
Information Sciences 181 (2011) 1741–1758
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Design and implementation of a t-way test data generation strategy
with automated execution tool support

Kamal Z. Zamli a,⇑, Mohammad F.J. Klaib a, Mohammed I. Younis a,
Nor Ashidi Mat Isa a, Rusli Abdullah b

a School of Electrical and Electronic Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
b Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 22 January 2009
Received in revised form 25 October 2010
Accepted 1 January 2011
Available online 12 January 2011

Keywords:
GTWay
Software testing
t-way testing
Combinatorial testing
0020-0255/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.ins.2011.01.002

⇑ Corresponding author. Tel.: +60 4 5996003; fax
E-mail addresses: eekamal@eng.usm.my (K.Z. Z

(N.A.M. Isa), rusli@fsktm.upm.edu.my (R. Abdullah)
To ensure an acceptable level of quality and reliability of a typical software product, it is
desirable to test every possible combination of input data under various configurations.
However, due to the combinatorial explosion problem, exhaustive testing is practically
impossible. Resource constraints, cost factors, and strict time-to-market deadlines are
some of the main factors that inhibit such a consideration. Earlier research has suggested
that a sampling strategy (i.e., one that is based on a t-way parameter interaction) can be
effective. As a result, many helpful t-way sampling strategies have been developed and
can be found in the literature.

Several advances have been achieved in the last 15 years, which have, in particular,
served to facilitate the test planning process by systematically minimizing the test size
required (based on certain t-way parameter interactions). Despite this significant progress,
the integration and automation of strategies (from planning process to execution) are still
lacking. Additionally, strategizing to sample (and construct) a minimum test set from the
exhaustive test space is an NP-complete problem; that is, it is often unlikely that an effi-
cient strategy exists that could regularly generate an optimal test set. Motivated by these
challenges, this paper discusses the design, implementation, and validation of an efficient
strategy for t-way testing, the GTWay strategy. The main contribution of GTWay is the
integration of t-way test data generation with automated (concurrent) execution as part
of its tool implementation. Unlike most previous methods, GTWay addresses the genera-
tion of test data for a high coverage strength (t > 6).

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

To ensure quality assurance and improve reliability, software testing [8–10] is an important phase in any software engi-
neering life cycle. Lack of testing often leads to disastrous consequences, including the loss of data, fortunes, and even lives.
For these reasons, many input parameters and system conditions need to be tested against the system’s specification for con-
formance. Although desirable, exhaustive testing [22] is next to impossible due to resource and time constraints.

Earlier studies [12,19] suggested that pairwise testing (i.e., based on the two-way interaction of variables) is effective
in detecting most faults in a typical software system. While this conclusion may apply to some systems, it cannot be
generalized to all of the faults found in a software system, especially when there are significant interactions between the
. All rights reserved.

: +60 4 5941023.
amli), momklaib@yahoo.com (M.F.J. Klaib), younismi@gmail.com (M.I. Younis), ashidi@eng.usm.my
.

http://dx.doi.org/10.1016/j.ins.2011.01.002
mailto:eekamal@eng.usm.my
mailto:momklaib@yahoo.com
mailto:younismi@gmail.com
mailto:ashidi@eng.usm.my
mailto:rusli@fsktm.upm.edu.my
http://dx.doi.org/10.1016/j.ins.2011.01.002
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

1742 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
variables. Recently, empirical evidence has suggested the need for high levels of interaction (t > 2). For instance, Dunietz et al.
[23] demonstrated that, while two-way interaction provides good block coverage, the path coverage is rather poor. Based on
empirical evidence in four application domains (involving medical devices, a web browser, an HTTP server, and a NASA-dis-
tributed database application [32,33]), Kuhn et al. concluded that all faults in any typical software system can be detected at
t = 6. Using a different application domain, Younis and Zamli demonstrated that only after t = 7 can the behavior of the com-
binatorial circuits of interest be predicted for reverse engineering applications [59].

Given the potentially diverse current (and future) applications of t-way strategies, there is a clear need to aim for a high
interaction strength (i.e., t > 6) to allow for the possibility of a new intertwined dependency between the involved parame-
ters. As indicated by the number of newly developed strategies surveyed in Section 2, a great deal of progress has already
been made. However, despite this progress, the integration and automation of the strategies (from the generation to
execution) appear to be lacking. Currently, sampled t-way test data need to be manually extracted and converted into an
acceptable format before they can be executed (e.g., by a human tester, by a code driver or by a third party execution tool).
This lack of integration and automation between test generation and execution can potentially burden test engineers,
especially if the application module to be tested is significantly large.

