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Abstract This paper examines numerically by using the finite difference method the laminar steady

magneto-hydrodynamic natural convection in an inclined T-shaped enclosure filled with different

types of nanofluids. A uniform heat source is embedded on a part of the upper wall of the enclosure.

Both left and right sidewalls of the enclosure leg are maintained at a constant cold temperature,

while the other portions of the enclosure walls are considered adiabatic. A magnetic field is applied

vertically downward on the bottom wall of the enclosure. Based on the numerical results, the effects

of the dominant parameters such as Rayleigh number, Hartmann number, inclination angle, solid

volume fraction, location and length of the heat source and enclosure aspect ratio are examined.

The numerical results are obtained for Hartmann number varying as 0 6 Ha 6 100, inclination

angle varying as 0 6 U 6 90�, Rayleigh numbers varying as 103 6 Ra 6 106, aspect ratio

0.3 6 AR 6 0.9, heat source length 0.2 6 B 6 0.8, heat source location 0.2 6 D 6 0.5 and the solid

volume fractions varying as 0 6 / 6 0.2. Comparison with previously published numerical work is

performed and a good agreement between the results is observed. It is found that the mean Nusselt

number increases with the increase of Rayleigh number, inclination angle, aspect ratio, heat source

location and volume fraction of nanoparticles, while, it decreases when the Hartmann number and

heat source length increase.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

AR aspect ratio

Bo magnitude of the magnetic field (T)
B dimensionless heat source length
bb dimensional heat source length (m)
cp specific heat at constant pressure (J/kg �C)
D dimensionless heat source location
dd dimensional heat source location (m)
g gravitational acceleration (m/s2)

H width of enclosure head (m)
h convection heat transfer coefficient (W/m2 �C)
Ha Hartmann number

k thermal conductivity (W/m �C)
Nu Nusselt number
P dimensionless Pressure
p pressure (N/m2)

Pr Prandtl number
Ra Rayleigh number
T temperature (�C)
U dimensionless velocity component in X-direction
u velocity component in x-direction (m/s)
V dimensionless velocity component in Y-direction

v velocity component in y-direction (m/s)
W width of enclosure leg
X dimensionless coordinate in horizontal direction

x Cartesian coordinate in horizontal direction (m)
Y dimensionless coordinate in Y-direction

y Cartesian coordinate in vertical direction (m)

Greek symbols

a thermal diffusivity (m2/s)
X dimensionless vorticity
w dimensionless stream function

W stream function (m2/s)
b coefficient of thermal expansion (K�1)
h dimensionless temperature

r electrical conductivity (W/m �C)
/ solid volume fraction
m kinematic viscosity of the fluid (m2/s)
l viscosity of the fluid (kg/m s)

q density (kg/m3)
w dimensionless stream function
U enclosure inclination angle

Subscripts
c cold
f fluid particle
h hot

Loc local
nf nano fluid property
m mean or average

p solid particle
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1. Introduction

Nanofluids are dilute liquid suspensions of nanoparticles with

at least one critical dimension smaller than 100 nm. Nowa-
days, more attention is considered to this new type of compos-
ite material because of its enhanced properties and behavior

associated with the heat transfer. The main problems of using
such suspensions are the rapid settling of particles, clogging of
flow channels, and increased pressure drop in the fluid [1,2].
From the other side, the term magneto-hydrodynamics

(MHD) or sometimes called ‘magneto-convection’ summarizes
the variety of processes arising from the dynamic interaction
between convective motions and magnetic fields in an electri-

cally conducting medium. MHD natural convection flows are
encountered in numerous problems covering a wide range of
basic sciences such as astrophysics, fire research, metallurgy

and nuclear engineering [3]. Natural convection inside irregu-
lar geometries has a wide application in engineering and indus-
try. Investigations on the pure and MHD natural convection
in irregular cavities filled with nanofluid have been done by

many researchers. Mahmoodi [4] investigated numerically the
free convection of Cu-water nanofluid inside L-shaped cavities
by using the finite volume method. The results indicated that

