
Review Article

Evolutionary interactions between diabetes and development

R.G. Ahmed *

Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

2. Diabetogenic agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.1. Streptozotocin (STZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

2.2. Alloxan (AL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3. Diabetes and spermatogenesis interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4. Diabetes and oogenesis interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5. Gestational diabetes (GDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6. Perinatal diabetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7. Maternal teratology, embryopathy and diabetes interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8. General summary about the maternal metabolic aberrations due to DM during pregnancy and a serious

impact from fetus to young adult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9. General summary about the effect of DM on the different developmental stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10. Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

d i a b e t e s r e s e a r c h a n d c l i n i c a l p r a c t i c e 9 2 ( 2 0 1 1 ) 1 5 3 – 1 6 7

a r t i c l e i n f o

Article history:

Received 1 July 2010

Received in revised form

12 October 2010

Accepted 19 October 2010

Published on line 15 December 2010

Keywords:

Diabetes

Development

Pregnancy

a b s t r a c t

Because of the complications of diabetes affecting the mothers and their fetus/newborns are

less known, this review examined the epidemiologic and mechanistic issues involved in the

developmental programming of diabetic mothers. This overview showed that sperm, egg,

zygote or blastocyst derived from diabetic parents may develop into offspring with high risk

of any type of diabetes, even if placed in a normal uterus, producing developmental delay,

embryopathy, geno- and cyto-toxicity, teratogenic changes, free radicals and apoptosis.

These early insults may then lead to an increased rate of miscarriage and congenital

anomalies depending on free radicals signaling and cell-death pathways involved by the

diabetogenic agents. Furthermore, sperm, egg, zygote or blastocyst from normal parents will

have an increased risk of diabetes if placed in a diabetic uterus. Interestingly, diabetes has

deleterious effect on male/female reproductive functions and on the development of the

blastocysts/embryos. Indeed, this review hypothesized that the long-term effects of diabe-

tes during the pregnancy (gestational diabetes) may influence, generally, on the health of

the embryos, newborns (perinatal life) and adulthood. However, there are obvious species

differences between pregnant women and animal models. Thus, maintaining normogly-

caemia during pregnancy may play an important role in a healthy life for the newborns.
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1. Introduction

Diabetes mellitus (DM) is a heterogeneous metabolic disorder

characterizedbyhyperglycaemiaresultingfromdefectiveinsulin

secretion, resistanceto insulinactionorboth [88,228]. Inaddition,

DM is a chronic metabolic disorder triggered by absolute or

relative insulin deficiency [123]. Diabetes type 1 is the conse-

quence of an autoimmune-mediated destruction of pancreatic

beta cells, leading to insulin deficiency [4]. Both increased insulin

resistance and impaired insulin secretion are characterized the

type 2 of diabetes [34]. DM type 2 usually occurs in

obese individuals and is associated with hypertension

and dyslipidaemia [4]. Work with diabetic animal models has

demonstrated uterine atrophy [203], reduced mating ability

[118,96], alterations of the hypothalamic–hypophysial–ovarian

axis [15,16] and, generally, some reproductive problems
Table 1 – The effect of different types of diabetes mellitus on

Compare face Diabetes type 1

(1) Define

- It is the consequence of an autoi

mediated destruction of pancreatic be

leading to insulin deficiency [4].

(2) Lesions and

symptoms - It causes several lesions in ovarian

[87]; altered ovarian steroidogenesis [11

increased incidence of atresia [43].

- It inhibits or retards primordial to

follicle transition [38].

- It causes some reproductive problem

spontaneous abortions, neonatal morb

mortality, and congenital malformation

(3) Congenital

anomalies - These anomalies in their pregnanc

lower than DM 2 [42].

(4) Preconception

care - Their women were more likely to

preconception care and were character

higher degree of glycemic control duri

nancy [129].

(5) Neonatal

mortality rates - In the French study [25], DM 1 was a

with a significantly lower rate of

mortality compared with DM 2.

(6) Fetal/perinatal

death rates - The rates of perinatal death and l

death were almost 4 times and 7 times

DM 1 than DM 2, respectively [48].

(7) Perinatal mortality

(PNM) rates - These rates in their pregnancies we

than DM 2 [129].

(8) Requirement

and control - Their patients require insulin treat

survival [4].
[173,20]. Also, diabetic animals ovulate at a lower rate than

animals with normal glucose levels [46,105,155]. Thus, the

general summary about the general effect of both types of

diabetes on the pregnancy and perinatal life is shown in Table 1.

Pregnancy cause’s insulin resistance and suppresses the

intracellular transport of glucose and increases blood glucose

concentrations in human [131] and in canines [107]. As well as

its role in glucose homeostasis, insulin is an important prenatal

and postnatal growth factor through its role in promoting fat

deposition and the regulation of the hepatic production of

insulin like growth factor 1 (IGF-I) and insulin like growth factor

binding protein 1 (IGFBP-1) [19]. Infants born with insulin

deficiency [186] or severe insulin resistance [169] are growth

retarded with reduced adiposity and persisting reductions in

weight gain and growth. Furthermore, congenital malforma-

tions are more common in infants of diabetic women than in
the pregnancy and perinatal life.