Apart from the integration and automation issues, constructing the minimum test set for t-way testing is also an NP-com-
plete problem [45,49]; that is, it is unlikely that an efficient algorithm exists that could regularly generate an optimal test set
[45]. Motivated by these challenges, this paper discusses the design, implementation, and validation of an efficient strategy,
called GTWay. The main contribution of GTWay is the integration of t-way test data generation with automated (concurrent)
execution as part of its tool implementation. Furthermore, unlike most previous studies, GTWay addresses the generation of
test data for a high strength of coverage (i.e., t > 6).

The structure of this paper is as follows: Section 2 outlines the related work. Section 3 describes the GTWay strategy. Sec-
tion 4 discusses our evaluation of the GTWay strategy. Finally, Section 5 gives our conclusion and highlights some future
work.
2. Related work

There has been a significant effort to develop new t-way strategies. In general, these strategies adopt either algebraic or
computational approaches [14,35].

As the name suggests, algebraic approaches are often based on the extensions of mathematical functions to construct
orthogonal arrays (OA) [7,39]. Although useful, most OA-based approaches require the parameter values to be uniform,
hence, restricting their application. While mutual orthogonal arrays (MOA) allow non-uniform values, not all OA and
MOA solutions exist [46]. In tackling this issue, some variations in OA- and MOA-based approaches [48,53] have been pro-
posed as flexible alternatives that support test generation even in the absence of an OA solution. Nonetheless, most OA- and
MOA-based approaches merely support pairwise strategies (or two-way interactions).

Frequently, strategies that are based on algebraic approaches are extremely fast [35] because the computations are typ-
ically lightweight. Nonetheless, algebraic approaches often impose restrictions on the system configurations to which they
can be applied [61] (with some fixed generalizations/assumptions). These restrictions significantly limit the applicability of
algebraic approaches for software testing.

Unlike algebraic approaches, computational approaches, sometimes referred to as t-way strategies, often rely on the gen-
eration of all interaction possibilities. There is a significant searching effort required in the combinatorial space to generate
the required test suite until all interactions are covered. In cases where the number of interactions to be considered is large,
adopting computational approaches can be expensive, in terms of both the storage space needed for interactions and the
time required to make an explicit enumeration. On a positive note, computational approaches can be applied to arbitrary
system configurations. Furthermore, computational approaches are more adaptable for constraint handling [18,25] and test
prioritization [4].

A number of useful strategies have been developed for t-way testing over the last decade. A significant number of studies
have focused on pairwise (t = 2) strategies, such as Automatic Efficient Test Generator (AETG) [12,13], Orthogonal Array Test
System (OATS) [39], Intersection Residual Pair Set Strategy (IRPS) [60], AllPairs [2], In Parameter Order (IPO) [37], Test Case
Generator (TCG) [50], Orthogonal Array Test Set Generator (OATSGen) [30], ReduceArray2 [21], Deterministic Density Algo-
rithm (DDA) [20], CTE-XL [34], and SmartTest [47]. As interaction is limited to t = 2, pairwise strategies yield the minimum
test set, unlike higher orders of t. Although useful in some classes of systems, pairwise testing is known to be ineffective for
systems with highly interacting variables [31,36]. For this reason, we shall focus our general strategy on t-way test gener-
ation. Thus, what follows is our survey on the existing strategies that support both pairwise interactions and higher orders of
t (t P 2).

Hartman et al. developed IBM’s Intelligent Test Case Handler (WHITCH) as a Java plug-in integrated into Eclipse tool [26].
WHITCH uses sophisticated combinatorial algorithms (based on exhaustive searches) to construct test suites for t-way test-
ing. Although useful as part of IBM’s automated test plan generation, WHITCH results are not optimized with regard to the
number of generated test cases. Furthermore, due to its exhaustive search algorithm, WHITCH typically takes a long time to
execute.

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1743
Jenkins developed a deterministic t-way generation strategy called ‘‘Jenny’’ [28]. Jenny adopts a greedy algorithm to pro-
duce a test suite in a one-test-at-a-time fashion. In Jenny, each feature has its own list of t-way interactions. Jenny begins
with one-way interactions (just the feature itself). When there are no further one-way interactions left to cover, Jenny shifts
to two-way interactions (this feature with another feature), etc. Thus, during generation, one feature continues to cover a
two-way interaction while another feature begins working on three-way interactions. This process continues until all inter-
actions have been covered.

