Data in brief 25 (2019) 104075

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data of infrared vibration spectroscopy of cyclotriphosphates

Soufiane Zerraf^{a,*}, Malika Tridane^{a, b}, Said Belaaouad^a

 ^a Laboratory of Physical Chemistry of Materials LCPM, Faculty of Sciences Ben M'sik, Hassan II University of Casablanca, B.P. 7955, Bd Cdt Driss El Harti, Morocco
 ^b Regional Center for Education and Training Occupations Casablanca Anfa, Bd Bir Anzarane Casablanca, Morocco

ARTICLE INFO

Article history: Received 3 May 2018 Received in revised form 6 May 2019 Accepted 20 May 2019 Available online 31 May 2019

Keywords: Infrared Raman Vibration spectroscopy Cyclotriphosphates

ABSTRACT

By taking the IR spectra of several cyclotriphosphates of a resolved structure, has subsequently shown that it is possible to characterize the P_3O_9 ring by its IR spectrum and, in some favorable cases, to make them Predicted symmetry of the cycle by examining the number, profile and position of the observed infrared bands in the symmetric valence vibration of the POP (vs POP) groups. He identified criteria for each type of symmetry and discussed, using concrete examples, the limits of the infrared method in determining the symmetry of the cycle (all the possible symmetries that a P₃O₉ cycle can have). Recently, at the Laboratory, studies have been undertaken by A. ABOUIMRANE et al. [1] for the calculation of the normal IR frequencies of the P₃O₉ cycle for the ideal and real symmetries: D_{3h}, C_s and C₃ (Tables 1,2 and 3).

Published by Elsevier Inc. This is an open access article under the CC BY license https://doi.org/10.1080/10426507.2017.1333507.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

* Corresponding author.

E-mail address: soufiane.zerraf@gmail.com (S. Zerraf).

https://doi.org/10.1016/j.dib.2019.104075

^{2352-3409/© 2019} Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Subject area	Chemistry
More specific subject area	Spectroscopy
Type of data	Table
How data was acquired	Infrared and Raman spectroscopy
Data format	analyzed, calculated
Experimental factors	These calculations were conducted using the semi-empirical method, Modified Neglect of Differential Overlap
Experimental features	The calculation of the frequencies was carried out first of all for the highest symmetry that the P_3O_9 cycle can have, that of its molecular group $D_{3l\nu}$ then it was carried out for lower symmetries.
Data source location	Laboratory of Physical Chemistry of Materials LCPM, Faculty of Sciences Ben M'sik, B.P. 7955. Bd Cdt Driss El Harti. Hassan II University of Casablanca. Morocco
Data accessibility	With this article
Related research article	S. Zerraf, M. Belhabra, A.Kheireddine, R. Lamsatfi, M.Tridane, H. Moutaabbid,B. Baptiste, M. Moutaabbid, and S. Belaaouad, Reinvestigation of the crystal structure of barium cesium Cyclotriphosphate dihydrate and vibrational study, Phosphorus Sulfur Silicon Relat Elem., 192, 2017, 1286–1293 [2].

Value of the data

These data are useful for researchers working on spectral spectroscopy of cyclotriphosphates.

• These data can be used to develop the spectral vibration of the cyclotriphosphate because they contain experimental vibrations and calculated vibrations.

• The added value of these data is in the theoretical and experimental study of infrared and Raman frequencies in the different symmetric cyclotrophosphate, which contributes to the development of research in the spectral field.

1. Data

The dataset shows how to determine different types of spectral vibration, as shown in Fig. 1. Tables 1–3 refer to the frequencies to be calculated using different simulations in infrared and Raman spectroscopy. The comparison between the experimental and calculated vibration frequencies shows a total of 30 normal vibration patterns were identified for the isolated symmetry cycle D3h.The normal frequency calculation of the P3O9 cycle makes it possible to calculate the values of the internal vector component corresponding to the displacement of each atom of the cycle (see Fig. 2–4).

For each frequency, the percentage of participation of the vibrations that contributed to it was specified. The percentages of the two groups, P-Oi-P and POe2 of the ring, were calculated from the

Fig. 1. Infrared radiation.