for all Rayleigh numbers considered, the average Nusselt num-
ber increased when the aspect ratio of the cavity and the solid
volume fraction increased. Mahmoodi and Hashemi [5] stud-

ied numerically the natural convection of Cu-water nanofluid
inside C-shaped enclosure. They concluded that as the C-
shaped enclosure became narrower, the rate of heat transfer

increased. Also, as the Rayleigh number increased, the rate
of heat transfer increased for a constant aspect ratio. Dehnavi
and Rezvani [6] performed a numerical investigation on the

natural convection of water-Al2O3 nanofluid in a C shaped
cavity. Results indicated that using nanofluid caused an
increase in the Nusselt number. Mansour et al. [7] studied

numerically the natural convection of Cu-water nanofluid
inside T-shaped enclosure. It was found that as the T-shaped
enclosure became narrower, the rate of heat transfer increased.

Ali et al. [8] investigated experimentally the natural convection
inside a vertical circular enclosure heated from below and filled
with water-based Al2O3 nanofluids. Four various concentra-
tions (0.0, 0.21, 0.51 and 0.75 percentage by volume) were

used. General correlations were obtained for the average Nus-
selt numbers versus the modified Rayleigh numbers using the
volume concentration ratio as a parameter for each enclosure.

Kalteh and Hasani [9] used the lattice Boltzmann method to
investigate the free convection in L-shaped enclosure filled
with alumina/water nanofluid. It was found that the rate of

the heat transfer enhancement with volume concentration
was higher for lower aspect ratios. Very recently, Rahman
et al. [10] performed a numerical simulation of unsteady natu-
ral convection in a half-moon shape enclosure with variable

thermal boundary condition and different nanofluids. It was
found that for higher values of solid volume fraction and Ray-
leigh number, the heat transfer characteristics improved. Fur-

ther references can be found in [11–21]. Sourtiji and
Hosseinizadeh [22] studied numerically the flow and heat
transfer characteristics of alumina-water nanofluid on natural

convection inside L-shaped cavities in the presence of an exter-
nal magnetic field. The results showed that the heat transfer
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was augmented by adding the nanoparticles to the base fluid
and increased with solid volume fraction of the nanofluid.
Sheikholeslami et al. [23] investigated the effect of a magnetic

field on natural convection in an inclined half-annulus enclo-
sure filled with Cu–water nanofluid using CVFEM. The effects
of Hartmann number, Rayleigh number, volume fraction of

nanoparticle and inclination angle on the flow and heat trans-
fer characteristics were investigated. The results indicated that
the magnetic field damped the flow and the temperature oscil-

lations by reducing the fluid velocity and Nusselt number.
Sheikholeslami et al. [24] investigated numerically by using
LBM, the magneto-hydrodynamics free convection in a semi-
annulus enclosure filled with Al2O3-water nanofluid. They

found that the enhancement in the heat transfer increased as
the Hartmann number increased but it decreased with the
increase of the Rayleigh number. Al-Zamily [25] investigated

numerically using the finite element methods the effect of mag-
netic field on the natural convection in a semicircular shape
cavity filled with Cu–water nanofluid and heated by heat flux

source at the base wall. He concluded that the strength of con-
vection effect increased as the Rayleigh number increased and
diminished as the Hartmann number increased. Sheik-

holeslami et al. [26] studied numerically the MHD effect on
natural convection in an inclined L-shape enclosure filled with
nanofluid. They concluded that the inclination angle of the
enclosure could be considered as a control parameter for heat

and fluid flow. Also, the Nusselt number was an increasing
function of Rayleigh number and volume fraction of nanopar-
ticles and a decreasing function of Hartmann number and

inclination angle. Very recently, Sheikholeslami et al. [27]
investigated numerically the MHD free convection of Al2O3-
Figure 1 Physical model of the problem.

Table 1 Thermo-physical properties of water and nanoparticles.

