
IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 5

A Comparative Study of HDFS Replication Approaches

Eman S.Abead

Faculty of Computers and
Information

 Cairo University, Egypt

Mohamed H. Khafagy

Faculty of Computers and
Information

Fayoum University, Egypt

Fatma A. Omara

Faculty of Computers and
Information

Cairo University, Egypt

Abstract— The Hadoop Distributed File System
(HDFS) is designed to store, analysis, transfers
large scale of data sets, and stream it at high
bandwidth to the user applications. It handles fault
tolerance by using data replication, where each data
block is replicated and stored in multiple DataNodes.
Therefore, the HDFS supports reliability and
availability. The data replication of the HDFS in
Hadoop is implemented in a pipelined manner which
takes much time for replication. Other approaches
have been proposed to improve the performance of
the data replication in THE Hadoop HDFS .The paper
provides the comprehensive and theoretical analysis
of three existed HDFS replication approaches; the
default pipeline approach, parallel (Broadcast)
approach and parallel (Master/Slave) approach. The
study describes the technical specification, features,
and specialization for each approach along with its
applications. A comparative study has been
performed to evaluate the performance of these
approaches using TestDFSIO benchmark. According
to the experimental results it is found that the
performance (i.e., the execution time and
throughput) of the parallel (Broadcast) replication
approach and the parallel (Master/Slave)
outperform the default pipelined replication. Also, it
is noticed that the throughput is decreased with
increasing the file size in the three approaches.

Keywords —Hadoop Distributed File System (HDFS),
Pipelined, Replication factor, NameNode, DataNode,
Client.

I. INTRODUCTION

Today, the data size of the used databases in the
enterprises has been grown exponentially. On the
other hands, the data is generated by many sources
like business processes, transactions, social
networking sites, web servers, etc. Also, the stored
data might be structured, or unstructured form, or
even both forms.

Now a day, the business applications features in the
enterprises could be large-scale, data-intensive, and
web-oriented that could be accessed from diverse
devices including mobile devices. So, the processing,
analyzing, and management of the huge amount of
data are considered curtail and challenging problems
[1].

Big Data concept means a dataset which grow
continuously such that it becomes difficult to manage
by using the existed database management concepts
and tools.

The difficulty can be related to data capture,
storage, search, sharing, analysis and visualization etc.
Big Data spans across three dimensions; Volume,
Velocity and Variety [2].

• Volume the data becomes huge, and its size could
be terabytes and petabytes.

• Velocity the needed data should be streamed to the
enterprise in order to maximize its value with respect
to the business. So, the time is considered very critical
here.
• Variety the data should be structured .But it could
include unstructured and semi-structured data. The
unstructured data has different format such as text,
audio, video, posts, and the semi-structured data
might be log files like email etc.

The Apache Hadoop project develops open-source
software for reliable, scalable and distributed
computing. On the other hands, the Apache Hadoop

IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 6

software library is a framework that allows to process
large data sets which are distributed across clusters of
computers using a simple programming model. It
enables the applications to be executed using
thousands of computational independent computers
and petabytes of data. Hadoop has derived from
Google's MapReduce and Google File System (GFS) [2,
3].
MapReduce Programming Framework:

MapReduce is a software framework which has
been introduced by Google in 2004 to support the
distributed computing on large data sets using
clusters of computers [4]. The main components of
the MapReduce are Map, and Reduce. The function of
the Map component is to process a key/value pair to
generate a set of intermediate key/value pairs. The
function of the Reduce component is to merge all
intermediate values associated with the same
intermediate.
Hadoop Distributed File System (HDFS):

The Hadoop Distributed File System (HDFS) is a file
system which is designed for large-scale distributed
data processing under frameworks such as
MapReduce [5]. HDFS supports fault tolerance and it
is designed to run on commodity hardware. It
provides high throughput access to the application
data. On the other hands, the HDFS can store data
across thousands of servers, and process the Hadoop
functions (i.e., Map/Reduce functions) across these
machines such that the data is always available when
it is needed. The HDFS has master/slave architecture,
and large data is automatically split into chunks which
are managed by different nodes in the Hadoop cluster
[6]. An HDFS cluster consists of a single NameNode, a
master server that manages the file system
namespace and regulates access to files by clients. In
addition, there are a number of DataNodes, usually
one per node, in the cluster, which manage storage
attached to the nodes that they run on. The HDFS
exposes a file system namespace and allows user data
to be stored in files. Internally, a file is split into one
or more blocks and these blocks are stored in a set of
DataNodes [7]. When The HDFS client opens a file for
writing, the NameNode allocates a block with a
unique block ID and determines a list of DataNodes to
host replicas of that block. The DataNodes form a
pipeline. Client writes data block on first DataNode

then data are pushed to the next DataNode in
pipeline manner. Acknowledgement of data written
on DataNodes is also received in pipeline. After all the
replicas are written correctly, the client request
NameNode to write the next block. These kinds of
pipelined replication scheme affect the performance
of file write operation [8]. Fig.1 represents HDFS
architecture.