Table 1				
Calculated IR	frequencies	for sym	metry	D _{3h} .

v_{cal} (cm ⁻¹) (%) de participation	Mode	v_{cal} (cm ⁻¹) (%) de participation	Mode
1288 v _{as} PO ₂ [99]	A''2	420 $\gamma_{w} PO_{2}$ [78]	A'2
$\begin{cases} 1272 \\ 1272 \end{cases} v'_{as} PO_2 [100] \end{cases}$	Е"	$\begin{bmatrix} 418 \\ 418 \end{bmatrix} \gamma' \text{ POP [59] } \gamma_{\text{T}} \text{ PO}_2 [41]$	Е''
1225 v's POP [98] v PO2 [2]	E'	302 δ PO ₂ [98]	A'1
$1169 v_{s} \operatorname{PO}_{2} [100]$	- A'ı	$\begin{bmatrix} 299\\299 \end{bmatrix}$ δ' POP[40] $\gamma_{\rm W}$ PO ₂ [60]	E'
$\begin{cases} 1108 \\ 1108 \\ 1108 \end{cases} v'_{as} POP [18] v_{s} PO_{2} [82] \end{cases}$	E'	281 281	
1059 v _{as} POP [100]	A'2	5^{257} δ' POP [26] $\gamma_{\rm W}$ PO ₂ [74]	E'
$\begin{cases} 781 \\ 781 v'_{s} \text{ POP } [73] \delta \text{ PO}_{2}[27] \end{cases}$	E'	~ 256 214 $\gamma_{\rm T} {\rm PO}_2 [100]$	A''1
671 υ_{s} POP [52] δ PO ₂ [48]	A'_1	49 $\gamma \text{ POP } [27] \gamma_{\text{R}} \text{ PO}_2 [73]$	A"2
$\begin{bmatrix} 559 & \text{POP } (\delta \text{cycle}) \approx [78] & \text{PO}_2 [22] \\ 511 & \gamma \text{ POP } [60] & \gamma_{\text{R}} \text{ PO}_2 [40] \\ 127 & \end{array}$	A' ₁ A'' ₂	$\begin{cases} 36\\ 34 \end{cases} \gamma' \text{ POP } [33] \gamma_{\text{R}} \text{ PO}_2 [68] \end{cases}$	Е"
$\begin{cases} 43/\\ 437 \end{cases}$ δ POP [21] δ PO ₂ [79]	E'		

 Table 2

 Calculated IR frequencies for symmetry Cs.

υ _{cal} (cm ⁻¹)	(%) de participation		mode	$v_{cal} (cm^{-1})$	(%) de participation		mode
1299	υ _{as} PO ₂ [98]		A'	427	δ' POP [24]	δ' PO ₂ [76]	A″
1280	υ _{as} PO ₂ [100]		A′	420	δ' POP [44]	δ' PO ₂ [56]	A′
1280	υ _{as} PO ₂ [100]		A″	415	γ _W PO ₂ [77]		Α″
1200	υ _{as} POP [98]	υ _s PO ₂ [2]	A″	305	δ POP [11]	δ PO ₂ [89]	A′
1188	υ _a POP [96]	$v_{s}(PO_{2})[4]$	A′	303	γ' POP [16]	γ _T PO ₂ [84]	Α″
1155	υ _s PO ₂ [98]		A′	297	δ' POP [30]	γ _W PO ₂ [70]	A′
1099	υ _{as} POP [18]	υ _s PO ₂ [82]	A″	287	γ′ POP [14]	γ _T PO ₂ [86]	A'
1095	υ _{as} POP [21]	υ _s PO ₂ [79]	A'	268	δ' POP [33]	γ _W PO ₂ [67]	Α″
1032	υ _{as} POP [94]		A″	255	δ' POP [24]	γ _W PO ₂ [76]	Α″
794	υ _s POP [77]	δ PO ₂ [23]	A″	252	δ' POP [20]	γ _W PO ₂ [80]	A'
792	υ _s POP [76]	δ PO ₂ [24]	A'	214	γ _T PO ₂ [99]		Α″
698	υ _s POP [64]	δ PO ₂ [36]	A'	104	γ POP [22]	γ _R PO ₂ [78]	A'
563	δ POP [71]	δ PO ₂ [29]	A'	89	γ′ POP [31]	γ _R PO ₂ [69]	Α″
513	γ POP [63]	γ _R PO ₂ [37]	A'	59	γ′ POP [31]	γ _R PO ₂ [69]	A'
447	γ' POP [62]	γ _T PO ₂ [38]	Α″				
447	γ' POP [49]	γ _T PO ₂ [51]	A′				

