tested models to their overlooking of 
some induction factors such as novelty and amount of 
features, robustness of the selective features subset, big data 
leveraging, active learning of classifiers, and hybridity of 
applied machine learning algorithm as well as adaptive 
modelling. Altogether deficiency could assert 
misclassification-costly and ineffective phishing 
classification models in real-time application. From the 
insights of the empirical stud, this paper restates how such 
factors could be boosted up for future developments. Then, 
substantial outcomes of phish web page detection will be 
attained versus the vast data of the Web. It is hoped that the 
recommended directions of research will serve as a 
navigating taxonomy to the reseachers in the future.  
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Appendix 
TABLE I. EXAMPLES OF MACHINE LEARNING ALGORITHMS USED IN ANTI-PHISHING DOMAIN[5, 7-9, 14-18, 27] 

Algorithm Description 

Decision Tree (DT)  
 

“In a rooted tree, instances of unknown class are ordered according to their feature values by labeling the nodes with 
features and the edges with feature values. An instance is classified by starting up at the root node, approaching to 
the next nodes, and ending up at a leaf that is labeled with the final decision. Examples: C4.5 and JRip.” 

Naϊve Bayes (NB) 
 

“A probabilistic judgment done conditionally with independent attributes of all instances belonging to a given class: 

𝑃(𝐶|𝑋) = 𝑃(𝐶|𝑥ଵ, … , 𝑥௡) =  
௉(஼)௉(௫భ,…,௫೙|஼)

௉(௫భ,…,௫೙)
                                       (1)                                 

Where X is an instance with a vector of n features(𝑥ଵ, … , 𝑥௡), C is the class label that the classifier seeks for.” 
Support Vector Machine (SVM) 
 

“A separating hyper-plane maximizes the margins between closest points of two classes to estimate the induction 
function: 

 𝑚𝑖𝑛
ଵ

ଶ
𝑤்𝑤 + 𝐶 ∑ 𝜉௜௜                                                                             (2) 

That subjects to: 𝑦௜൫(𝑤் ∙ 𝑥௜) + 𝑏൯ ≥ 1 − 𝜉௜, 𝜉 ≥ 0, 𝑖 = 1, 2, … , 𝑚    (3) 

𝑚𝑎𝑥 ∑ 𝛼௜
௠
௜ୀଵ −

ଵ

ଶ
∑ 𝑦௜𝑦௝𝛼௜𝛼௝𝐾൫𝑥௜ , 𝑥௝൯௠

௜,௝ୀଵ                                              (4) 

Which is Subject to :0 ≤ 𝛼௜ ≤ 𝐶, 𝑖 = 1, 2, … , 𝑚 𝑎𝑛𝑑 ∑ 𝛼௜𝑦௜ = 0௜ୀଵ    (5)                                    
Where: 𝑥௜ is m-dimensional data vector 𝑥௜ ∈ 𝑅௠ with samples belong to either one of two classes labeled as 𝑦 ∈
{−1, +1}that it is separated by a hyper-plane of (𝑤 ∙ 𝑥) + 𝑏 = 0, 𝛼௜denotes the lagrange multipliers for each vector 
in the training dataset.” 

Logistic Regression (LR) 
 

“Use probabilistic induction that evaluates relationship between a categorical dependent variable and a continuous 
independent variable (s): 

𝜋(𝑥) =
௘(ഁబశഁభೣ)

௘(ഁబశഁభೣ)ାଵ
=  

ଵ

௘ష(ഁబశഁభೣ)ାଵ
,                                                         (8)                                                                                                 

𝑔(𝑥) = 𝑙𝑛
గ(௫)

ଵିగ(௫)
=  𝛽଴ + 𝛽ଵ𝑥,                                                               (9) 

గ(௫)

ଵିగ(௫)
=  𝑒(ఉబାఉభ௫)                                                                                 (10) 

Where: 𝑔(𝑥) is the logistic function of a given predictor X, 𝑙𝑛 and, 𝜋(𝑥) denote natural logarithm and case 
probability, 𝛽଴and 𝛽ଵ denote criterion of X , and 𝛽ଵ𝑥  is the regression coefficient.” 

Random Forests (RF) 
 

“Forest constructed for randomly selected set of instances on training data set. Given n, p and k where n is the 
number of training observations, p is the number of features in the training data set and k is the number of selected 
features such that  𝑘 ≪ 𝑝 . A boot strap sample is selected from n and used to estimate the error of the tree in the 
testing task. At a certain node in the tree, k of features are selected randomly and used as decision to calculate the 
best split in the training data set.”” 

Sequential Minimal 
Optimization (SMO) 

“It solves the optimization problem caused during classification iteratively and analytically:- 

max
ఈ

∑ 𝛼௜ −
ଵ

ଶ
∑ ∑ 𝑦௜𝑦௝𝐾൫𝑥௜ , 𝑥௝൯𝛼௜𝛼௝

௡
௝ୀଵ

௡
௜ୀଵ

௡
௜ୀଵ                                         (11) 

Where0 ≤ 𝛼௜ ≤ 𝐶, for 𝑖 = 1, 2, … , 𝑛 and∑ 𝑦௜𝛼௜ = 0௡
௜ୀଵ . C is the classifier’s hyper-sphere, 𝐾൫𝑥௜ , 𝑥௝൯ refers to the 

kernel function provided by user, and 𝛼௜is the Lagrange multiplier.”” 
Neural Network (NN) 
 

𝑓(𝑥) = 𝑔ൣ∑ 𝑣௜𝑔௜ ൫∑ 𝑤௜௝𝑥௝ + 𝑏௜ + 𝑏଴௝ ൯൧                                                  (12)                                                                                                                            
Where x, 𝑣௜, g, 𝑤௜௝  and 𝑏௜,௢ are the input vector, the weight of output neuron, the activation function, the weight of 
hidden neuron and the bias respectively.” 

TABLE II.   INDUCTION ISSUES OF NOTABLE MACHINE LEARNING-BASED PHISHING CLASSIFCATION MODELS  

                                                         Related Work 
Issues 

[14] [15-16] [17] [18] [19-21] 

Machine Learning Algorithm SVM, LR, DT SVM SMO, LR, RF, NB NN SVM, RF, C4.5, JRip,  

Amount of Features  15 17 15 17 212 
New Features 3 7 Not Not 12 
Features Selection Mechanism Not Not χ2 CFS, IG, χ2 Not 
Train Big Data Not Yes Not Not Yes 
Actively Learned Classifier(s) Not Not Not Not Active 
Adaptive Modelling Not Not Not Not Not 
Hybrid Machine Learning- Based Algorithm Not Not Not Not Not 

 