Property Pure water Copper (Cu) Si

q (kg m�3) 997.1 8933 10

Cp (J kg
�1 K�1) 4179 385 23

k (W m�1 K�1) 0.613 401 42

b (K�1) 21 � 10�5 1.67 � 10�5 1.

r ((X m)�1) 0.05 5.96 � 107 –
water nanofluid in the semi-annulus enclosure. The results
showed that the Nusselt number had a direct relationship with
buoyancy ratio number, while it had a reverse relationship

with both Hartmann and Lewis numbers. Based on the above
literature review and due to the lack of information about T-
shaped enclosure, the present work investigates for the first

time the magneto-hydrodynamic natural convection in an
inclined T-shaped enclosure filled with different types of
nanofluids.

2. Problem formulation

Fig. 1 depicts the schematic view and coordinates of a two-

dimensional inclined T-shaped enclosure. An uniform heat
source is embedded on a part of the upper wall of the enclo-
sure. Both left and right sidewalls of the enclosure leg are

maintained at a cold temperature (Tc). The adiabatic portions
of the enclosure walls are shown in Fig. 1. The fluid inside the
enclosure is a water based nanofluid containing different types
of solid spherical nanoparticles which are Cu, Ag, Al2O3, and

TiO2. A magnetic field of magnitude (Bo) is applied vertically
downward on the enclosure. The gravitational force is assumed
to act in the negative y-direction. The thermo-physical proper-

ties of the base fluid and nanoparticles are given in Table 1.
The governing equations are simplified by using the following
assumptions:

1. The thermo-physical properties of both the base fluid and
nanofluid are assumed to be constant except for the density
variation, which is modeled using Boussinesq model.

2. The nanoparticles have a uniform size and shape and are
well dispersed within the base fluid.

3. It is assumed that the base fluid (i.e. water) and nanoparti-

cles are in thermal equilibrium state and no slip occurs
between liquid and nanofluid phases in terms of both veloc-
ity and temperature.

4. The flow field is considered two dimensional, Newtonian,
laminar and steady.

5. The effects of the radiation and the wall cavity thickness are

assumed negligible.

3. Governing equations

The dimensionless governing equations for the laminar and
steady state magneto-hydrodynamic natural convection in a
two-dimensional inclined T-shaped enclosure are given by

@U

@X
þ @V

@Y
¼ 0; ð1Þ
lver (Ag) Alumina Al2O3 Titanium oxide (TiO2)

,500 3970 4250

5 765 686.2

9 40 8.9538

89 � 10�5 0.85 � 10�5 0.9 � 10�5

– –
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X ¼ @V

@X
� @U

@Y
¼ �r2w; ð2Þ

U
@X
@X

þ V
@X
@Y

¼ lnf

qnfaf

@2X

@X2
þ @2X

@Y2

� �

þHa2 Pr
rnf

rf

qf

qnf

cos2 U
@U

@Y
þ 2 cosU sinU

@U

@X
� sin2 U

@V

@X

� �

þ Ra Pr
qf

qnf

1� uþ ðqbÞnf
ðqbÞf

u

" #
cosU

@h
@Y

� sinU
@h
@X

� �
; ð3Þ

U
@h
@X

þ V
@h
@Y

¼ anf
af

@2h

@X2
þ @2h

@Y2

� �
; ð4Þ

These dimensionless governing equations have been
obtained by employing the following non-dimensional vari-
ables as listed below:

X ¼ x

H
Y ¼ y

W
U ¼ uH

af
V ¼ vH

af
P ¼ pH2

qfa
2
f

AR ¼ H

W
B ¼ bb

H
D ¼ dd

H
h ¼ T� Tc

Th � Tc

Pr ¼ m
a

� �
f

Ra ¼ gbf½Th � Tc�H3

ðmaÞf
Ha ¼ BoH

ffiffiffiffiffiffiffiffi
rf

qftf

r
; ð5Þ

In the above equations, the nanofluid thermal diffusivity,
effective density, heat capacitance, coefficient of thermal
expansion and the effective viscosity are respectively, given

by [28]

anf ¼ knf
ðqcpÞnf

; ð6Þ

qnf ¼ ð1� /Þqf þ /qp; ð7Þ

ðqcpÞnf ¼ ð1� /ÞðqcpÞf þ /ðqcpÞp; ð8Þ

ðqbÞnf ¼ ð1� /ÞðqbÞf þ /ðqbÞp; ð9Þ

lnf ¼
lf

ð1� /Þ2:5 ð10Þ

while, the effective thermal conductivity of the nanofluid is
introduced as [29]