successive isotopic substitutions 31P–33P, 160i-180i and 160e-180e. It has been assumed that internal oxygens are not involved in POe2 movements and that oxygens outside the cycle are not involved in POiP movements. The behavior of the eigenvectors, the displacement of the atoms with respect to their equilibrium position, and therefore of the relative movements at each normal frequency, with respect to the elements of symmetry of the group of the isolated P309 cycle, makes it possible to specify their symmetry and consequently the normal modes Corresponding. The assignment of the cycle frequencies is made without any a priori hypothesis and without vibrational spectra [1].

These allocations (Tables 1–3) of the frequencies calculated for the corresponding modes for the symmetries D_{3h} , C_s and C_3 respectively were confirmed by the IR and Raman vibrational spectra of the compounds containing the P_3O_9 cycles of symmetry C_s (Table 5). This table shows how the normal modes change from the symmetry D_{3h} to the symmetry Cs of the isolated cycle. It shows the concordance between the values of the calculated frequencies and the experimental frequencies observed. Indeed, the IR spectra (Table 4) and those of Raman microspectrometry (Table 6) confirm the

Table 3	
Calculated IR frequencies for symmetr	у C ₃ .

v_{calc} (cm ⁻¹) (%) de participation M	lode	v_{calc} (cm ⁻¹) (%) de participation	Mode
1298 v _{as} PO ₂ [98]	А	$\begin{cases} 428 \\ 6^{2} \\ 8^{2$	E
$\begin{cases} 1280 \\ 1279 \end{cases}$ v _{as} PO ₂ [98]	Е	$414 \qquad \gamma_{W} PO_2 [77]$	A
$\begin{cases} 1182 \\ 1182 $	Е	$303 \delta PO_2$ [98]	A
$1159 v_{\rm s} {\rm PO}_2 [99]$	А	$\begin{cases} \frac{302}{301} \gamma' \text{POP} [8] \gamma_{\text{T}} \text{PO}_2 [92] \end{cases}$	Е
$\begin{cases} 1100 \\ 1098 \end{cases} v_{as} \text{ POP } [25] v_{s} \text{ PO}_{2} [75] \end{cases}$	E	$\begin{cases} 273 \\ 273 \end{cases}$ δ POP [49] $\gamma_{W} PO_{2}$ [51]	Е
1025 υ _{as} POP [99]	А	$\begin{cases} 248\\ 248 \end{cases}$ $\delta' \text{ POP [15]} \gamma_{W} \text{ PO}_{2} [85] \end{cases}$	Е
$\begin{bmatrix} 800\\799 \end{bmatrix}$ υ_{s} POP [78] δ PO ₂ [22]	Е	$216 \gamma_{\rm T} PO_2[100]$	А
706 υ _s POP [68] δ PO ₂ [32	А	102 γPOP [23] $\gamma_R PO_2$ [77]	А
558 δ POP [58] δ PO ₂ [42] 501 γ POP [72] γ _R PO ₂ [28]	A A	$\begin{cases} 80 \\ 79 \end{cases}$ γ POP [30] γ_{R} PO ₂ [70]	Е
$\begin{cases} \frac{461}{461} & \gamma' \text{ POP [61]} & \gamma_{\text{T}} \text{ PO}_2 [39] \end{cases}$	Е		

Fig. 2. IR spectra of cyclotriphosphates. (a) CoK₄(P₃O₉)₂.7H₂O, (b) NiK₄(P₃O₉)₂.7H₂O.

proposed assignments of both the valence frequencies and the deformation frequencies of the P_3O_9 cycle.

(Table 7) gives the calculated IR frequencies for the symmetries D_{3h} , C_s and C_3 and specifies their variations with respect to those calculated for the highest symmetry D_{3h} .