Complementary to the aforementioned works, significant efforts have been made to extend the existing pairwise strat-
egies (e.g., AETG and IPO) to support t-way testing. AETG starts with the generation of all possible parameter interactions.
Based on all of the possible parameter interactions, AETG chooses a combination of values to maximize interaction coverage,
building an efficient test set for the system. This selection process is performed ‘‘one-test-at-a-time’’ until all parameter
interactions have been covered [11,13]. To enhance capability (i.e., to improve the test size), variants of AETG implementa-
tions are been developed, such as mAETG [14–19] and TCG [14,50].

Unlike AETG, IPO covers ‘‘one-parameter-at-a-time’’ through horizontal and vertical extension mechanisms, achieving a
lower order of complexity than AETG [49]. As a t-way strategy, IPO has been extended into IPOG. Briefly, IPOG extends the
‘‘one-parameter-at-a-time’’ approach of IPO to support a higher t. The interaction parameters are first generated as a partial
test suite that is based on the number of parameters and the interaction values. The test suite is then extended with the
values of the next parameters using horizontal and vertical extension mechanisms. Horizontal extension extends the
partial test suite with values of the next parameter to cover the maximum number of interactions. Upon completion of
horizontal extension, vertical extension may be summoned to generate additional test cases that cover all of the uncovered
interactions. More recently, a number of variants have been developed to improve IPOG performance (IPOG-D [35]; IPOF
and IPOF2 [24]).

Arshem developed a freeware Java-based t-way testing tool called Test Vector Generator (TVG) [1], which extends the
AETG strategy to support t-way testing [42–44]. Similar efforts have also been undertaken by Bryce and Colbourn to enhance
AETG for t-way testing [5,6]. Nie et al. proposed a generalization of IPO with a genetic algorithm (GA), referred to as IPO_N
and GA_N for t = 3. IPO_N performed better than GA_N in terms of test size and execution time [41].

Williams implemented a deterministic Java-based t-way test tool called Test Configuration (TConfig) [53]. TConfig
consists of two strategies: recursive algorithm (RE) for t = 2 [55,56] and IPO for 2 6 t 6 6 [52]. Williams reported that the
recursive algorithm failed to cover all interactions for t > 2 [54]. For this reason, TConfig uses a minor version of IPO to cover
the uncovered interactions in a greedy manner [54].

Finally, based on the analysis of the available algebraic and computational strategies, it is evident that, while most strat-
egies strive to obtain the optimal test set, little attention has been given to support high interaction strengths (t > 6) or to
automate the execution process in the tool implementation. GTWay serves as our research vehicle to investigate these
issues.

3. Overview of the GTWay strategy

Within the context of software testing, GTWay is summarized in Fig. 1. GTWay is intended to assist test generation and
execution.

Based on our earlier work on a pairwise strategy [29], the main algorithms forming the GTWay strategy are the parser
algorithm, the t-way pair generation algorithm, the backtracking algorithm, and the executor algorithm (Fig. 2).
Base Test
Cases

Module
Under Test

Pass

Conformance
Analysis

 Test Outcome

T-Way
Combinatorial

Test Set

GTWay

Automated
Test

Execution

Failure
Empirical Data

Requirements
Specification Analysis

 XFail

√

Fig. 1. Overview of GTWay.

Test
Engineer

GTWay
Base

Test Data

Log

executes

selects

maintains

Generated Test
Data

loads

generates

specifies

Module Under Test

observes
T-Way Pair
Generation
Algorithm

creates

Backtracking
Algorithm

Executor Algorithm
P

ar
se

r
A

lg
or

ith
m

loads

Fig. 2. Overview of the GTWay strategy and its implementation.

1744 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
To initiate GTWay, the base test data must be manually specified using a special markup language, which is based on our
earlier work [62]. Fig. 3 illustrates a snapshot of a specification of the base input test data expressed using the markup lan-
guage (the keywords are shown in bold). Apart from capturing the input test data, the markup language also defines the val-
ues, data types, and access scopes, as well as describes the methods/functions that need to be tested. As discussed below, this
information will be used by the executor algorithm to execute the test data by automatically generating a code driver to
automate the actual testing process.

Upon execution of the GTWay strategy, the parser algorithm loads the parameters and values to be used by the t-way pair
generation algorithm (discussed below). Then the parser algorithm represents the parameters and values by a symbolic rep-
resentation for manipulation. Using this symbolic representation, the t-way pair generation algorithm can then generate the
required t-way pairs.