knf
kf

¼ ðkp þ 2kfÞ � 2/ðkf � kpÞ
ðkp þ 2kfÞ þ /ðkf � kpÞ : ð11Þ

The fluid motion inside the T-shaped enclosure is repre-
sented by using the dimensionless stream function (w) obtained
from dimensionless velocity components (U) and (V). The rela-
tionships between stream function and velocity components
are given by

U ¼ @w
@Y

and V ¼ � @w
@X

; ð12Þ

where w ¼ W
af
.

3.1. Local and average Nusselt number

The local and average Nusselt number can be written as

NuLoc ¼ hH

kf
; ð13Þ
Nul ¼ 1

hðXÞ on wall ðf–eÞ: ð14Þ

Num ¼
Z Dþ0:5�B

D�0:5�B
NuldX: ð15Þ
3.2. Boundary conditions

To simulate the flow and thermal fields in an inclined T-shaped

enclosure, the following non-dimensional boundary conditions
are considered:

1. Walls (a–b, c–d, g–h) are considered adiabatic, i.e.,

@h
@Y

¼ 0; U ¼ 0 and V ¼ 0: ð16Þ
2. Walls (d–e, f–g) are considered adiabatic, i.e.,

@h
@X

¼ 0; U ¼ 0 and V ¼ 0; ð17Þ

3. Walls (a–h, b–c) are maintained at a constant cold temper-

ature, i.e.,

h ¼ 0; U ¼ 0 and V ¼ 0: ð18Þ
4. Heat source region at wall (f–e) is maintained at a constant

hot temperature, i.e.,

@h
@Y

¼�knf
kf

; U¼ 0; V¼ 0 andD�0:5�B6X6Dþ0:5�B:

ð19Þ
5. Other regions of walls (f–e) are considered adiabatic, i.e.,

@h
@Y

¼ 0; U ¼ 0 and V ¼ 0: ð20Þ
4. Numerical procedure and validation

In this investigation, the finite difference method as described
by Mansour et al. [30] is employed to solve the governing equa-

tions with the boundary conditions. Central difference quo-
tients are used to approximate the second derivatives in both
the X and Y directions. Then, the obtained discretized equa-

tions are solved using a Gauss-Seidel iteration technique
[31,32]. The solution procedure is iterated until the following
convergence criterion is satisfied:

X
i;j

vnewi;j � voldi;j

			 			 6 10�7; ð20Þ

where v is the general dependent variable. The numerical
method is implemented in a FORTRAN program. The finite
difference method uses four sets of grids: (36 � 36, 66 � 66,

96 � 96 and 126 � 126) as shown in Table 2. A good agree-
ment is found between 66 � 66 and 126 � 126 grids, so the
numerical computations were carried out for 66 � 66 and

126 � 126 grid nodal points. In order to verify the accuracy
of the present method, the obtained results under special cases
are compared with the results obtained by Mansour et al. [7].
Table 3 shows an acceptable agreement between the present



Table 2 Grid independent test at Ra = 105, Ha = 50,

B = 0.3, D = 0.5, / = 0.1, U= 0 and AR = 0.5 for Cu-water

nanofluid.

Grid Num hmax |w|max

36 � 36 4.994 0.208 0.232

66 � 66 5.555 0.189 0.304

96 � 96 5.831 0.181 0.314

126 � 126 6.251 0.169 0.366

Table 3 Validation of the numerical code.

