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Abstract: Modern industrial projects face many challenges in order to sustain their productivi-
ty in a capital effective manner. Operational costs and production lines maintenance policy is 
on the top factors that play critical roles in that challenge. Linear programming is utilized in 
this paper to examine the possible minimization of the operational cost and determine an effec-
tive optimal maintenance policy for middle-sized furniture manufacturing plant in Baghdad 
city, taking under consideration all alternatives, non-sensitivity, and solidness. A mixture of 
Markov decision processes and linear programming analysis is implemented for the actual site 
and operational data to help decision-makers in planning for their project`s mid and long term 

maintenance policy and performing Solidness and, as result, the tentative cost reduction 

scheme.  

1. Introduction 
The performance, productivity, and maintenance are considered among the main concerns of the man-
ufacturers that may assure their success in satisfying the goods market. Markove decision processes 
MDP were widely considered by many decision-makers and researchers as a powerful tool in order to 
enhance these concerns for random processes that might be formulated as discrete of Markov se-
ries,[1-3]. The two main measures for evaluating the performance were the average cost per unit time 
and the average total discounted cost. The latter requires the determination of the specific value for the 
discount factor [4].  

The problem of the current paper is to examine the hypothesis that the optimization test through the 
solution enhancement algorithm or the optimization policy in which all alternates are taken into con-
sideration would result in a more effective method rather than MDP for the determination of optimal 
policies. The linear programming method by the reduced cost standard would be utilized in order to 
process that algorithm.      
  
1.1. Linear programming and optimization policy 
The main type of policy is called as the inevitable policy that was used by Markov decision process-
es to describe the decision di(R) when the system is in state i, for all values of M, i=0,1,…..M and so 
on. Hence the R-value was classified by the values Dik= 0 or 1 in the matrix. The proper decision 
variable for the linear programming model is defined as follows for each i=0,1….M and k=1,2,…..k 
as a stable state; Xik=P (state=i and decision=K), and Dik may be determined by the following:  
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The expected long term average cost is determined by the following [5]:    
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Hence, the linear programming model becomes: 
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And the final solution of which is as follows: 
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1.2.  Optimal solution    
The main benefit of the policy enhancement algorithm is to determine tackle optimization through 
relatively fewer trials, [6,7]. It utilizes α in order to measure the reduction factor where the value of α 
is between zero and one, [8]. The reduction factor might be explained as an equivalent to 1/(i+1) in 
which i represent the current interest average for each period, and hence, α represents the unit value 
for each of the future period`s cost. The enhancement algorithm is: 
1. The constraint value; for each policy Rn, Cik and Dij(k) were used to solve a system m+1 as fol-

lows: 
 

MforiRVkPCRV nj

M

i
ijikni ,....,1,0),()()(

0

��� �
�

�
 

 

2.  The alternative policy Rn+1 is determined as; 

 

 for each state i;  
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1.3.Optimization test 
The current policy Rn+1 is optimal when it matches Rn, and hence the process halts, otherwise the rep-
etition continues. The two properties of the algorithm are; the subsequent policy should be lower than 
the current one, and the algorithm ends with limited trials [9]. The following formula describes a 
model for linear programming to enhance the optimal solution;  
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Xik≥0       for i=0,1,2,......,M ; k=1,2,........,K 
 
where β0, β1, β2, and β3  are arbitrarily chosen.   
 
2. Case study 
2.1. Problem definition 
The management of Baghdad furniture factory was aiming at the set of optimal maintenance policy. 
The core production machines were degrading in performance due to the continuous heavy production 
load, hence, weekly maintenance processes were needed. The maintenance engineers have classified 
the status of the machine into four possible status types; 0 good as new, 1 simple practical failure, 2 
major practical failure and 3 fail product (non-acceptable quality). 
 
3. Modeling of the problem 
The repetition matrix for each possible transition from each specific status to another one during a 
month period was made by the maintenance engineers through the collection of historical machine 
status records, as follows: 

    

10003

52.48.002

17.17.66.01

11.11.78.00

3210State

  

 
The statistical analysis proved that the transition probability was not affected by the status of past 

months. The random variable Xt represents the machine status at the end of the month, hence the ran-
dom process (Xt, t=0,1,2,………) represents the discrete-time Markov series. After reaching status 
type 3, then the machine was no longer in service and represents the absorbing state, which leads to 
halt the production and the machine should be replaced and this, in turn, leads to the start from status 
0. The replacement process lasts for about one week and this makes a loss of about $2000 while the 
replacement itself costs about $6000, which means a total of $8000, not mentioning the cost of defect-
ed products. The estimated weekly costs were listed in table 1. 
 

Table 1. The estimated weekly cost for each status type. 

State Expected Cost Due to Defective Items, $ 

0 0 
1 2000 
2 6000 

  
The possible maintenance decisions after each testing process might be summarized as in table 2.  

(7) 
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Table 2. The possible maintenance decisions. 

Relevant States   Action    Decision   

0,1,2  Do nothing     1  

1,2,3  Overhaul   2  

3  Replace    3  

   
The relevant cost for each separate status is demonstrated in table 3 for the studied case. These data 

would be used as input for the suggested mathematical models.   
 