Iterating through the t-way pairs, the backtracking algorithm generates the complete t-way test set. Upon completion, the
backtracking algorithm forwards the results to the executor algorithm, which remaps the symbolic representation to actual
values and then executes the test set.

3.1. The parser algorithm

The parser algorithm (Fig. 4) parses the module under the test information (specified in the fault file) to capture the nec-
essary keywords and values to be used in the t-way generation and execution (e.g., className, methodName, paramNo,
paramTypes, and returntype). In addition, the parser algorithm maps the actual values into symbolic representations and
loads them into the parameter and value set. The rationale for mapping the actual values into symbolic representations is
to ease the computation of merging and matching the t-way pairs in the backtracking algorithm.

3.2. The t-way pair generation algorithm

To illustrate how the GTWay strategy exploits the t-way pair generation algorithm, a running example (with four param-
eters and two values) is considered, assuming an interaction strength of t = 3.

The pair generation algorithm first identifies all of the possible three-way interactions. By referring to Table 1, the three-
way interaction possibilities include the parameters ABC, ABD, ACD, and BCD. Based on these interactions, the t-way pair
generation algorithm generates the following sets:

Fig. 3. Sample base test case specification.

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1745
ABC ¼ fða1;b1; c1Þ; ða1;b1; c2Þ; ða1;b2; c1Þ; ða1;b2; c2Þ;
ða2;b1; c1Þ; ða2;b1; c2Þ; ða2;b2; c1Þ; ða2;b2; c2Þg

ABD ¼ fða1;b1;d1Þ; ða1;b1;d2Þ; ða1;b2;d1Þ; ða1;b2;d2Þ;
ða2;b1;d1Þ; ða2;b1;d2Þ; ða2;b2;d1Þ; ða2;b2;d2Þg

ACD ¼ fða1; c1;d1Þ; ða1; c1;d2Þ; ða1; c2;d1Þ; ða1; c2;d2Þ;
ða2; c1;d1Þ; ða2; c1;d2Þ; ða2; c2;d1Þ; ða2; c2;d2Þg

BCD ¼ fðb1; c1;d1Þ; ðb1; c1;d2Þ; ðb1; c2;d1Þ; ðb1; c2;d2Þ;
ðb2; c1;d1Þ; ðb2; c1;d2Þ; ðb2; c2;d1Þ; ðb2; c2;d2Þg
The generated sets serve two purposes. First, any one of these sets can be merged together with another set to form a
complete test suite (e.g., ABC and ABD). Second, all of the elements in the sets can be used to countercheck that all of the
pairs are indeed covered.

The t-way pair generation algorithm initially finds the loop edge of the t-way combinations (based on the number of de-
fined parameters, P). The algorithm then performs index searches through a loop from 0 to 2p � 1. For each index, the algo-
rithm converts the number to binary format. If the number of binary 1’s in the index is equal to the value of t (i.e., the index
represents a t-way interaction), the specific index is included in the index set.

Using the same example, Table 1 indicates that the loop edge is 15 (i.e., 24 � 1). In this case, the index search loop finds
four indexes. Each index has three one’s (for 3-way combinations). These indexes are 7, 11, 13, and 14 (Table 2).

In the t-way pair generation algorithm, each index contains a number of t-way combinations equal to the multiplication
of values defined in each shared parameter. In our example, each of the first, second, third, and the fourth indexes separately
contains 2 � 2 � 2 combinations. Thus, there are a total of 32 combinations.

To minimize the access time and space requirements, an efficient data structure (structure of bits) was designed. Row
indexes are used to store the indexes of the t-way combinations. Using our example, row index 0 corresponds to the
(A,B,C) combinations and stores eight combinations, which are indicated as bits b0 to b7. Similarly, Row Index 1, Row Index
2, and Row Index 3 each separately stores eight combinations (Table 3).

Having described its implementation, the t-way pair generation algorithm can then be summarized as shown by Fig. 5.

Fig. 4. The parser algorithm.

Table 1
Base test values.

Base value Input variables

A B C D
a1 b1 c1 d1
a2 b2 c2 d2

Table 2
Index search for a four-parameter system.

Index 0 1 2 3 4 5 6 7
Binary 0000 0001 0010 0011 0100 0101 0110 0111
Index 8 9 10 11 12 13 14 15
Binary 1000 1001 1010 1011 1100 1101 1110 1111

Table 3
Row index for a four-parameter system.