Ra Nanotypes Num hmax

Mansour

et al. [7]

Present

work

Mansour

et al. [7]

Present

work

103 Cu 5.639 4.262 0.194 0.248

Ag 5.640 4.588 0.194 0.231

Al2O3 5.572 4.903 0.196 0.216

TiO2 5.3633 5.099 0.204 0.208

104 Cu 5.6179 4.261 0.194 0.248

Ag 5.6211 4.588 0.194 0.23

Al2O3 5.5359 4.902 0.195 0.215

TiO2 5.3272 5.098 0.202 0.207

105 Cu 5.6599 4.263 0.187 0.245

Ag 5.6385 4.588 0.188 0.228

Al2O3 5.8706 4.905 0.177 0.213

TiO2 5.7126 5.102 0.181 0.204

106 Cu 5.5310 4.292 0.157 0.2403

Ag 5.4705 4.614 0.158 0.224

Al2O3 5.8025 4.944 0.150 0.209

TiO2 5.5903 5.146 0.155 0.2
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results and the results obtained by Mansour et al. [7]. This
favorable comparison gives a confidence in the numerical
results to be reported subsequently.
5. Results and discussion

The magneto-hydrodynamic natural convection flow and heat

transfer in an inclined T-shaped enclosure filled with different
types of nanofluids has been investigated numerically in this
paper. In the present work, the Hartmann number is varied

as 0 6 Ha 6 100, the Rayleigh number is taken as 103 -
6 Ra 6 106, heat source location is varied as 0.2 6 D 6 0.5
and the heat source length is varied as 0.2 6 B 6 0.8. The solid

volume fractions (/) have been varied as 0 6 / 6 0.2, inclina-
tion angle varied as 0 6 U 6 90� and aspect ratio varied as
0.3 6 AR 6 0.9.

5.1. Effect of aspect ratio

Fig. 2 shows streamlines (up) and isotherms (bottom) for var-
ious aspect ratios inside the T-shaped enclosure filled with

nano fluid (/ = 0.1) at Ha = 50, Ra= 105, B = 0.3,
D= 0.5 and U = 0. It can be noticed from this figure that
as the aspect ratio increases from [AR = 0.3] to [AR = 0.9],
the intensity of the flow circulation increases. Therefore, the
values of the stream function increase significantly from low

values when the aspect ratio is low [i.e., AR = 0.3], to the high
values when the aspect ratio is high [i.e., AR = 0.9]. So, it can
be concluded that when the aspect ratio of the enclosure

increases, a clear improvement in the flow circulation occurs.
Also, it can be noticed from the results that the maximum
and minimum limits for the rotating vortices occur in the space

between the heat source and the cold sidewalls of the enclosure
leg. Furthermore, the size of the rotating vortices increases as
the aspect ratio increases. Moreover as the T-shaped enclosure
becomes more narrow [i.e., AR = 0.3], the natural convection

effect in the region between the enclosure leg and the bottom
wall decreases significantly which causes the flow vortices not
to be constructed in this region as shown in Fig. 2. With

respect to isotherms, it can be shown that when the aspect ratio
is low [i.e., AR = 0.3], they are in general smooth and approx-
imately parallel to the upper walls and the heat transfer is

purely occurred due to the conduction. But, as the aspect ratio
increases, the isotherms begin to extend deeply inside the
enclosure leg especially at AR= 0.9. For this case, the iso-

therms are non-linear which indicates high temperature gradi-
ents and the heat is transferred due to convection. For
AR= 0.5 a transition from conduction to convection occurs
and the vortices are formed in the horizontal part of the

enclosure.

5.2. Effect of Rayleigh number

Fig. 3 illustrates streamlines (top) and isotherms (down) inside
the T-shape enclosure filled with nano fluid (/ = 0.1) at
Ha = 50, AR = 0.5, B= 0.3, D = 0.5 and U = 0 for various

Rayleigh number. The flow pattern can be characterized by
two symmetrical re-circulating vortices adjacent to the cold left
and right sidewalls of the enclosure leg. The flow field is cre-

ated adjacent to the heat source at the top of the enclosure
and then cooled by the cold sidewalls of the enclosure leg
and compressed as it moves downward. This recycle motion
leads to produce the re-circulating vortices inside the enclo-

sure. For low Rayleigh number [Ra= 103 and 104], the vis-
cous force is more dominant than the buoyancy force. In
this case, the intensity of circulation is weak and the re-

circulating vortices inside the enclosure are symmetrical to
each other due to the weak effect of buoyancy force. There-
fore, the nature of streamlines and flow field does not change

significantly when the Rayleigh number is low. In this case,
the natural convection contribution in the heat transfer process
is weak. But in the case, when the Rayleigh number is high
[Ra= 105 and 106], a strong intensity of circulation can be

seen inside the T-shape enclosure. The flow circulation is high
in the enclosure center. Also, the center of re-circulating vor-
tices moves downward when the Rayleigh number is high

