

Optimization of invertase production from *Saccharomyces cerevisiae* by solid state fermentation

Ali Jabbar Resheg AL-Sa'ady*

Biotechnology Dept. College of Science, University of Baghdad, Iraq

* Corresponding author Ali Jabbar Resheg AL-Sa'ady; email: ali.jabbar15@yahoo.com

Received: 03 May 2014

Accepted: 15 May 2014

Online: 23 May 2014

ABSTRACT

Three *Saccharomyces cerevisiae* isolates from different sources (China, Turkey and Egypt) were screened by culturing on solid state fermentation to select the most efficient isolate for invertase production. *Saccharomyces cerevisiae* from China was high specific activity 34.7 U/mg. The optimum conditions for enzyme production from this isolate were determined by using a medium composed of wheat bran moisten with corn steep liquor 1:0.5 (v:w) at initial pH 5.0 for 5 days at 30°C.

Keywords: Saccharomyces cerevisiae; Invertase; Optimization; Solid state fermentation

INTRODUCTION

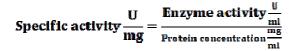
Saccharomyces cerevisiae is a species of yeast. It is perhaps the most useful yeast, having been instrumental to winemaking, baking, and brewing since ancient times. It is believed that it was originally isolated from the skin of grapes (one can see the yeast as a component of the thin white film on the skins of some dark-color fruits such as plums; it exists among the waxes of the cuticle). It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like Escherichia coli as the model bacterium. It is the microorganism behind the most common type of fermentation [1]. Saccharomyces cerevisiae is currently the only yeast cell that is known to have berkeley bodies present, which are involved in particular secretory pathways [2]. Saccharomyces cerevisiae produces an extracellular beta-Dfructofuranoside fructohydrolase (invertase) when grown on a medium containing beta-fructofuranosides sucrose or raffinose, indicating that synthesis is subjected to induction by the substrate [3]. Expression of invertase in the *Saccharomyces cerevisiae* is greatly delayed when derepression occurs in a medium that lacks a usable carbon source [4]. Saccharomyces inverts sugar but inversion is often endocellular, without enzyme released into the medium [5]. Invertase (B-Fructofuranosidases) (EC 3.2.1.26) is enzyme that is capable of hydrolyzing substrates with terminal fructosyl groups. Most B-fructofuranosidases have been

shown to hydrolyze sucrose to release glucose and fructose and to possess fructosyltransferase activity for the synthesis of short-chain fructooligosaccharides [6]. Invertase is one of the most widely used enzymes in food industry, especially in the preparation of jams and candies [7]. The enzyme is a glycoprotein, with some residues of mannose being the major component of the carbohydrate moiety. Invertase is mainly used in the food industry, where fructose is preferred over sucrose because it is sweeter and does not crystallize easily [8]. Invertase is seriously limited because another enzyme, glucose isomerase, can be used to convert glucose to fructose at lower costs [9].

MATERIALS AND METHODS

Media and chemicals

Potato-dextrose agar (PDA) was obtained from himedias, Coomassie brilliant blue, protein standards and other chemicals were supplied by BDH Chemicals.


Screening of invertase producing isolates

Isolates efficiency for invertase production were screened according to the method described by Alegre, *et al.* (2009) [10]. The screening was performed by culturing *Saccharomyces cerevisiae* from different sources (China, Turkey and Egypt) on solid medium containing 10 gram from red carrot powder pH 5.5 with moisture ratio 1:1(v:w), and inoculated with

Saccharomyces cerevisiae 1.6×10^6 cells/ml. The cells number was estimated by direct microscopic counting using haemocytometer. After 4 days of incubation at 30 °C, enzyme activity and protein concentration were estimated, and the most efficient isolate for invertase production was selected.

Estimation of invertase activity and protein concentration

Invertase activity was estimated in solutions resulted after extraction of the enzyme by (0.1 M) sodium acetate at pH 4.8, using the method described Miller which depends on sucrose as substrate (substrate concentration 1% in sodium acetate). One unit of enzyme activity (IU) is defined as the amount of enzyme which liberates 1 micro moles of glucose/ ml /minute under the assay condition. Protein concentration was estimated according to the method described by bradford depending on bovine serum albumin standard curve using coomassie blue G-250, measured at 595 nm [11,12]. The specific activity was determination by using following equation:

Optimization for invertase production

Many factors that influence invertase production from selected *Saccharomyces cerevisiae* had been studied; these factors included type of carbon source, moisture ratio, and initial pH of the medium, nitrogen source, incubation temperature and period of incubation.