Fig. 1 HDFS Architecture

The challenges issues of the Data Replication in
Hadoop include timing, scalability, availability,
connection overhead and fault tolerance. These issues
can be related to reducing the total wait time for
acknowledgements in the HDFS Client side.

In this paper, we compare HDFS replication
approaches from three different research, the default
pipeline approach, parallel (Broadcast) approach and
parallel (Master/Slave) approach. Data Replication in
Hadoop challenging issues includes the Timing,
Scalability, Availability, Reducing connection creation
overhead in HDFS Client and fault tolerance. These
issues can be related to reducing the total wait time
for acknowledgements in the HDFS Client side.
Experimental results of all approaches tested by using
the TestDFSIO benchmark which gives better
response time to HDFS client.

The rest of this paper is organized as follows . The
default pipeline approach, parallel (Broadcast)
approach and parallel (Master/Slave) approach is
described in section II. The comparative study and
Experimental results were shown III. Finally,
conclusions of the paper in Section IV.

IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 7

II. THE HDFS FILE WRITE PIPELINE AND REPLICATION

APPROACHES

The placement of data replicas is critical to HDFS
reliability and performance. Optimizing replica
placement distinguishes HDFS from most other
distributed file systems. The purpose of a rack-aware
replica placement policy is to improve data reliability,
availability, and network bandwidth utilization [7].

The default strategy of Hadoop HDFS is that the
first replica is placed on the same node as the client
(i.e., clients running outside the cluster, a node is
chosen at random, although the system tries not to
pick nodes that are too full or too busy). The second
replica is placed in different rack from the first (off-
rack), which is chosen randomly. The third replica is
placed on the same rack as the second, but on a
different node which are chosen randomly. Further
replicas are placed on random nodes in the cluster,
where the system tries to avoid placing too many
replicas on the same rack [9].

For the sake of the comparative study, the main
principles of the three existed HDFS replication
approaches; default pipeline, parallel (Broadcast), and
parallel (Master/Slave) approaches will be discussed
in details.

A. Pipeline Replication Approach:

The HDFS is designed to reliably store very large
files across machines in a large cluster. It stores each
file as a sequence of blocks; all blocks in a file except
the last block are the same size. The blocks of a file
are replicated for fault tolerance. The block size and
the replication factor are configurable per file. An
application can specify the number of replicas of a file
at the file creation time and can be changed later.
Files in HDFS are write-once and have strictly one
writer at any time.
The steps of the default pipeline replication approach
are (see Fig.2) [6].

1) HDFS client sends a request to the NameNode
to create a new file in the filesystem’s
namespace.

2) NameNode returns list of DataNodes to store
data block according to the replication factor.

3) HDFS client’s file data is first divided into
blocks with default size, and then splits into
packets. The list of DataNodes forms a
pipeline. By considering the replication factor

is three, so there are three nodes in the
pipeline.

4) The packets are sent to the DataNode1 in the
pipeline, which stores the packet and
forwards it to the DataNode2 in the pipeline.
In the same way, the DataNode2 stores the
packet and forwards it to the DataNode3 in
the pipeline.

5) Acknowledged by all the DataNodes also
receives in the pipeline.

6) When the client has finished writing data, it
calls close() on the stream .This action flushes
all the remaining packets to the DataNode
pipeline and waits for acknowledgments
before contacting the NameNode to signal
that the file is complete.

FIG.2 WRITING A FILE ON HDFS USING PIPELINE REPLICATION

APPROACH

B. Parallel(Broadcast) Replication Approach:

 According to the parallel approach of the HDFS,
The client writes all replicas in parallel in the
DataNodes. This approach improves the write
performance. In order to perform parallel replication,
two new classes are used; Multi DataOutputStream
class and MultiDataInputStream class. The steps of
the parallel replication approach are (see Fig.3) [8]:

1) Client sends a request to the NameNode to

create a new file in the file system's
namespace.

2) NameNode returns list of DataNodes to
store data block according to the
replication factor

3) HDFS client’s file data are first divided into
default block size then splits into packets

IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 8

which encapsulate multiple output streams
into one object for parallel writing.

4) In this case, packets are written to all three
DataNodes instead of single DataNode.

5) HDFS client receives Acknowledgements
from all DataNodes instead of just the first
one as in the pipeline.
MultiDataInputStream class reads
acknowledgement from
MultiDataInputStream instance.

6) When the client has finished writing data, it
calls close() on the stream.