[Ra= 106]. Moreover, the re-circulating vortices become more
irregular in comparison with the corresponding vortices when
the Rayleigh number is low. In this case, the buoyancy forces

are more dominant than viscous forces and the natural convec-
tion contribution in the heat transfer process is high. With
respect to the thermal field, for low Rayleigh number

[Ra= 103 and 104], isotherms are approximately symmetrical



Figure 2 Streamlines (top) and isotherms (down) inside the T-shape enclosure filled with nanofluid (/ = 0.1) at Ha = 50, Ra= 105,

B = 0.3, D= 0.5 and U = 0 for various aspect ratio [(a) AR= 0.3, (b) AR = 0.5, (c) AR = 0.7, (d) AR= 0.9].
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Figure 3 Streamlines (top) and isotherms (down) inside the T-shape enclosure filled with nano fluid (/= 0.1) at Ha = 50, AR = 0.5,

B = 0.3, D= 0.5 and U = 0 for various Rayleigh number [(a) Ra= 103, (b) Ra = 104, (c) Ra= 105, (d) Ra= 106].
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and parallel to the upper walls, which indicate that most of the
heat is transferred inside the enclosure by the pure conduction.

But in the case, when the Rayleigh number is high [Ra= 105
and 106], isotherms are strongly accumulated strongly near
the heat source. Furthermore, isotherms change their shape

from symmetrical shape to the curved one indicating that most
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of the heat is transferred inside the enclosure by convection.
Also, it can be noticed from the results that the isotherms
are clustered adjacent to the top of the enclosure. This is a log-

ical behavior since the top wall has a maximum effect on the
fluid heating due to the existence of the heat source.

5.3. Effect of Hartmann number

Fig. 4 illustrates the streamlines (top) and isotherms (down)
inside the T-shape enclosure filled with nanofluid (/ = 0.1)

at AR= 0.5, Ra= 105, B = 0.3, D = 0.5 and U= 0 for var-
ious Hartmann number. The Hartmann number represents a
measure of the relative importance of the magneto-

hydrodynamic flow. When the Hartmann number is zero
[Ha = 0] or in the other words when the magnetic field is
absent, the intensity of circulation is strong, since the buoy-
ancy force due to the natural convection is high. Therefore,

the convection heat transfer plays the primary role when the
magnetic field effect is negligible which leads to increase the
stream function values. But, when the Hartmann number

increases [i.e., Ha = 50 and 100], the Lorentz force which is
created due to the magnetic field effect becomes higher than
the buoyancy force which causes to drop the flow circulation

intensity and as a result the convection effect begins to
decrease significantly. Therefore, it can be observed from
Fig. 4, that the stream function values begin to decrease signif-
icantly as the Hartmann number increases from [Ha = 0] to
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Figure 4 Streamlines (top) and isotherms (down) inside the T-shape

B = 0.3, D= 0.5 and U = 0 for various Hartmann number [(a) Ha=
[Ha= 100]. With respect to the thermal field, when the Hart-
mann number is absent [Ha = 0], the isotherms are concen-
trated highly adjacent to the heat source location and their

shape is in general curved which indicates that the heat inside
the enclosure is transferred due to the natural convection.
When the magnetic field effect is significant or when the Hart-

mann number increases [Ha = 50 and 100], the concentrated
region of isotherms adjacent to the heat source location
becomes less compressed and isothermal lines become more

smooth. This is due to the increase of magnetic field and in this
case the heat is transferred inside the enclosure by the pure
conduction.