2. Experimental design, materials and methods

These calculations were carried out using the semi-empirical method, Modified Neglect of Differential Overlap (MNDO) [2]. Thus, the calculation made it possible to obtain, for each of the normal

Fig. 3. IR spectra of cyclotriphosphates. (a) SrNH₄P₃O₉.3H2O, (b) SrRpP₃O₉.3H2O, (c) SrKP₃O₉.3H2O.

Fig. 4. IR spectra of cyclotriphosphates. (a) ZnK4(P3O9)2.6H2O, (b) ZnRb4(P3O9)2.6H2O, (c) NiRb4(P3O9)2.6H2O.

frequencies of the P_3O_9 cycle, the values of the components of the eigenvectors corresponding to the displacements of each atom of the cycle.

For the calculated normal frequencies of the P_3O_9 cycle, the geometric variations of the elongations and angular deformations of the 12 P_3O_9 ring atoms corresponding to each were calculated. These movements made it possible to attribute the twelve fundamental valence frequencies, for which the variations of distances, P-Oe or P-Oi, are the most important at the 12 highest frequencies. Whereas for the other 18 vibrations of angular deformations the variations of the distances are zero or very small. On the basis of the atomic displacements, the valence frequencies and the deformation frequencies of the P_3O_9 cycle were distinguished and assigned.

Table 4

IR and far IR frequencies (in cm⁻¹) observed in cyclotriphosphates with a P₃O₉ cycle of symmetry C₅: SrRbP₃O₉.3H₂O (1), SrNH₄P₃O₉.3H₂O (II), SrKP₃O₉.3H₂O (II), CoK₄(P₃O₉)₂.7H₂O (IV), NiK₄(P₃O₉)₂.7H₂O (V), ZnK₄(P₃O₉)₂.6H₂O (VI), ZnRb₄(P₃O₉)₂.6H₂O (VII).

(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)
1296 (F) 1255 (F)	1289 (F) 1265 (F) 1249(m)	1306 (F) 1274 (F)	1302 (F)	1302 (F)	1284 (F) 1255 (F)	1278 (F) 1267 (F)	1281 (F) 1267 (ép)
1203 (f) 1157 (F) 1093 (F)	1160 (F) 1094 (F)	1162 (m) 1122 (F) 1097 (F)	1237 (F) 1155(m) 1102 (F)	1238 (F) 1155 (m) 1102 (F) 1091 (F)	1196 (f) 1155 (m) 1096 (F)	1196 (f) 1154 (m) 1100 (F)	1195 (f) 1159 (m) 1096 (F)