Diabetes type 2

mmune-

ta cells,

- It is characterized by both increased insulin

resistance and impaired insulin secretion [34].

function

] and an

- It causes severe hypertension and dyslipidae-

mia [4,102].

primary
- Women with DM 2 differ from women with

DM 1 in several aspects: they tend to be older,

more obese, have higher parity, and usually

demonstrate less tight glycemic control, each of

these being an independent risk factor for

perinatal mortality [102].

s such as

idity and

s [20].

ies were - These anomalies in their pregnancies were

more than (doubled) DM 1 [42].

undergo

ized by a

ng preg-

- Their women were less likely to undergo

preconception care (24% vs 48%) and were

characterized by a lower degree of glycemic

control during pregnancy [129].

ssociated

neonatal

- In the French study [25], DM 2 was associated

with a significantly higher rate of neonatal

mortality (7–fold) but with a lower rate of

stillbirth compared with DM 1.

ate fetal

lower in

- The rates of perinatal death and late fetal

death were almost 4 times and 7 times higher in

DM 2 than DM 1, respectively [48].

re lower - These rates in their pregnancies were higher

than DM 1 [129].

ment for - It is controlled by diet and oral hypoglycemic

agents prior to pregnancy [129].
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children of nondiabetic women [71]. On the other hand, several

experimental studies have suggested that the teratological

impact of a diabetic environment partly depends on thereactive

oxygen species (ROS) in the embryo or the capacity of ROS-

scavenging enzymes, or both [72,73,194,227,229,214,71]. As well,

oxidant stress associated with insulin resistance and non-

insulin-dependent diabetes mellitus [90,138] contributes to

poor insulin action [145,79,171].

Animal experiments have contributed much to our under-

standing of mechanisms of disease, but their value in predicting

the effectiveness of treatment strategies in clinical trials has

remained controversial [128,167,93,92,146]. In fact, clinical trials

are essential because animal studies do not predict with

sufficient certainty what will happen in humans [209]. Herein,

evolutionary interactions between diabetes and development

reviews the epidemiologic and mechanistic issues that exist

between a diabetic environment and the malalterations that

can occur at various developmental stages: from spermatogen-

esis and oogenesis to perinatal to metabolic programming in

fetal/child that lead to metabolic syndrome in adulthood. The

goal of this paper is to establish from clinical studies and

experimental models a review in support of a working

hypothesis that glycemic control during pre-gestational and

pregnancy plays a key role in the developmental processes and

may work against the evolution of diabetes.

2. Diabetogenic agents

Streptozotocin (STZ) and alloxan (AL) are pancreatic b-cell

selective toxins that have been extensively used to probe the

mechanisms underlying oxygen-mediated damage to rodent

b-cells. Both of these diabetogens reduce the level of

nicotinamide adenine dinucleotide in pancreatic islets and

inhibit proinsulin synthesis [225,176,126]. The ROS, produced

by AL and STZ, mediate b-cell necrosis and a permanent

insulin-dependent DM syndrome [126].

2.1. Streptozotocin (STZ)

DM by STZ is a degenerative disease that has deleterious

effects on male reproductive function [162,7], on oocyte

development [38] and on the development of the embryo,

particularly the metabolic and signaling systems

[17,73,217,86]. The mechanisms by which STZ induces diabe-

tes are not clearly understood [4]. Oxygen free radicals,

including hydroxyl radicals, have been suggested to be

involved in the toxic action of STZ [47,202,140,4]. STZ is a

chemically unstable molecule that accumulates in pancreatic

beta cells [182] and produces toxic radicals during its decay [4].

Highly reactive carbonium radicals originating from the decay

of STZ molecules might increase the production of oxygen free

radicals [47]. These highly reactive radicals exert direct or

indirect toxic effects on islet endothelium [70] and mediate

fragmentation of nuclear DNA in beta cells [225,202]. It is also

found that STZ, at low dose, damages pancreatic beta cells by

eliciting non-specific islet inflammation with infiltration by

mononuclear cells [121]. Nitric oxide generated by STZ has

been proposed to be involved in the damage of pancreatic beta

cells [109,6,4].
On the other hand, STZ is a potent alkylating agent known to

directly methylate DNA and is highly genotoxic, producing DNA

strand breaks [149,181,115,137], alkali-labile sites and DNA

adducts [26], unscheduled DNA synthesis [184,82], all types of

chromosomal aberrations [85,221,197,108,28,27], and cell death

[135,175,94]. Particularly, the mechanism of STZ-induced

hyperglycemia is considered as follows; STZ causes DNA strand

breaks in pancreatic islets and stimulates nuclear poly(ADP-

ribose) synthetase, and thus depletes the intracellular NAD and

NADP levels (3–6) [140]. The genotoxic effects of STZ indicates

that this compound induces DNA damage by alkylation of

specific sites on DNA bases and that free radicals generated

during STZ metabolization seems to play a significant role in the

mechanism of DNA damage and cytotoxicity by STZ [26]. Also,

The mutagenic activity of STZ in mammalian systems was

demonstrated in rats (1 or 10 mg/kg bw), in mice (400 mg per

mouse) [83] and in V79 cells of Chinese hamster [24]. Moreover,

STZ was found to be carcinogenic in rats, mice and hamster

[23,213,158,104,185,166].