Optimum carbon source

Eight carbon sources were tested to determine the optimum carbon source for invertase production from selected isolate; these sources were apple pomace, grape juice residue, red carrot, wheat bran, corn, lemon pomace, orange pomace and sugarcane bagasse. All sources were washed with tap water then sliced to small pieces and dried. These dried parts were grinded until they became powder. 10 gm of each one was moistened with 10 ml distilled water pH 5.5 in 250 ml flask, and inoculated with *Saccharomyces cerevisiae* 1.6 × 10⁶ cells/ml, then incubated at 30°C for four days.

Moisture ratio

Ten gram of wheat bran was moistened with different volumes of distilled water. Different moisture ratios were tested 1:0.5, 1:0.75, 1:1, 1:1.25 and 1:1.5 (w:v) to select the optimum moisture for invertase production.

Optimum pH

Production media was distributed into flasks, the pH was then adjusted to 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, and then inoculated with *Saccharomyces cerevisiae*, and it was then incubated at 30 °C for 4 days. The invertase activity was determined after incubation to determine the optimum pH for invertase production.

Moisturizing solution

Different nitrogen sources described by Shankar, *et al.*, (2013) [13], were examined to determine the best nitrogen source for invertase production from selected *Saccharomyces cerevisiae*. These nitrogen sources are: ammonium chloride, urea, Yeast extract, ammonium sulphate, peptone, gelatin, potassium nitrate, calcium nitrate and corn steep liquor. They were tested individually at the concentration of 0.5% dissolvent in Distilled water. Distilled water used as control treatment. 5 ml of each solution was added separately to 10 gm of wheat bran in 250 ml flask, and inoculated with *Saccharomyces cerevisiae* 1.6 × 10⁶ cells/ml, then incubated at 30^oC for four days.

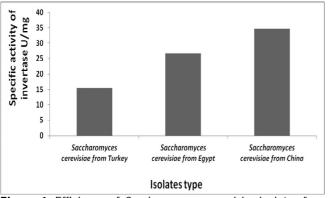
Incubation temperature

The culture which consist of the medium contained on wheat bran (10 gm), corn steep liquor (5 ml) and pH 5.0, inoculated with 1.6×10^6 cells/ml of selected *Saccharomyces cerevisiae* was incubated in different temperature degrees (30, 35, 40, 45, 50) °C to find the optimum incubation temperature for enzyme production.

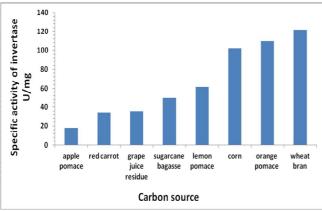
Incubation period

After inoculation the medium wheat bran (10 gm), corn steep liquor (5 ml) and pH 5.0 with 1.6×10^6 cells/ml of selected *Saccharomyces cerevisiae*, the culture was incubated at 30 °C and checked every day for 7 days to estimate enzyme activity, protein concentration and specific activity for invertase.

RESULTS AND DISCUSSION


Screening of invertase producing isolates

In order to examine the most efficient isolate for production, all yeast invertase isolates of Saccharomyces cerevisiae were recultured on solid state fermentation. The culture was incubated for 4 days, at 30 °C. Results showed different efficiencies in invertase production. The most efficient isolate produces the higher specific activity as in figure (1). Saccharomyces cerevisiae from China was high specific activity 34.7 U/mg, while Saccharomyces cerevisiae from Turkey and Egypt with 15.5 U/mg and 26.7 U/mg respectively. Difference between isolates for invertase production reverting to isolate source, genetic content and isolates production methods.