1061 (f) 989 (F) 966 (F)	995 (ép) 974 (F)	1009 (F) 972 (F)	1002 (F)	1002 (F)	1031 (F) 1014 (F)	1021 (F)	1015 (F)
862 (f) 826 (f)	860 (ép)		861 (f)	849 (f)	879 (f)	881 (f)	923 (ép) 826 (f)
766 (F) 721 (f) 700 (f) 652 (f)	769 (F) 700 (F) 662 (f) 651 (m)	767 (F) 735 (F) 682 (m) 638 (f)	770 (ép) 744 (F) 667 (f)	767 (F) 738 (F) 690 (f) 662 (m)	779 (ép) 744 (F)	08 (m) 741 (F) 641 (m)	743 (F) 679 (ép) 641 (f)
606 (f) 528 (F)	538 (F)	537 (F)	540 (m)	543 (F) 537 (ép) 529 (ép)	520 (ép)	548 (ép)	541 (ép)
517 (m)	516 (F)	512 (m) 510 (F)	521 (ép) 512 (F)	514 (F)	514 (F) 506 (ép)	514 (F)	504 (F)
498 (f) 457 (f)	$\begin{array}{l} 457 \ (m) \\ 387 \ (f) \\ 374 \ (f) \\ 364 \ (m) \\ 322 \ (m) \\ 312 \ (F) \\ 289 \ (F) \\ 215 \ (F) \\ 215 \ (F) \\ 191 \ (F) \ (Sr^{2+}) \\ 183 \ (F) \\ 161 \ (F) \\ 146 \ (m) \\ 117 \ (F) \ (NH_4^+) \\ 82 \ (m) \\ 71 \ (F) \\ 67 \ (ép) \\ 61 \ (m) \end{array}$	452 (m) 384 (m) 366 (F) 335 (m) 323 (m) 310 (m) 283 (F) 218 (F) 205 (m) 192(F)(Sr ²⁺) 172 (F) 125 (F) 109 (F)(K ⁺) 105 (F) 77 (F) 65 (f)	493 (ép) 469 (m) 412 (f) 376 (m) 354 (f) 336 (m) 323 (m) 305 (f) 295 (ép) 261 (ép) 250 (m) 229 (f) 213(f)(Co ²⁺) 174 (F) 139 (m) 130 (ép) 116(m)(K ⁺) 110(m)(K ⁺) 93 (m) 70 (m)	495 (ép) 471 (ép) 450 (ép) 412 (m) 375 (F) 326 (ép) 321 (F) 302 (m) 288 (f) 263 (m) 237 (m) 215(F)(Ni ²⁺) 198 (ép) 183 (F) 157 (F) 152 (F) 120 (F)(K ⁺) 95 (m) 80 (m) 69 (m)	486 (ép) 465 (m) 382 (f) 338 (m) 329 (ép) 314 (f) 301 (m) 273 (f) 236 (m) 205 (ép) 190(F)(Zn ²⁺) 161 (m) 124 (F) 110 (ép)(K ⁺) 92 (ép) 74 (f) 72 (f) 62 (ép)	464 (m) 400 (ép) 388 (f) 338 (m) 310 (ép) 300 (m) 271 (f) 236 (m) 183(F)(Zn ²⁺) 142 (ép) 127 (F) 95 (F)(Rb ⁺) 75 (m) 60 (f) 55 (m)	464 (m) 396 (f) 341 (F) 307 (F) 274 (m) 256 (f) 235 (m) 210(F)(Ni ²⁺) 179 (f) 150 (F) 100 (F)(Rb ⁺) 95 (F)(Rb ⁺) 72 (f)