To our knowledge, data on the carcinogenic effects of STZ

in humans are still unavailable. None of the existing reports

published regarding the clinical use of STZ alone or in

combination with other antineoplastic agents indicates

secondary drug-induced tumorigenesis [205,215,41,165]. As

the International Agency for Research on Cancer [103]

emphasizes, STZ should be regarded for practical purposes

as it were carcinogenic to humans. Accordingly, STZ is

classified by the IARC within Group 2B (The agent (mixture)

is possibly carcinogenic to humans. At present, the clinical use

of STZ is very limited due to the development of resistance of

human tumor cells and the severe toxicity and myelosuppres-

sion induced by the antibiotic [26,27]. A more intensive work

needs to be done regarding the mechanisms that confer

resistance to STZ and the factors that can reduce the toxic

effects of STZ on human subjects for this drug to become an

effective antineoplastic agent.

2.2. Alloxan (AL)

AL is a pyrimidine derivative compound (2,4,5,6-tetraoxypyr-

imidine 5,6-dioxyuracil) and a good inducer of diabetes in

experimental models [63,14,117,136]. A different dose of AL

changes the hypothalamic–hypophysial–ovarian axis in pre-

pubertal (35-d-old) rats [101] and causes mating failure, litters

with dead neonates, cannibalism [193,144], fetal resorptions

[65] and maternal death or pregnancy loss [193,10,144]. Also,

AL decreases the testis weight and testosterone level, and

inhibits the spermatogenesis process [183]. Thus, this review

suggests that AL-induced diabetes may cause a delay of

development or embryotoxicity depending on the dose,

duration and rout of AL-injection and developmental period.

On the other hand, ROS generation mediates AL cytotoxici-

ty [91,69] when it comes in contact with suitable thiols,

typically the tripeptide glutathione (GSH) [9,222]. AL-induced

cell damage has been attributed to the production of toxic

superoxide anion, hydroxyl radicals and hydrogen peroxide

[66]. Also, the selective cytotoxicity of AL to the pancreatic beta

cell is attributable to the conjunction of two features: a rapid

cellular uptake of the drug and an exquisite sensitivity of the

beta cell to peroxide [125]. Furthermore, AL caused DNA strand
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breaks to stimulate nuclear poly(ADP-ribose) synthetase,

thereby depleting intracellular NAD level and inhibiting

proinsulin synthesis [225,207,136]. Actually, islet DNA strand

breaks were observed in vivo by administration of AL to rats

[226,136]. The exact mechanism of DNA damage induced by AL

remains to be clarified, although various possible mechanisms

have been proposed.

Despite the above, an adequate experimental model is

unavailable for the study of the in vivo diabetes–development

(gestation) interaction, since there are controversies on both

the time of induction and the amount and route of the

diabetogenic substance (STZ or AL) injected, as well as its

effects on embryo and fetal development.

3. Diabetes and spermatogenesis interactions

DM has deleterious effects on male reproductive function,

possibly through an increase in oxidative stress [106,162,7].

About 90% of diabetic patients have disturbances in sexual

function, including a decrease in libido, impotence and

infertility, in the latter case due to testicular dysfunction

associated with sustained hyperglycaemia [32,106]. Also, in

patients with a severe type of DM, higher percentage of

immobile and pathological types of spermatozoa was

recorded [114]. However, the mechanisms of altered sper-

matogenesis in diabetic men are poorly understood. Also, the

experimental induction of DM in animal models using

chemical diabetogens is demonstrated to impair testicular

function progressively leading to decreased fertility [188]. The

reduction in sperm concentration and motility and im-

pairment in mating behaviour and sperm ejaculation were

found in Goto-Kakizaki (GK) rats treated with STZ [96,172].

Furthermore, Soudamani et al. also found that STZ induced

diabetes has detrimental effects on the maintenance and

establishment of fully differentiated epididymal epithelium

during sexual maturation [196]. Since Ref. [7] found no

differences in testicular cell concentration between different

groups, the decrease in sperm concentration is likely due to

the influence of severe hyperglycaemia in late stages of

spermatogenesis, possibly through an increase in ROS. The

consequences of such oxidative damage could include loss of

motility due lipid peroxidation [190,5] and induction of DNA

damage in the sperm nucleus [5]. From the above findings, it

can infer that DM may cause errors in spermiogenesis

affecting fertilizing potential.

While the role of oxidative stress in the development of

various diabetic complications is well known [18], the

involvement of oxidative stress mechanisms and their

contribution in the development of testicular dysfunctions

under diabetes is poorly understood. Cai et al. [31] and

Unlucerci et al. [208] recorded the occurrence of oxidative

impairments in testis and genotoxic effects in male germ cells

of diabetic rats administered STZ. However, studies on the

progression of oxidative damage, its impact on sperm

morphology/development in STZ-diabetic mice is totally

lacking. Accordingly, STZ induces oxidative damage in testicu-

lar and epididymal milieu in mice during the early diabetic

phase [188]. This assumes relevance since elevated oxidative

stress in the testicular milieu is demonstrated to have profound
implications on testicular physiology and sperm function

[3,54,2,1,159]. Hence, even slight alterations in ROS levels and

their detoxification can substantially affect the spermatoge-

netic process since germ cells are more susceptible to

peroxidative damage [98]. Based on the occurrence of oxidative

impairments in STZ-treated mice during both early and

progressive phase, it is hypothesized that oxidative stress

mechanisms may be wholly or in part contribute towards the

development of testicular dysfunction and degeneration under

situations of experimentally induced diabetes in animal models

[188]. DM and insulin resistance affect semen parameters and

impair distinct phases of spermatogenesis in male rats [12].