Optimum carbon source:

Eight carbon sources were tested for their efficiency in invertase production. These sources were apple pomace, grape juice residue, red carrot, wheat bran, corn, lemon pomace, orange pomace and sugarcane bagasse, (Figure 2). The highest activity is shown in wheat bran with specific activity 121.5 U/mg, while apple pomace, grape juice residue, red carrot, corn, lemon pomace, orange pomace and sugarcane bagasse showed specific activities as follows 18 U/mg, 35.37 U/mg, 33.7 U/mg, 102.2 U/mg, 61.4 U/mg, 110 U/mg and 49.7 U/mg, respectively. This indicates that wheat bran is the most efficient source for invertase production from *Saccharomyces cerevisiae*, because

wheat bran has been mentioned as a good carbon source owing to its nutritional characteristics, such as 14% proteins, 27% carbohydrates, 5% minerals, 6% fatty acids, vitamin B and 64% nitrogen. These results were similar to the results of Giraldo, *et al.*, [14], who proved that production of invertase from *Paecylomyces variotii* depends on changing the media components, and found that wheat bran was efficient medium for invertase production from same isolate. While Mazutii *et al.*, [15] found that the best medium for invertase production from *kluyveromyces marixianus* was sugar cane bagasse with corn steep liquor.

Figure 1. Efficiency of *Saccharomyces cerevisiae* isolates for invertase production using red carrot pH 5.5, incubation for 4 days at 30 °C.

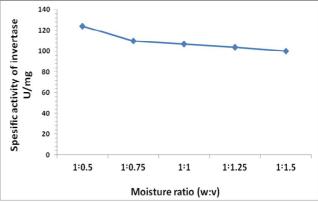


Figure 2. Effect of different carbon source on invertase production from *Saccharomyces cerevisiae*, pH 5.5, incubation for 4 days at 30 °C.

Moisture ratio

To determine the best moisturizing ratio for invertase production from *Saccharomyces cerevisiae*, five proportions were used. These results prove that the highest specific activity of invertase produced from *Saccharomyces cerevisiae*, was obtained from the moisture ratio 1:0.5 (w:v), with specific activity 124 U/mg (figure 3). While the ratio 1:0.75, 1:1, 1:1.25 and 1:1.5 (w:v), gave 110, 107, 104 and 100 U/mg respectively. Rashad and Nooman [16], found that the optimum moisture ratio for invertase produced from *Saccharomyces cerevisiae* was 90 %. Bansal *et al.*, [17], found that the optimum moisture ratio for invertase produced from *Saccharomyces uvarum* was 1:0.5 (w:v). Most of solid substrates used in solid state fermentation are insoluble in water, therefore water

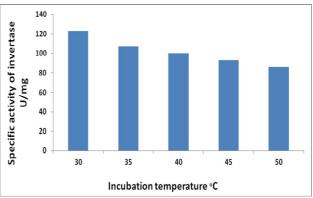
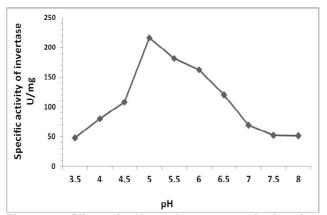
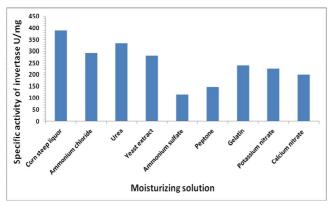

will have to be absorbed onto the substrate particles, which can be used by the microorganisms for growth and metabolic activity [18]. Thus, it is concluded that the degree of hydration of the substrate plays an important role in the growth of the fungi and subsequently the enzyme production. Water causes the swelling of the substrate and facilitates good utilization of substrates by the microorganisms. Increasing moisture level is believed to have reduced the porosity of substrate, thus limiting the oxygen transfer into the substrate [19, 20]. Likewise, a lower moisture ratio leads to reduced solubility of the nutrients of the solid substrate, lower degree of swelling and a higher water tension [21].

Figure 3. Effect of moisture ratio on invertase production from *Saccharomyces cerevisiae*, using wheat bran pH 5.5, incubation for 4 days at 30 °C.

Incubation temperature


The culture which consist of the medium (wheat bran) with pH 5.5, inoculated with 1.6×10^6 cells of *Saccharomyces cerevisiae* was incubated in different temperature degrees (30, 35, 40, 45, 50) °C to find the optimum incubation temperature for enzyme productivity. The result in Figure (4) shows that the optimum incubation temperature is 30 °C which gave the specific activity of 123 U/mg. Lower and higher temperatures decreases the specific activities because of the thermal effects of these temperatures on the microorganism growth and on the enzymatic reaction rate inside the cells which reflects on the vital creation of the enzyme. This result of *Saccharomyces cerevisiae* culture agrees with Aslam [24].


Figure 4. Effect of Incubation temperature on invertase production from *Saccharomyces cerevisiae*, using wheat bran pH 5.5, incubation for 4 days.