Table 5

Assignment of the calculated frequencies to the corresponding modes for the Cs symmetry of the P₃O₉ cycle.

	Groupe	Groupe moléculaire D _{3h}			Groupe de site C _s					
	$v_{cal} (cm^{-1})$	I _{cal} (Km/mol)	Mode	Activité	v_{cal}	(cm ⁻¹)	I _{cal} (Km/mol)	NiK ₄ (P ₃ IR	O ₉) ₂ .7H ₂ O Raman	mode
	1287.75	4263.73	A"2	(IR , -)		1298.95	3698.20	1302 (F)	1283 (tf)	A'
5	1271.80	0.00	Е''	(-, Ra)	\checkmark	1280.48	83.36		1264 (tf)	A'
	1271.79	0.00				1280.40	0.45			A''
5	1225.00	7713.49	E,	(IR,Ra)	\checkmark	1200.00	7057.98	1238 (F)		A''
L	1224.94	7714.09				1187.72	7035.81		1236 (f)	A'
	1168.89	0.00	A'_1	(-, Ra)		1154.85	128.50	1155 (m)	1153 (TF)	A'
5	1108.24	451.50	E'	(IR,Ra)	\rightarrow	1098.54	571.79	1102 (F)	1096 (tf)	A''
L	1108.21	451.18				1094.95	357.70	1091 (F)	1074(m)	A'
	1059.25	0.00	A'2	(-,-)		1032.25	2.08	1002 (F)	982 (tf)	A''
								849 (f)		
{	780.69	1415.41	E'	(IR,Ra)	\rightarrow	793.90	1378.24	767 (F)	779 (tf)	A''
	780.68	1414.34				792.19	1245.65	738 (F)	768 (tf)	A'
	670.86	0.00	A' ₁	(-, Ra)		698.35	185.08	690 (f)	680 (F)	A'
								662 (m)	(2) ()	
		0.01						5 4 Q (F)	626 (f)	
	558.95	0.01	A'_1	(-, Ra)		563.09	24.34	543 (F)	540 (m)	A'
								537 (ep)		
	511.25	005 11					592.14	529(ep)	504 (0	
	511.25	885.11	$A^{\prime\prime}_{2}$	(IR, -)		513.11	583.14	514 (F)	504 (1)	A'
								495 (ep)	474 (46)	
r	436 70	1205 47	Б,	(ID Da)			244.26	4/1 (ep)	474 (u)	۸,,
	430.70	1303.47	E	(IK,Ka)		447.29	244.20	430 (ep)		A,
	430.08	1303.73	Δ,	()		447.13	1215 58			A,,,
	420.07	0.00	F,,	(-,-)		427.38	580.60		400 (áp)	<u>л</u> ,
	410.47	0.01	Б	(-, Ka)	\nearrow	420.41	10.38	412 (m)	409 (cp)	Δ,,,
	410.41	0.20				414.67	10.58	412 (III)	393 (f)	л
								375 (F)	370 (m)	
	301.96	0.01	Δ'.	(- Ra)			27.13	326 (én)	327 (f)	Δ,
r	298 71	219 76	E'	(IR Ra)		304.56	144 56	321 (F)	527 (1)	A''
+	298.67	219.66	1	(11(,1(u))		302.94	234.03	302 (m)	305 (f)	Â,
	280.95	0.04	Е''	(-, Ra)		296.75	11.24	288 (f)	294 (ép)	Â,
1	280.92	0.04		())		286.66	54.81	263 (m)	(-F)	A''
l r	256.50	6.45	E'	(IR,Ra)	× 1	268.26	18.43			A''
1	256.49	6.43			\checkmark	254.58	32.24	237 (m)	237 (tf)	A'
						251.50		× ,	~ /	
	214.13	0	A''1	(-, -)		214.46	0.00	215 (F)		A''
					 →	214.40		198 (ép)		
								183 (F)		
								157 (F)	162 (tf)	
								152 (F)		
									142 (tf)	
								120 (F) (K	(⁺)	
								95 (m)		
								80 (m)		
								69 (m)		
	40.09	17.00	۸.,				15.27			۸,
	49.08	1/.99	A^{-2}	(IK , -)	→	104.21	15.57			A',,
	33.70	0.00	Е''	$(\mathbf{D}_{\mathbf{a}})$		88.62	2.01			A_{Λ} ,
	S 34.40	0.01	Е	(-, Ka)		58.58	2.91			А

Table 6

ladie 6	
Distribution of the normal modes of vibration of the P ₃ O ₉ ³	ion in the isolated state of the various possible symmetries

Groupe	Γvib (P ₃ O ₉ ³⁻)	Activit	é	Coïncidence
Moléculaire		IR	Ra	
D _{3h}	$4 A'_{1} (Ra) + A''_{2} + 2 A'_{2} + 3 A''_{2} (IR) + 6 E' (IR, Ra) + 4 E'' (Ra)$	9	14	6
*C _{3h}	6 A' (Ra) + 6 E' (IR, Ra) + 4 A" + 4 E" (Ra)	10	16	6
*~ C _{3v}	7 A ₁ (IR, Ra) + 3 A ₂ + 10 E (IR, Ra)	17	17	7
*~ C _{2v}	10 A_1 (IR, Ra) + 5 A_2 (Ra) + 7 B_1 (IR, Ra) + 8 B_2 (IR, Ra)	25	30	25
*C ₃	10 A (IR, Ra) + 10 E (IR, Ra)	20	20	20
*C2	15 A (IR, Ra) + 15 B (IR, Ra)	30	30	30
*Cs	17 A' (IR, Ra) + 13 A" (IR, Ra)	30	30	30
Cs	16 A' (IR, Ra) + 14 A" (IR, Ra)	30	30	30
*C ₁	30 A (IR, Ra)	30	30	30

*: The currently known symmetries of the P₃O₉ ring.

Table 7
Calculated IR frequencies for the symmetries C_3 and C_s and their variations with respect to those of the symmetry D_{3h} .