Animals with diabetes that did not receive insulin exhibited

extensive spermatogenic disruption [89].

Furthermore, results of Ref. [12] suggested the following

mechanisms in the impairment of spermatogenesis by DM:

(1) Disturbance in the functions of sertoli cells with or

without a disturbance or disruption in the physiology and/or

morphology of the blood–tesis barrier [170,139]; (2) Altera-

tions in the microenvironment provided by the sertoli cells,

either directly or resulting from changes in paracrine signals

from the seminiferous tubules [143]; and (3) Disruption of

ionic channels [164]. Taken together, these results allow me

to conclude that DM has adverse effects in energy levels,

sperm concentration and sperm motility in men or animal

model. In general, the reproductive dysfunctions both

structurally and functionally may occur during the

conditions of DM. Additional studies are warranted in

large scale to confirm the beneficial effect of insulin on

fecundity.

4. Diabetes and oogenesis interactions

Ovarian follicular development and growth are controlled by

pituitary gonadotrophins, luteinizing hormone (LH) and

follicle-stimulating hormone (FSH), and by local factors, such

as steroid hormones and growth factors [187]. Among

endocrine factors, insulin and growth hormone (GH), metab-

olism-related factors, are also crucial factors for follicular

development in the mammalian ovary [187]. Circulating

insulin concentrations exhibit diurnal variation, but also

change during the estrous cycle, with significantly increased

concentrations during the preovulatory period [127,13]. Such

insulin action is mediated through the insulin receptor,

which first appears in granulosa cells of preantral follicles

[177,220]. Also, Ref. [200] revealed exogenous insulin admin-

istration did not affect the follicle population but has shown

favourable effect on large follicle diameter. Thus, the

beneficial effect of insulin on ovulation rate might be due

to either increase in follicle recruitment or rescuing follicles

from atresia [200]. Insulin receptors (IRs) are widely distrib-

uted throughout all ovarian compartments, including gran-

ulosa, thecal and stromal tissue [152,151,153,67,68]. Previous

studies from Ref. [111] have shown that insulin acts as a

paracrine factor to facilitate transition from primordial to

primary follicle at the level of the oocyte. In other studies, Ref.

[50] has shown that IGF-I has a stimulatory effect on follicular

steroidogenesis and improved the quality of the oocyte and

embryo development. Other studies have suggested that IGF-I
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and insulin enhance granulosa cell proliferation and increase

follicle diameter [230].

A combination between acute and long-term diabetes by

using STZ and genetic Akita mice caused significant delays in

germinal vesicle breakdown (GVB) and resumption of meiosis I

[38]. Indeed, Ref. [51] has reported that meiotic resumption is

attenuated in superovulated diabetic mice. Varying the

relative amounts of glucose and pyruvate can either induce

or impede GVB in cumulus cell-enclosed oocytes in the

presence of meiotic inhibitors such as hypoxanthine or

dibutyryl cAMP (dbcAMP); glucose provides an inhibitory

influence when high levels of pyruvate are present yet is

required for hormone-induced maturation [55,56]. Evidence

suggests that the glycolytic pathway mediates the inhibitory

action of glucose through the generation of adenosine

triphosphate (ATP) [55,57], and the positive action of glucose

requires the participation of the pentose phosphate pathway

[58–60]. Both the meiosis-inducing and -suppressing effects of

glucose on oocyte maturation appear to be mediated by the

gap junctional communication pathway that metabolically

couples the oocyte with the somatic compartment of the

follicle [77,57,61]. Moreover, the delay in FSH-stimulated

oocyte maturation experienced by the STZ-induced diabetic

mice could be only partially recreated in vitro with high-

glucose conditions, suggesting other factors may be involved

[43]. Whether the diabetic state influenced granulosa cell

intercellular communication? It is possible that the matura-

tional delay suspected in oocytes from diabetic mice will be a

result of poor paracrine communication between these two

compartments because of poor intercellular talk among

granulosa cells [38]. Colton et al. demonstrated a loss of

metabolic communication between granulosa cells and

oocytes in cumulus-enclosed oocytes (CEOs) from diabetic

mice [44]. Colton et al. [43] hypothesized that maternal

diabetes would have a detrimental effect on oocyte matura-

tion and that the follicular environment of the enclosed

cumulus complex and oocyte immediately after human

chorionic gonadotropin (hCG) administration would be ad-

versely affected. It is hypothesized that an insult or a

preprogramming event may occur at the oocyte stage

secondary to maternal hyperglycaemia that permanently

alters the course of normal development, and this manifests

first as a maturational delay. Therefore, there is evidence that

oocyte-directed insults may be the result of poorly controlled

diabetes during folliculogenesis in animal models as well as

humans and that these insults may result in later reproductive

failures, such as a higher incidence of malformation and

miscarriages in this population of patients.