5.4. Effect of solid volume fraction

Fig. 5 explains streamlines (top) and isotherms (down) inside
the T-shape enclosure filled with pure and nanofluids at

AR= 0.5, Ra= 105, B = 0.3, D = 0.5, Ha = 50 and
U= 0 for various solid volume fraction. It can be observed
from Fig. 5 that, when the solid volume fraction of nanopar-

ticles increases from [/ = 0] (i.e., pure fluid) to [/ = 0.1], the
circulation intensity increases as a result of the high energy
transport through the flow related with the high motion of

nanoparticles. But as the solid volume fraction increases fur-
ther to [/ = 0.2], the steam function values begin to decrease
strongly. The reason of this behavior is because the high
quantities of nanoparticles volume fraction cause a significant
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enclosure filled with nanofluid (/ = 0.1) at AR = 0.5, Ra = 105,

0, (b) Ha = 50, (c) Ha = 100].
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increase in the fluid viscosity and as a result decreases the
flow velocity. Also, it can be noticed that the maximum flow
circulation occurs for nanofluid [/ = 0.1], while the mini-

mum flow circulation occurs for pure fluid [/ = 0] for the
same reasons explained above. With respect to isotherms,
the addition of solid nanoparticles to the base fluid (i.e.,

water) causes a clear change in their behavior. The results
show that the isotherms are converted from irregular shape
for pure fluid [/ = 0] and nanofluid with [/ = 0.1] where

the convection is dominant to just symmetrical parallel lines
for nanofluid with solid volume fraction [/ = 0.2] where
the pure conduction is dominant. Since, at high solid volume
fraction, less heat is transferred into the enclosure and thus

the convection effect decreases.

5.5. Effect of the heat source length and location

Fig. 6 explains streamlines (top) and isotherms (down) inside
the T-shape enclosure filled with nanofluid (/ = 0.1) at
Ha= 50, Ra= 105, AR = 0.5, D= 0.5 and U= 0 for vari-

ous heat source length. It can be observed that the flow circu-
lation decreases as the heat source length increases. This result
indicates that, the natural convection enhances when the heat

source length decreases. Also, the distribution of the isotherms
depends strongly on the heat source length. Note that, the heat
source on the top wall transfers most heat into the cold side-
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Figure 5 Streamlines (top) and isotherms (down) inside the T-shape

B = 0.3, D= 0.5, Ha = 50 and U = 0 for various solid volume fract
walls of the enclosure leg due to the large temperature differ-
ence as can be seen from accumulated isotherms close to the
cold sidewalls. With respect to the effect of the heat source

location on the streamlines (top) and isotherms (down), the
results of Fig. 7 illustrate that the intensity of circulation
decreases as the heat source location increases. Also, the iso-

therms indicated that as the heat source location increases,
the heat transfer mode switches from the convection to the
conduction.

5.6. Effect of the inclination angle

Fig. 8 explains streamlines (top) and isotherms (down) inside

the T-shape enclosure filled with nanofluid (/ = 0.1) at
Ha= 50, Ra = 105, AR= 0.5, B = 0.3 and D = 0.5 for
various inclination angle. It can be seen from this figure that
as the inclination angle increases, the vortices begin to move

upward and compressed in the upper portion of the enclo-
sure. Also, it can be seen from the flow field that as the
inclination angle increases from [U = 0] to [U= 90�], the

vortices begin to change their pattern from symmetrical
shape to unsymmetrical one. When the inclination angle
reaches to 90�, the vortices begin to separate into two major

and minor vortices and rotate with a slow rate. On the other
hand, no significant effect of inclination angle increasing can
be seen on the isotherms contour. The only exception is
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ion [(a) / = 0, (b) / = 0.1, (c) / = 0.2].
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Figure 7 Streamlines (top) and isotherms (down) inside the T-shape enclosure filled with nanofluid (/ = 0.1) at Ha = 50, Ra = 105,

AR = 0.5, B = 0.3 and U = 0 for various heat source location [(a) D= 0.2, (b) D = 0.3, (c) D = 0.4, (d) D = 0.5].
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Figure 6 Streamlines (top) and isotherms (down) inside the T-shape enclosure filled with nanofluid (/ = 0.1) at Ha = 50, Ra = 105,