Groupe molé	culaire D _{3h}	Gro	upe de site (C3	Gro			
ν (cm ⁻¹)	I	$v (cm^{-1})$	I(Km/mol)	$\Delta v (cm^{-1})$	v (cm ⁻¹)	I(Km/mol)	$\Delta v (cm^{-1})$	Mouvement
1287.75	4263.73	1297.99	3606.74	10.24	1298.95	3698.20	11.20	Uas PO2
r 1271.80	0.00	r 1279.64	369.47	7.84	r 1280.48	83.36	8.68	<u>۔</u>
1271.79	0.00	L 1278.64	367.77	6.85	L 1280.40	0.45	8.61	
1225.00	7713.49 -	1182.29	6964.05	-42.71 -	1200.00	7057.98	-25.00	-{
1224.94	7714.09	1179.72	6956.35	-45.22	1187.72	7035.81	-37.22	$\sim v_{as} POP$
- 1168.89	0.00	_ 1158.95	257.24	-9.89	- 1154.85	128.50	-14.04	$\Gamma v_{s} PO_{2}$
1108.24	451.50	1100.13	229.46	-8.11	1098.54	571.79	-9.7	1
1108.21	451.18	1098.32	180.93	-9.89	1094.95	357.70	-13.26	0 ₈ 1 0 ₂
∫ 1059.25	0.00	1024.87 ر	9.41	-34.38	1032.25 ر	2.08	-27	$\int v_{as} POP$
L 780.69	1415.41	L 799.69	1255.39	<u>19</u>	² 793.90	1378.24	13.21	
780.68	1414.34	799.40	1251.00	<u>18.72</u>	792.19	1245.65	11.51	0 ₈ 101
670.86	0.00	705.64	392.15	<u>34.78</u>	698.35	185.08	<u>27.49</u>	$v_s POP$
558.95	0.01	557.53	15.73	-1.42	563.09	24.34	-4.14	ς δ POP
511.25	885.11	500.82	508.40	-10.43	513.11	583.14	1.86	ί _{γPOP}
436.70	1305.47	427.69	1004.20	-9.01	427.38	1215.58	-9.32	δ' ΡΟ.
436.68 ر	1305.75	427.69 ر	1004.28	-8.99	420.41	580.69	-16.27	5 DO
L 420.07	0.00	L 413.98	6.51	-6.09	և 414.67	10.38	-5.4	ι _{γw} PO ₂
418.47	0.01	461.40	229.77	42.93	447.29	244.26	28.82	- V POP
418.41	0.26 .	460.80	224.71	<u>42.39</u> .	447.13	653.54	<u>28.72</u>	{ 101
301.96	0.01	303.22	92.63	1.26	304.56	27.13	2.6	δPO_2
298.71	219.76 ·	273.47	102.39	<u>-25.24</u> ·	296.75	234.03	-1.96	1
^{298.67}	219.66	r ^{272.80}	102.78	<u>-25.87</u>	c 268.26	54.81	<u>-30.41</u>	5 O POP
L 280.95	0.04	L 301.54	130.03	<u>20.59</u>	i 302.94	144.56	<u>21.99</u>	λ 2 γ'- ΡΟ-
280.92	0.04	301.28	127.68	<u>20.36</u>	286.66	11.24	5.74	Y T I O ₂
256.50	6.45	248.35	4.94	-8.15	254.58	18.43	-1.92	γ' _w PO ₂
256.49	6.43	247.67	5.63	-8.82	251.50	32.24	-4.99	
214.13	0	216.07	1.94	1.94	^C 214.46	0.00	0.33	$\gamma_T PO_2$
49.08	17.99	102.15	16.62	<u>53.07</u>	104.21	15.37	55.13	$\gamma_R PO_2$
35.78	0.00	80.06	1.51	<u>44.28</u>	88.62	0.23	<u>52.84</u>	v'a POa
34.40	0.01	78.96	1.47	44.56	58.58	2.91	<u>24.18</u>	1 R 1 O2

References

- [1] A. Abouimrane, Thèse de Doctorat, Faculté des Sciences Ben M'Sik, Casablanca. Maroc, 2000.
- [2] S. Zerraf, M. Belhabra, A. Kheireddine, R. Lamsatfi, M. Tridane, H. Moutaabbid, B. Baptiste, M. Moutaabbid, S. Belaaouad, Phosphorus, Sulfur, and Silicon 192 (2017) 1286–1293.