In addition, Chang et al. [38] speculated that the follicles

and oocytes at all stages of development in Akita mice are

smaller compared with the follicles from the control animals

and these may reflect the abnormal cell growth and survival,

which would correlate with the increased apoptosis seen in

the CEOs from the diabetic mice. Similarly, several studies in

human oocytes have correlated small oocyte size with poorer

developmental potential and pregnancy rates [22,206]. It is

observed from the above mentioned results that diabetic

animals or women who experience uncontrolled or poorly

controlled diabetes during ovulation may suffer detrimental

effects on follicles or oocytes and then on fertilization and
development. Collectively, the reduction in ovulation rate may

be due to several causes as a following: (1) A defect in the blood–

follicle barrier in diabetic mice as indicated by a delay in the

hCG-stimulated influx of the serum glycoprotein, inter-a-

inhibitor, that is associated with a deficit in superoxide

dismutase activity [155]; (2) Failure to protect nitric oxide,

which is an important regulator of this process [189,156]; (3) A

defect in the hypothalamic–ovarian axis, a suppressed LH

surge, altered ovarian steroidogenesis, or a decrease in

hormone-binding responsiveness [46,11,105,155]; (4) A signifi-

cant reduction in metabolic coupling was demonstrated in

complexes from diabetic mice [204]; and (5) AMP-activated

protein kinase (AMPK) activity is decreased in the oocyte

complex in response to the diabetic condition, as has been

described in other tissues exposed toa diabetic milieu [15,16,81].

Furthermore, Colton et al. [44] shown that the type 1

diabetic condition significantly alters meiotic regulation in

mouse oocytes. Since glucose can play different roles in the

meiotic maturation of isolated oocytes, it was important to

assess how a diabetic environment would influence oocyte

maturation. It is apparent from the pre-said studies that

meiotic resumption is adversely affected in oocytes from

diabetic animals, which may impact negatively on subsequent

developmental capacity. My rationale is that, if the corrections

of these abnormalities in ova will achieve before the division

(in preantral follicles), the defect in meiotic maturation may

reverse and perhaps improve pregnancy outcomes in these

conditions. Concurrently, these data are therefore consistent

with the idea that diabetic conditions during oogenesis and

oocyte maturation have a detrimental impact on later

development and that continual exposure to elevated glucose

following fertilization further compounds this problem.

5. Gestational diabetes (GDM)

Whereas gestational DM reflects decreased ability to utilize

glucose, pregnancy also decreases the ability to produce

glucose via gluconeogenesis, glycogenolysis and lipolysis,

because the normal glucagon, norepinephrine, and cortisol

responses to hypoglycemia are blunted late in pregnancy

[45,33]. This decreased ability to produce glucose, combined

with the increased utilization of glucose by the placenta and

fetus, create a risk of developing hypoglycemia [107]. The latter

author said that despite similar findings of low plasma insulin

concentrations and suppressed glucose production in preg-

nant women, sheep and dogs, there are marked species

differences in the conditions called ‘‘pregnancy toxemia’’. In

sheep, glucose homeostasis is less well controlled during late

pregnancy than during early lactation, despite the significant-

ly higher glucose turnover during lactation than during late

gestation [179,180]. Also, in pregnant sheep, ketone body

utilization is impaired during late pregnancy, which aggra-

vates the hyperketonemia [95]. Hyperketonemia itself inhibits

hepatic glucose production, which aggravates the hypoglycemia

and hypocalcemia causes a decrease in plasma glucose

concentrations in pregnant, as well as in lactating and non-

pregnant (non-lactating sheep) [107]. In ovine, the primary cause

of pregnancy toxemia is a reduction inglucose production, rather

than the increased utilization by the fetus and placenta [180]. In
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dairy cattle, hypoglycemia and ketosis develop during the

immediate postpartum period and at peak lactation [99].

In women, the term ‘‘pregnancy toxemia’’ refers to

preeclampsia. It occurs in 5–7% of human pregnancies

[211,97]. Preeclampsia is a multisystemic disorder character-

ized by hypertension and proteinuria after 20 weeks of

gestation [195,119,122,211]. Renal failure, stroke, seizures

(eclampsia), HELLP syndrome (hemolysis (H), elevated liver

tests (EL) and low platelet count (LP)) and death are risks to the

mother [107]. The cause(s) of preeclampsia remains unknown,

but oxidative stress, inflammation, insulin resistance, obesity,

calcium imbalance, genetic factors, and antiangiogenic factors

causing endothelial dysfunction may all be involved [107].

6. Perinatal diabetes

Antenatally, insulin is secreted in response to the continuous

regulated supply of glucose across the placenta and its

primary role is one of promoting growth and fat deposition

[19]. Insulin secretion increases during the last trimester of

pregnancy and cord blood insulin levels correlate with size at

birth [64]. Postnatally, insulin’s role in glucose homeostasis

becomes paramount, secretion comes under the influence of

neural, neuroendocrine and enteroendocrine mechanisms

[19], and the insulin secretion is coupled to the enteric supply

of milk and release of incretins. Furthermore, abnormal

placentation, fetal growth retardation, death and premature

delivery are risks to the fetus [107]. However, animal studies

have demonstrated a relative lag in insulin secretion in the

newborn in response to dextrose infusion with a delayed peak

[150], and in humans there has been shown to be dispropor-

tionately elevated proinsulin levels [133]. In the perinatal

period, there is a transient wave of beta cell apoptosis and beta

cell neogenesis associated with hypoinsulinism and this is

influenced by the perinatal environment [163]. This apoptosis

may occur early postnatally or at weaning [178], and in rats it

occurs at the same time as a significant fall in the levels of

insulin growth factor 2 (IGF-II) expressions [147], and can be

prevented by over expression of IGF-II [148]. Moreover, Ref.