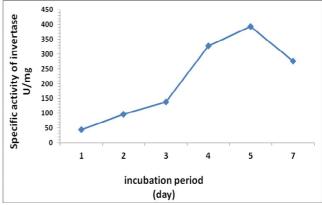
Optimum pH

The specific activity of invertase was estimated after incubation to determine the optimum pH and the results were illustrated in figure (5), the optimum pH for enzyme activity was 5.0 because gave high specific activity 216 U/mg, while pH 3.5, 4, 4.5, 5.5, 6, 6.5, 7, 7.5 and 8, gave 48, 80, 108, 181.3, 162, 120, 69, 52 and 51 U/mg respectively. Uma, et al. [5], found the optimum pH for invertase production from Aspergillus flavus was 6.0, while Uma, et al. [22], found the optimum pH for invertase production from Cladosporium cladosporioides was 5.0. Fungi generally prefer slightly acid conditions and therefore tend to dominate bacteria when these prevail. The reason for the growth rate falling away either side of the optimum value is again due to alterations in three-dimensional protein structure [20]. The pH affects in enzyme production because of its role in the solubility of medium substrates and its effect on the ionization of the substrate and it's availability for the fungal growth. Moreover the pH affects the productivity and enzyme stability.

Figure 5. Effect of pH on invertase production from *Saccharomyces cerevisiae*, using wheat bran, incubation for 4 days at 30 °C.

Figure 6. Effect of Moisturizing solution on invertase production from *Saccharomyces cerevisiae*, using wheat bran pH 5.0, incubation for 4 days at 30 °C.

Moisturizing solution


To determine the best moisturizing solution for invertase production, nine different solutions ammonium chloride, urea, Yeast extract, ammonium sulphate, peptone, gelatin, potassium nitrate, calcium nitrate and corn steep liquor. corn steep liquor gave the highest activity 389 U/mg, while ammonium chloride,

http://crmb.aizeonpublishers.net/content/2014/3/crmb373-377.pdf

urea, yeast extract, ammonium sulfate, peptone, gelatin, potassium nitrate and calcium nitrate gave 293, 334.5, 282.9, 114, 148, 240, 227, 200 U/mg respectively (figure 6). Aslam [23], found that the best moisturizing solution for invertase production from *Saccharomyces cerevisiae* was peptone.

Incubation period

The results in figure (7) show the effect of incubation period 24– 168 hrs. on invertase production from *Saccharomyces cerevisiae*. The highest specific activity was at 5 days of incubation 393 U/mg. This result agree with the result by Aslam [23], while Rashad and Nooman [16], found that best Incubation period for invertase production from *Saccharomyces cerevisiae* was 4 days.

Figure 7. Effect of Incubation period on invertase production from *Saccharomyces cerevisiae*, using wheat bran pH 5.0, incubation at 30 °C.

The enzyme production decreases after 5 days of incubation is due to the production of reducing sugar such as glucose and fructose in culture medium which may lead to repression of invertase production because these sugars are more readily carbon source than sucrose. This decrease in enzyme production occurred as a result of the reduction in nutrients of the medium and as a result of accumulation the catabolic repression of enzyme [16].

REFERENCES

- Badotti, F.; Dário, M.G.; Alves, S.L.A.; Cordioli, M.L.A.; Miletti, L.C.; Araujo, P.S. and Stambuk, B.U., (2008). Switching the mode of sucrose utilization by *Saccharomyces cerevisiae*. Microbial Cell Factories. 1-11.
- Karathia, H.; Vilaprinyo, E.; Sorribas, A. and Alves, R. (2011). Saccharomyces cerevisiae as a Model Organism: A Comparative Study. 6(2): 1-10.
- Stefanini, I.; Dapporto, L.; Legras, J.-L.; Calabretta, A.; Di Paola, M.; De Filippo, C.; Viola, R.; Capretti, P.; Polsinelli, M.; Turillazzi, S.; Cavalieri, D., (2012). "Role of social wasps in *Saccharomyces cerevisiae* ecology and evolution". Proceedings of the National Academy of Sciences. 109 (33): 13398–403.
- UI-Haq, A. and Mukhtar, H., (2006). Kinetics of Invertase Synthesis by *Saccharomyces cerevisiae* in Synthetic Medium. International Conference on Natural Resources Engineering & Technology Putrajaya, Malaysia. 138-145.
- Uma, C.; Gomathi, D.; Muthulakshmi. C. and Gopalakrishnan, V.K., (2010). Production, Purification and Characterization of Invertase by *Aspergillus flavus* using Fruit Peel Waste as Substrate. Advances in Biological Research 4 (1): 31-36.
- Du, L. ; Pang, H. ; Wang, Z. ; Lu1, J. ; Wei1, Y. and Huang, R., (2013). Characterization of an Invertase with pH Tolerance

and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH. National Natural Science Foundation of China. 138-145.