FIG.3 WRITING A FILE ON HDFS USING PARALLEL (BROADCAST)

REPLICATION APPROACH

C. Parallel (Master/Slave) Replication
Approach:

According to this approach, the creation and
writing of a file are faster than that the Hadoop
DFS file. NameNode (NN) never writes any data
directly on DataNodes, but it manages the
namespace and node only. In this approach, a
single block is written in three different
DataNodes, Assume DN1, DN2 and DN3. The
steps of the parallel Master/Slave approach are
(see Fig.4) [10].

1) Client sends a request to the NameNode
to write a file.

2) The Client receives the list of DataNodes
to write and to host replicas of a single
block.

3) Client first writes a block to DN1.
4) Once a block is filled in DN1, DN1 creates

thread and requests DN2 and DN3 for

creating replicas of a desired block in
parallel.

5) Once the first block is written in DN2 and
DN3, they send an acknowledgement to
DN1.

6) After getting acknowledgement from
both DN2 and DN3, DN1 sends
acknowledgement to client. If DN1 fails
to receive acknowledgement from any
of DN2 or DN3, it resend the same block
again to them.

7) Finally, the client sends acknowledgement
to NameNode that block is successfully
written on three different nodes.

FIG.4. WRITING A FILE ON HDFS USING PARALLEL

(MASTER/SLAVE) REPLICATION APPROACH

III. COMPARATIVE STUDY AND EXPERIMENTAL SETUP

In this section, the performance evaluation of the
three HDFS replication approaches is introduced. On
the other hands, HDFS write performance is highly
dependent on the hardware, network environment,
load balancer, and the processing time of each
NameNode and DataNodes. Also, the performance
may vary as different cluster configuration
environment varies.

A. Cluster Configurations:
The three HDFS replication approaches are

implemented using a private cluster with one
NameNode serves as Metadata storage manager and
nine DataNodes provide both computations as
MapReduce clients and data storage resources, all
commodity computers. All nodes are configured with

IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 9

HCL Intel Core I3 2100, 3.2 GHz processor with 16GB
RAM and 320GB SATA HDD. Each node runs Ubuntu
14.10 In all experiments, Hadoop framework 1.2.1
and JDK 1.7.0 are used. These nodes locate in three
different racks with Gigabit Ethernet network
connecting.

B. The Performance Evaluation:
The three replication approaches have been

implemented and tested using TestDFSIO benchmark
to evaluate their impact on the HDFS write
throughput. The TestDFSIO benchmark is a read and
write test for HDFS. It is helpful for tasks such as
stress testing HDFS, to discover the performance
bottlenecks in the network, to shake out the
hardware, OS and Hadoop setup of a cluster machines
(particularly the NameNode and the DataNodes) .
TestDFSIO measures the average throughput for
read, write and append operations. TestDFSIO is
an application available as part of the Hadoop
distribution [11].

According to the experiment results in Fig.5(a), it is
found that approximately 10% reduction in the
execution time for the parallel (Broadcast) replication
approach and 6% reduction for the parallel
(Master/Slave) comparing to the pipelined replication
approach for HDFS file write with Replication Factor is
three and Block Size is 64MB.

According to the experiment results in Fig.5(b), It
has observed that the throughput improvement is
around 10% for the parallel (Broadcast) replication
approach , and 7% for the parallel (Master/Slave)
replication approach comparing to the default
pipelined replication. From the results, it is also
examined that the throughput is decreased with
increasing the file size in the three approaches.

Fig.5(b) and Fig.5(c) illustrate the performance of
the three approaches by considering large block size.
The improvement in file write throughput is
approximately 10% to 12% in parallel (Broadcast) and
pipeline approaches, and approximately 7% to 9% in
parallel (Master/Slave) and pipeline approaches.

The Replication factor and the limitations of the
network bandwidth are also affected the file write
throughput. To study the effects of the Replication
factor, the experiments have been implemented with
considering the replication factor of a file three and
two. The experimental results show that the
improvement of write throughput for parallel
(Broadcast) approach and pipeline approach is up to

20% , and up to 10% for parallel (Master/Slave) and
pipeline approaches (see Fig.5(d)). However, for a
small number of replicas, there is only slightly
improvement has been provided by the parallel
replication approaches.

Also, the file size and its blocks size would be
affected the performance of the HDFS writing. A file
with small number of blocks (i.e., blocks size is large)
will potentially make the client to read/write more
data without connecting with the NameNode, and it
also reduces the metadata size of the NameNode, and
reduces NameNode workload. This would be
important for large file systems. Hence, by larger file
size, and larger number of blocks, the total number of
the requests from the HDFS clients to NameNode will
be increased which leads to increase the network
overhead.

 The experiments have been implemented with
considering the block size is 128 Mbytes instead of 64
Kbytes. The experimental results show that the
performance of throughput of the three approaches
has been affected.