[148] appeared that an overexpression of IGF-II in fetal life has

a profound effect on islet morphology and causes islet

hyperplasia while reducing the attrition of islet cells by

apoptosis. Human post-mortem studies show similar evi-

dence of beta cell apoptosis with a new population of beta cells

compensating for the perinatal beta cell loss [110]. Also, in

humans, this transient insulin deficiency may be reflected in

the catabolism and early weight loss observed in all infants

[19]. Moreover, diabetic fathers (particularly multiple sub-

diabetogenic doses (MD) of streptozocin) mated with normal

females produced offspring with significantly higher juvenile

body weights than the controls (increase of approximately

0.5 g) [199]. These findings strongly suggest that any interfer-

ence with this process of remodelling may have a critical

impact on the ability of the pancreas to meet requirements for

insulin secretion in later life. Glucose crosses the placenta and

maternal hyperglycaemia during pregnancy results in in-

creased glucose concentrations in the fetus [192]. The latter

authors undertook that during pregnancy, in particular under

the influence of inappropriately high glucose concentrations,
altered brain cells, and later pancreatic beta cells, adipose and

muscle cells, and nephron development may occur, leading to

long-term consequences throughout life. It can infer that

insulin, perhaps of maternal origin, may play important roles

in perinatal development. In general, there is a balance

between cell replication, neogenesis and apoptosis during

fetal life. However, the ontogeny of insulin secretion during

fetal and early postnatal life is poorly defined and insulin

treatment in the management of preterm infants with

hyperglycaemia remains controversial.

7. Maternal teratology, embryopathy and
diabetes interactions

Both environmental factors and genetic predisposition seem

to be of importance in diabetic embryopathy [71]. Moreover,

several teratological pathways have been suggested, often

from clinical experience, and subsequently characterized in

various experimental systems. In general, the number of

different teratogenic agents identified would indicate that

diabetic embryopathy is of complex etiology [112,174,30,71].

The maternal teratogenic factors most often indicated are

hyperglycaemia [134] and ketonemia [30,142]. Major terato-

genic processes in embryonic tissues so far identified include

alterations of metabolic and signaling systems such as

metabolism of inositol [17], sorbitol [74], arachidonic acid/

prostaglandins (PG) [17], folic acid [217], and ROS [73], as well as

alterations in the activation of protein kinase C (PKC) isoforms

[86]. The embryonic formation of glycated proteins [76], and

the maternal and fetal genotypes [37] are also suggested to

influence the teratological events in diabetic pregnancy. This

part will deal with the teratological impact of diabetes

depends on excess of ROS.

Previous experimental studies have suggested that the

teratological impact of a diabetic environment partly depends

on excess of ROS in the embryo [72] as a consequence of either

increased free oxygen radical formation [73,227] or decreased

capacity of ROS-scavenging enzymes [194,229,214], or both

[71]. If the diabetic state is associated with a generalized

increase in oxidative stress, it might well be reflected in the

alterations in embryonic and fetal development during

pregnancy or causing embryonic death (abortion/miscarriage)

[49]. Previous work has also demonstrated that supplementa-

tion of antioxidative agents such as copper–zinc superoxide

dismutase (SOD) [72,73], N-acetylcysteine (NAC) [218], vita-

mins E and C [229] and folic acid [217] in vitro, as well as

butylated hydroxytoluene [75], vitamin E [36,161], vitamin C

[36], NAC [168] and folic acid [217] in vivo attenuate

malformation rate and diminish markers of oxidative stress,

e.g. by normalizing tissue levels of thiobarbituric acid-reactive

substance (TBARS) [191], isoprostane 8-iso-prostagladin (PG)

F2a [219,216] and carbonylated proteins [35]. Moreover, Ref. [72]

found that adding scavenging enzymes, e.g. SOD, catalase

(CAT) or glutathione peroxidase (GSH-Px), to the culture

medium protects rat embryos from dysmorphogenesis in-

duced by high glucose concentration in vitro. Teratogenic

concentrations of b-hydroxybutyrate or the branched chain

amino acid analogue a-ketoisocaproic acid can be blocked by

addition of SOD to the culture medium [73], and addition of



Table 2 – Prevention of the diabetic malformations during the development (modified from paper of Ref. [71]).

(1) Inositol supplementation Supplementation of inositol diminishes embryonic maldevelopment in high-glucose-exposed

embryos in vitro, as well as in fetuses of diabetic rats. No studies have been performed in

human diabetic pregnancy.

(2) Arachidonic acid supplementation Supplementation of arachidonic acid diminishes embryonic maldevelopment in

high-glucose-exposed embryos in vitro, as well as in fetuses of diabetic rats. No studies

have been performed in human diabetic pregnancy.