- 7. Veana, F. ; Aguilar, C.N. and Herrera, R.R. (2011). Kinetic studies of invertase production by xerophilic *Aspergillus* and *Penicillium* strains under submerged culture. *Micol. Apl. Int.* 23(2): 37-45.
- Qureshi, A.S.; Khushk, I.; Bhutto, M.A.; Dahot, M.U.; UI-Haq, A.; Bano, S. and Iqbal. H., (2012). Production and partial characterization of invertase from *Mucor geophillus* EFRL. African Journal of Biotechnology. 11(47): 10736-10743.
- 9. Faiza, A. ; Haq, N.B. ; Muhammad, A., (2010). Partial purification and characterization of an acid invertase *Saccharum officinarum* L. Pak. J. Bot. 42(4): 2531-2540.
- Alegre, A.C.P.; Polizeli, M.L.M.; Jorge, H.F.J. and Guimaraes, L.H.S., (2009). Production of thermostable invertase by *Aspergillus caespitosus* under submerged or solid state fermentation using agroindustrial residues as carbon source. Brazilian Journal of Microbiology. 40: 612-622.
- 11. Miller, G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31: 426-428.
- 12. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem., 72 : 248-254.
- Shankar, T.; Thangamathi, P.; Rama, R. and Sivakumar, T., (2013). Optimization of Invertase Production Using Saccharomyces cerevisiae MK Under Varying Cultural Conditions. International Journal of Biochemistry and Biophysics. 1(3): 47-56.
- Giraldo, M.A.; Silva, T.M.; Salvato, F.; Terenzi, H.F.; Jorge, J.A. and Guimaraes, L.H.S., (2012). Thermostable invertases from *Paecylomyces variotii* produced under submerged and solidstate fermentation using agroindustrial residues. World J. Microbiol Biotechnol. 28:463–472.
- 15. Mazutii, M. ; Bender, J. P. ; Treichel, H. and Di Luccio, M. (2006). Optemization of invertase production by soild state

fermentation using sugarcane bagasse as substrate. J. Biotechnol. 12: 1123-1131.

- Rashad, M.M. and Nooman, M.U. (2009). Production, Purification and Characterization of Extracellular Invertase from *Saccharomyses Cerevisiae* NRRL Y-12632 by Solid-State Fermentation of Red Carrot Residue. Australian Journal of Basic and Applied Sciences. 3(3): 1910-1919.
- Bansal, M.; Gupta, S.; Pal, U.S. and Pal, A., (2013). Production of invertase by fermentation. International Journal of Pharmacy and Integrated Life Sciences. 1(I2):55-66.
- Pandey, A. (1992). Recent process developments in solidstate fermentation. Process Biochem J. 27: 12-17.
- 19. Raimbault, M. and Alazard, D. (1980). Culture method to study fungal growth in solid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 9: 199-209.
- Moat, A. G. ; Foster, J. W. and Spector, M. P. (2002). Microbial Physiology. 4th ed. Wiley-Liss, Inc., New York. 1: 1-28.
- Ikasari, L. and Mitchell, D. A. (1994). Protease production by *Rhizopus oligosporus* in solid-state fermentation. Appl. Microbiol. Biotechnol. 10: 320-324.
- Uma, C. ; Gomathi1, D. ; Ravikumar, G. ; Kalaiselvi, M. and Palaniswamy, M. (2012). Production and properties of invertase from a *Cladosporium cladosporioides* in SmF using pomegranate peel waste as substrate. Asian Pacific Journal of Tropical Biomedicine. S605-S611.
- 23. Aslam, A., (2006). Studies on the submerged fermentation of invertase by *Saccharomyces cerevisiae*. Institute of Industrial Biotechnology GC University, Lahore. 1-196.

© 2014; AIZEON Publishers; All Rights Reserved

This is an Open Access article distributed under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