Fig. 5(a) TestDFSIO Execution Time (sec)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Ex
ec

u
ti

o
n

 T
im

e HDFS file write operation Execution Time
(sec)

R.F=3 : Block Size=64 MB

Pipeline

Parallel(Broa
dcast)

Parallel(Mast
er/Slave)

File size
(GB)

IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 10

Fig. 5(b) TestDFSIO Throughput (MB/sec)

Fig. 5(c) TestDFSIO Throughput (MB/sec) - Different
block size

Fig. 5(d) TestDFSIO Throughput (MB/sec) - Different
R.F

IV. CONCLUSION

Data replication is a technique commonly used to
improve data availability. In HDFS each block is
replicated and stored in different nodes.

In this paper, a comparative study using the
TestDFSIO benchmark has been done to evaluate the
performance of three existed HDFS replication
approaches; the default pipeline approach, parallel
(Broadcast) approach and parallel (Master/Slave)
approach. According to the experimental results it is
found that the execution time of the parallel
(Broadcast) replication approach and the parallel
(Master/Slave) are improved by approximately 10%
and 6% comparing to the pipelined replication
approach by considering the Replication Factor is
three and the Block Size is 64 MB. Also, the
throughput of the parallel (Broadcast) replication and
the parallel (Master/Slave) replication approaches has
been improved by 10%, and 7% respectively
comparing to the default pipelined replication. From
the results, it is noticed that the throughput is
decreased with increasing the file size in the three
approaches.

Generally, for efficient replica placement of the
HDFS to improve write throughput and execution
time, different HDFS parameters like file size, block
size, and Replication Factor should be considered.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(M

B
/s

ec
)

File size (GB)

HDFS Write operation Throughput (MB/sec)
R.F=3 : Block Size=64 MB

Pipeline

Parallel(Broadcast)

Parallel(Master/Slave)

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t(
M

B
/S

ec
)

File size (GB)

HDFS Write operation Throughput (MB/sec)
R.F=3 : Block Size=128 MB

Pipeline Block
size=128MB

Parallel(Broadcas
t)BS=128MB

Parallel(M/S)
BS=128Mb

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(M

B
/S

ec
)

File size (GB)

HDFS Write operation Throughput (MB/sec)
R.F=2 : Block Size=64 MB

Pipeline R.F=2

Parallel(Broadcast
) R.F=2

Paralle(M/S)
R.F=2

IJITE Vol.03 Issue-08, (August, 2015) ISSN: 2321-1776

 International Journal in IT and Engineering, Impact Factor- 4.747

A Monthly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories

International Journal in IT and Engineering

 http://www.ijmr.net.in email id- irjmss@gmail.com Page 11

REFERENCES

[1] A. B. Patel, M. Birla, and U. Nair,
"Addressing big data problem using Hadoop
and Map Reduce," in Engineering (NUiCONE),
2012 Nirma University International
Conference on, 2012, pp. 1-5.
[2] P. Russom, "Big data analytics," TDWI
Best Practices Report, Fourth Quarter, 2011.
[3] (Access : 27/3/2015 1:00 AM). HDFS
Architecture
 Available:
http://hadoop.apache.org/docs/current/hado
op-project-dist/hadoop-hdfs/HdfsDesign.html
[4] J. Dean and S. Ghemawat,
"MapReduce: simplified data processing on
large clusters," Communications of the ACM,
vol. 51, pp. 107-113, 2008.
[5] C. Lam, Hadoop in action: Manning
Publications Co., 2010.
[6] K. Shvachko, H. Kuang, S. Radia, and R.
Chansler, "The hadoop distributed file
system," in Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th
Symposium on, 2010, pp. 1-10.
[7] D. Borthakur, "The hadoop
distributed file system: Architecture and
design," Hadoop Project Website, vol. 11, p.
21, 2007.
[8] M. Patel Neha, M. Patel Narendra, M.
I. Hasan, D. Shah Parth, and M. Patel Mayur,
"Improving HDFS write performance using
efficient replica placement," in Confluence
The Next Generation Information Technology
Summit (Confluence), 2014 5th International
Conferences, 2014, pp. 36-39.
[9] T. White, Hadoop: The definitive guide:
" O'Reilly Media, Inc.", 2012.
[10] N. M. Patel, N. M. Patel, M. I. Hasan,
and M. M. Patel, "Improving Data Transfer
Rate and Throughput of HDFS using Efficient
Replica Placement," International Journal of
Computer Applications, vol. 86, 2014.

[11] M. G. Noll. (APR 9TH, 2011).
Benchmarking and Stress Testing an Hadoop
Cluster With TeraSort, TestDFSIO & Co.
Available: http://www.michael-
noll.com/blog/2011/04/09/benchmarking-
and-stress-testing-an-hadoop-cluster-with-
terasort-testdfsio-nnbench-mrbench/

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/