(3) Antioxidant supplementation Supplementation of antioxidants diminishes embryonic maldevelopment in experimental

diabetic pregnancy, both in vivo and in vitro. No studies have been performed in human

diabetic pregnancy aiming to diminish embryopathy, but vitamin E (400 IE) and vitamin C

(1 g) have been administered to non-diabetic pregnant women from early gestation

(week 18–22) and throughout pregnancy in order to prevent pre-eclampsia, however with

no significant beneficial effect [154]. Moreover, about 750 pregnant diabetic women have

been given this vitamin dose or placebo from early gestation (week 8–22) in the ongoing

Diabetes and Pre-eclampsia Intervention Trial (DAPIT), aiming to diminishing pre-eclampsia

in diabetic women [100].

(4) Folic acid supplementation Supplementation of folic acid diminishes embryonic maldevelopment in high-glucose-exposed

embryos in vitro, as well as in fetuses of diabetic rats. No studies have been performed in

human diabetic pregnancy.

d i a b e t e s r e s e a r c h a n d c l i n i c a l p r a c t i c e 9 2 ( 2 0 1 1 ) 1 5 3 – 1 6 7 159
SOD or NAC diminishes the dysmorphogenesis caused by

diabetic serum [218]. Examination of litters of diabetic rats

demonstrated lowered a-tocopherol (vitamin E) concentra-

tion in day-11 embryos and in the liver of day-20 fetuses

[191]. This suggests that long-term exposure to high glucose

creates embryonic ROS excess either from increased ROS

production [227], or from diminished antioxidant defense

capacity [130]. ROS excess may be relatively small, restricted

to particular cell populations [39], and likely to vary with

gestational time and nutritional status, making direct ROS

determinations difficult. Nevertheless, a cyclic voltametry

measurement of oxidation potential in preimplantation

rodent embryos cultured in diabetic serum indicated the

presence of ROS excess also at this stage [141]. In addition,

fetuses and embryos of diabetic rodents displayed increased

rates of DNA damage [116]. The driving cellular force behind

the diabetes-induced oxidative stress is likely to be

associated with the enhanced glucose metabolism [80,120]

in the embryonic and fetal cells exposed to the increased

ambient levels of glucose. Generally, Ref. [62] revealed that

four major molecular mechanisms have been implicated in

hyperglycaemia-induced tissue damage: (1) Activation of

PKC isoforms via de novo synthesis of the lipid second

messenger diacylglycerol; (2) Increased hexosamine path-

way flux; (3) Increased advanced glycation end product

(AGE) formation; and (4) Increased polyol pathway flux. In
Table 3 – Short- and long-range complications of offspring of

Age at
expression

Period of exposure

Fetus 1st trimester Early growth

2nd trimester Macrosomia,

3rd trimester Chronic hypo

Newborn Delivery Birth injury, r

hypomagnese

and hypervisc

Child/adult Behavior defic

and then diab
addition, it has been shown that all of these mechanisms

reflect a single hyperglycaemia-induced process: overpro-

duction of superoxide by the mitochondrial electron

transport chain [29]. However, the molecular mechanism

by which this hyperglycaemia-induced overproduction of

superoxide activates these different pathways of hypergly-

cemic damage has not been elucidated. According to Ref.

[124], antioxidant enzyme-dependent defences may play an

important role by scavenging free radicals produced under

oxidative stress. It can suppose that any disturbance

between antioxidant and ROS due to DM during the

pregnancy may lead to severe malformations in the

development of the embryo and newborns. Blocking excess

ROS activity may constitute an important therapeutic

alternative in the future (Table 2) [71]. Thus, the disturbance

in the pro/antioxidant system due to the insulin dysfunction

may retard the growth. From these findings, this review

suggests that oxidative stress occurs in the diabetic

pregnant state, which might promote maternal homeostasis

alterations. Furthermore, the above results presumed that,

the insulin-antioxidant system interactions could protect

the cells and tissues, in general, during the development

from the harmful effect of ROS due to GDM. Further studies

are required to determine if these beneficial effects result in

changes of diabetes complications only or not (inherited

program modulate them).
diabetic mothers [212].

Complications

delay and congenital anomalies.

organomegaly (selective) and nervous system development delay.

xemia and stillbirth.

espiratory distress syndrome, hypoglycemia, hypocalcemia,

mia, thrombocytopenia, polycythemia or hyperbilirubinemia

osity syndrome.

it, behavior intellect deficit and obesity (impaired glucose tolerance

etes mellitus).



Table 4 – Effect of diabetes mellitus on different developmental stages.

(A) Spermatogenesis

Diabetes can cause the following in men or experimental animals

(1) Impairment of spermatogenesis, reduced sperm count, motility, seminal fluid volume, and serum testosterone [198,132,196,8].

(2) Impotency, and loss of libido [196].

(3) Male subfertility (decreased fertility potential) by altering steroidogenesis and sperm motility [188,113].

(4) Testicular and erectile dysfunctions, and retrograde ejaculations [8].

(5) More importantly, diabetes mellitus may induce genotoxic effects during spermatogenesis [188].

(B) Oogenesis

The previous studies on diabetes have revealed that

(1) Delays the growth of preovulatory- and antral-follicles and generally oocyte maturation [38].

(2) Reduced the number of ova ovulated [155,43].

(3) Reduced the cell–cell communication between oocyte and cumulus cells [44].

(4) Increased apoptosis in the surrounding granulosa cells, up-regulation of the extrinsic apoptotic pathway, and diminished levels of a key gap

junction protein [38].

(5) Defect in the blood–follicle barrier [155].