AR = 0.5, D= 0.5 and U = 0 for various heat source length [(a) B= 0.2, (b) B = 0.4, (c) B = 0.6, (d) B = 0.8].
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when U= 90�, where isotherm lines are extended clearly
inside the enclosure and diverge far away from the heat
source. This is due to the dominance of heat conduction

at [U= 90�].
5.7. Mean Nusselt number results

Fig. 9 illustrates the variation of mean Nusselt number with
solid volume fraction for various Rayleigh number. It can be
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Figure 8 Streamlines (top) and isotherms (down) inside the T-shape enclosure filled with nanofluid (/ = 0.1) at Ha = 50, Ra= 105,

AR= 0.5, B = 0.3 and D = 0.5 for various inclination angle [(a) U= 0, (b) U = 45�, (c) U = 90�].
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noticed that the average Nusselt number increases with the

increase of Rayleigh number and volume fraction of nanopar-
ticles. This is due to the enhancement in the natural convection
when the Rayleigh number increases. Moreover, the increase
of the solid volume fraction improves the heat transfer in the
enclosure and consequently average Nusselt number increases.

Fig. 10 shows the variation of mean Nusselt number with solid
volume fraction for various Hartmann number. For no
magnetic field [i.e., Ha = 0], a linear variation can be seen
between the mean Nusselt and solid volume fraction. But as
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the Hartmann number begins to increase, the mean Nusselt

number decreases gradually. This is because, the effect of mag-
netic field becomes significant when the Hartmann number
increases. In this case, the magnetic force effect becomes
greater than the buoyancy force effect and leads to reduce

the mean Nusselt number values. Therefore, the magnetic
force is the dominant force and controls the flow inside the
T-shape enclosure causing to reduce the mean Nusselt number.

Fig. 11 shows the variation of mean Nusselt number with solid
volume fraction for various aspect ratio. The results show that
the mean Nusselt number increases as the aspect ratio and

solid volume fraction increase. Fig. 12 shows the variation of
mean Nusselt number with solid volume fraction for various
inclination angle. The results explain that the mean Nusselt

number increases with the solid volume fraction for various
values of the inclination angle. Fig. 13 illustrates the variation
of mean Nusselt number with solid volume fraction for various
heat source length. The results show that the mean Nusselt
number increases with the solid volume fraction as the heat

source length decreases. This is because the natural convection
enhances when the heat source length decreases. Fig. 14 shows
the variation of mean Nusselt number with solid volume frac-

tion for various heat source location. The results show that the
mean Nusselt number increases with the solid volume fraction
as the heat source location increases.

6. Conclusions

The following conclusions can be drawn from the results of the

present work:

1. When the aspect ratio of the enclosure increases, a clear

improvement in the flow circulation occurs.
2. When the aspect ratio of the enclosure increases, the

heat transfer mode switches from the conduction to
the convection.
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3. The natural convection enhances when the heat source

length and its location decrease.
4. When the Rayleigh number increases and the Hartmann

number decreases, the enhancement in the flow circula-

tion leads to make the isotherms irregular and curved
in shape and the heat convection dominates. A reverse
behavior can be seen when the Rayleigh number
decreases and the Hartmann number increases.

5. When the solid volume fraction increases from [/ = 0]
to [/= 0.1], the circulation intensity increases as a
result of the high energy transport through the flow

related with the high motion of nanoparticles. But as
the solid volume fraction increases further to / = 0.2,
the stream function values begin to decrease strongly.

6. The mean Nusselt number increases with the increase of
Rayleigh number, aspect ratio and, inclination angle and
volume fraction of nanoparticles.

7. When the Hartmann number increases, the mean Nus-

selt number decreases.
8. No significant effect is noticed in the isotherms when the

enclosure inclination angle increases. While, the vortices

begin to change their pattern from symmetrical shape to
unsymmetrical one as the inclination angle increases
from [U= 0] to [U= 90�].

9. The mean Nusselt number increases with the solid vol-
ume fraction for various values of the inclination angle.

10. The mean Nusselt number increases with the solid vol-

ume fraction as the heat source length decreases and
its location increases.
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