Table 3. Cost as per each maintenance status. 

Total 

Cost per 

Week,$  

Cost “Lost 

Profit” of Lost 

Production,$  

Maintenance 

Cost,$  

Expected Cost Due 

to Producing 

Defective Items,$  

Status  Decision 

0  

2000  

6000  

0  

0  

0  

0  

0  

0  

0  

2000  

6000  

0  

1  

2  

1.Do nothing 

6000 

8000 

12000  

4000 

2000 

2000  

2000 

4000 

4000  

0 

2000 

6000  

1 

2 

3  

2.Overhaul 

12000  4000  8000  0  3 3.Replace 

   
3.1. The mathematical model 
The first and second columns in table 3 represent the status types and relevant decisions, hence the 
decision variables are Xik. The far-right column represents the coefficients of these variables in the 
goal function. The application of equation (4) would result in the model of the problem of this study, 
as follows: 

   
Min Z=2000X12+6000X13+6000X21+8000X22+12000X23+12000X33 S.T 

         X01+X11+X13+X21+X22+X23+X33                                  =1 

         X01          -(X13+X23+X33)                                 =0 

             X11+X13-(0.78X01+0.66X11+X22)                 =0  

         X21+X22+X23-(0.11X01+0.17X11+0.48X21)      =0 

                             X33-(0.11X01+0.17X11+0.52X21) =0    

        and 

                                                             all          Xik                 ≥ 0 
 
4. Solution and analysis 
The solution of the suggested mathematical model was made via the application of the Quantitative 
System in Business QSB and the output of which were represented in figure 1. 
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Figure 1. Results of the application of the software QSB for the initial case. 
 
The output of software QSB would in turn used in equation (5) in order to determine the optimal 

maintenance policies, as summarized in table 4. These results show that the lower possible mainte-
nance cost policies were; do nothing, when the status was 0 or 1,  repair the machine when the status 
was 2, and replace the machine when the status was 3. 
 

Table 4. the optimal maintenance policies results. 

D33 D23 D22 D21 D13 D11 D01 Optimal maintenance policies  

1 0 1 0 0 1 1 values 

  
4.1. Solution enhancement 
The mathematical model that serves the enhancement of the optimal maintenance policy may be for-
mulated via equation (7), with arbitrarily assuming β =0.25 and α=0.9. 
  
Min Z=2000X11+1200X13+600X21+8000X22+1200X23+12000X33 

S.T 

         X01   - 0.9(X13+X23+X33)                                                       =0.25 

             X11+X13- 0.9(0.78X01+ 0.66X11+X22)                                =0.25  

                    X21+X22+X23- 0.9(0.11X01+0.17X11+0.48X21)          =0.25 

                                      X33- 0.9(0.11X01+0.17X11+0.52X21)                 =0.25 

        and 

                    all  Xik                         ≥ 0 

 
The solution of the enhanced model via the software QSB was summarized in figure 2. 
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 Figure 2. The results of software QSB for the optimal solution for the enhanced case.  
 
The results in table 5 represent the enhanced optimal policies D that can be gained via the applica-

tion of equation (7). It is obvious that the results in table 6 seem much like these in table 4, hence the 
solution still represents the optimal policy and therefor the optimal maintenance policy is tightly con-
firmed. Many values were tested in order to determine the effect of indicators α and β on the model in 
equation (6), and the results of these tests were that these changes do not affect the final optimal solu-
tion for the essential variables of D, as demonstrated in table 6. 

 
Table 5. The enhanced optimal maintenance policies. 

D33 D23  D22  D21  D13  D11  D01  The enhanced optimal maintenance policies  

1 0  1  0  0  1  1  Value   

Table 6.The results of optimal policies for various values of α and β. 

 
 

D33 

 
 

D23 

 
 

D22 

 
 

D21 

 
 

D13 

 
 

D11 

 

 
 

D01 

 
 

β 
 

 
 

α 

  value 
 

N       
 

1 0 1 0 0 1 1 0.9 0.25 1 

1 0 1 0 0 1 1 0.9 0.4 2 
1 0 1 0 0 1 1 0.9 0.5 3 
1 0 1 0 0 1 1 0.8 0.25 4 
1 0 1 0 0 1 1 0.8 0.4 5 
1 0 1 0 0 1 1 0.8 0.5 6 
1 0 1 0 0 1 1 0.7 0.4 7 
1 0 1 0 0 1 1 0.75 0.6 8 

 
5. Conclusions 
The effectiveness of the linear programming process as a replacement of the MDP as studied and test-
ed for the sake of building an optimal maintenance policy for Baghdad furniture factory, Iraq, depend-
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ing on the collected maintenance history records. The major findings have proved the linear program-
ming as a strong tool for setting optimal maintenance policy with the lower cost and also to enhance 
the optimal policy as compared to the random processes method that was commonly used via MDP 
and the iterative calculations that have long been used for such goals, as the linear programming 
method considers almost all available choices in addition to its precise and quick results, especially 
against the relatively large volume cases, which would benefit decision-makers to improve their ad-
ministrative job. 
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