(6) Delayed the meiotic maturation of folliculogenesis and subsequent developmental potential [43].

(7) Generally, women with type I diabetes mellitus may be placing their oocytes at risk [38].

(C) Fertilizations

(1) Fertilization rates were significantly lower in the Akita mice group (17.9%) and the streptozotocin (STZ)-injected male group (43.6%) when

compared with the normal group (88.8%) [113].

(2) Zygotes removed from STZ – or alloxan (AL)-induced hypoinsulinemic and hyperglycemic mice demonstrate retarded in vivo development to

a two-cell stage with a lower percentage of two-cell zygotes recovered at 48 h after human chorionic gonadotropin (hCG) compared with

nondiabetic controls [51].

(3) Defects in meiotic regulation brought about by the diabetic condition are due to decreased communication between the somatic and germ

cell compartments, and it is concluded that such conditions may contribute to postfertilization and developmental abnormalities [43].

(4) It is known from human studies on patients undergoing in vitro fertilization that increased cumulus cell apoptosis correlates with poorer-

quality oocytes and poor pregnancy outcome including increased rates of miscarriage [38].

(5) Generally, severe hyperglycemia caused errors in spermiogenesis and affecting fertilizing potential [5,7].

(D) Blastocysts

(1) Blastocysts retrieved from diabetic animals typically contain fewer cells than those from nondiabetic control animals [21].

(2) A significant impairment in development was seen in the embryos from diabetic mice in their rates of progression to blastocyst compared

with nondiabetic mice, despite the fact that both were cultured in identical medium conditions [51,231].

(3) High glucose alone or combined with high ketone body levels inhibited further development of blastocysts in a dose-dependent manner

[43,232].

(4) Interestingly, apoptosis was increased in the blastocysts obtained in vivo vs. those cultured in vitro in high-glucose conditions, suggesting

that this apoptosis may be occurring under the combined influence of both the extrinsic and intrinsic pathways [38].

(5) The damage to the embryo likely occurs early since almost 50% of two-cell embryos isolated from subdiabetic rats were unable to develop to

the 8-cell stage, even in a nondiabetic tract [210].

(E) Embryos

(1) High glucose concentrations in embryo culture medium lead to impaired embryo development [52,53]. This effect may be due to

downstream metabolic intermediates since developmental retardation in vitro is also observed with high concentrations of fructose,

sorbitol, or ketone bodies [173,134].

(2) Diabetes has been shown to cause delays in embryonic development [155,43]. In humans, type 1 or insulin-dependent diabetes has been

found to negatively affect pregnancy by causing poor prenatal outcomes such as an increased risk of congenital anomalies and early

miscarriage [78].

(3) Maternal diabetes has been found to adversely affect murine preimplantation embryo development in models of type 1 diabetes [40,38].

(4) Preimplantation embryos from diabetic mice that, when removed from the diabetic milieu, still experience significant developmental delay

and apoptosis by the blastocyst stage [160].

(5) Diabetes-induced inappropriate apoptosis in embryos during neurulation may be one of the mechanisms leading to neural tube defects [201].

(F) Offspring

(1) Generally, women with type I diabetes mellitus may be placing their offspring at risk [38].

(2) Exposure to maternal diabetes during oogenesis, fertilization, and the first 24 h was enough to program permanently the fetus to develop

significant morphological changes (adversely affects) [224].

(3) It seems that embryos exposed to a diabetic conditions show pronounced dysmorphogenesis, which may be induced many alterations after

the delivery. Embryos recovered in vivo at 48 h after fertilization from chemically induced diabetic mice experience an in vivo developmental

delay [38].
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8. General summary about the maternal
metabolic aberrations due to DM during pregnancy
and a serious impact from fetus to young adult

Short- and long-range complications of offspring of diabetic

mothers are presented in Table 3 [212].
9. General summary about the effect of DM on
the different developmental stages

Effect of diabetes mellitus on different developmental

stages is presented in Table 4 and Fig. 1.
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Fig. 1 – Effect of diabetes mellitus on different developmental stages.
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10. Recommendation

It is goal to encourage the early referral of both pre-

gestational and gestational diabetic women so that tight

glycemic control will be instituted at the proper time in

order to prevent maternal hyperglycaemia complications

[157,223]. At the same time, a better understanding of the

physiological, cellular and molecular mechanisms of the

developmental programming of hypertension, diabetes type

2 and eventually obesity by in utero exposure to diabetes in

pregnancy may unveil pharmacological and nutritional

targets for early prevention. The abnormal uterine environ-

ment may have deleterious effects on fetal/child metabolic

programming and lead to metabolic syndrome in

adulthood. A balanced/restricted diet and/or physical exer-

cise often improve metabolic abnormalities in individuals

with obesity and type 2 DM. This suggests that an

appropriate dietary fatty acid profile and intake during

the periconceptual/gestation/lactation period helps the

female offspring to cope with deleterious intrauterine

conditions [84]. The hypothesis may change the focus from

treatment of children and adults to prevention during early

development. It also changes the focus from classical

genetics to epigenetics and to nutrition and environmental

chemical exposures during development; most importantly,

it changes the focus from intervention to prevention. Also,

antioxidant treatment of women with diabetes may be

important in future attempts to prevent congenital mal-

formations [49].
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