Row index Index Bits

b7 b6 b5 b4 b3 b2 b1 b0

0 7 ? 1 1 1 1 1 1 1 1
1 11 ? 1 1 1 1 1 1 1 1
2 13 ? 1 1 1 1 1 1 1 1
3 14 ? 1 1 1 1 1 1 1 1

1746 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758

Fig. 5. The t-way pair generation algorithm.

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1747
3.3. The backtracking algorithm

Backtracking algorithms have been discussed by Yan and Zhang [57,58] and Hnich et al. [27]. Here, the backtracking
algorithms employed an exhaustive search method to search for the optimal suite. As such, these algorithms require a long
execution time and may be subjected to a small number of configurations. Unlike the aforementioned algorithms, GTWay’s
backtracking algorithm is designed to be a flexible heuristic algorithm that does not rely on exhaustive search methods.

Superficially, the backtracking algorithm implemented in GTWay appears to be similar to IPOG’s horizontal extension.
However, a closer look reveals one fundamental difference in terms of the construction of the minimal test suite. In GTWay,
the test suite is constructed in a one-test-at-a-time fashion (similar to AETG). GTWay relies on a backtracking search proce-
dure with a defined merger rule, which goes through the uncovered t-way pairs via recombination as a way to minimize the
test cases. Although it would not necessarily be chosen as the best fit value (i.e., one that covers the most uncovered t-way
pairs), GTWay always produces a complete test case (i.e., with all of the defined parameter values) after each backtracking
iteration. In contrast, IPOG’s horizontal extension searches the parameter values in a one-parameter-at-a-time fashion. In
this manner, IPOG will always incrementally produce a partial test case until the completion of all of the horizontal (and
possibly vertical) extensions. Because of this characteristic, IPOG produces and commits a complete (and optimal) test case
at a later stage compared to GTWay.

For details and a step-by-step description of the backtracking algorithm, refer to the earlier example in Table 1. To further
illustrate, assume that the backtracking algorithm chose sets ABC and ABD as mergers. The merger rule functions as follows:

� Two elements for each t-way pair sets can only be merged when they are combinable (i.e., each pair element comple-
ments the other’s missing value).
� A test case is selected as a result of the merger only if it covers most of the uncovered t-way pairs. This is carried out to

ensure that the optimal test suite is generated at the end.
� In cases when some pairs cannot be merged (due to values that are not uniform), the backtracking algorithm falls back to

the first defined values.

By applying the merger rule while traversing the three-way pair sets of ABC and ABD, the first combinable elements shall
be the first elements for both sets. When the first element in ABC (a1,b1,c1) is merged with the first element in ABD

1748 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
(a1,b1,d1), the resulting test case is (a1,b1,c1,d1). Because the test case covers all of the new three-way pairs: (a1,b1,c1),
(a1,b1,d1), (a1,c1,d1), and (b1,c1,d1), the resulting test case is selected for the final test suite. Upon selection, the covered
pairs are deleted from their respective sets. The next combinable element within ABC is (a1,b1,c2) and the second element in
ABD is (a1,b1,d2), of which the resulting test case is (a1,b1,c2,d2). Because the test case covers all of the new three-way
pairs: (a1,b1,c2), (a1,b1,d2), (a1,c2,d2), and (b1,c2,d2), the resulting test case is selected for in the final test suite, and
the covered pairs are deleted from their respective sets. Now, the next combinable element within ABC is (a1,b2,c1), and
the third element in ABD is (a1,b2,d1). The resulting test case is (a1,b2,c1,d1). In this case, the three-way pairs covered
are (a1,b2,c1), (a1,b2,d1), (a1,c1,d1), and (b2,c1,d1). Because the covered pair (a1,c1,d1) exists from an earlier merger,
the resulting test case, (a1,b2,c1,d1), is not selected in the final test suite (because it does not cover the most uncovered
three-way pairs). The traversing and merging process continues until all of the three-way pairs are covered. In this example,
the final optimal test suite for t = 3 consists of {(a1,b1,c1,d1), (a1,b1,c2,d2), (a1,b2,c1,d2), (a1,b2,c2,d1),
(a2,b1,c1,d2), (a2,b1,c2,d1), (a2,b2,c1,d1), and (a2,b2,c2,d2)}. Upon completion of the final test suite, all of the sets (i.e.,
ABC, ABD, ACD, and BCD) should be empty, indicating that each three-way pair element within them has been covered.

Based on the above discussion, the backtracking algorithm is summarized in Fig. 6.
Fig. 6. The backtracking algorithm.

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1749
3.4. Execution algorithm

As discussed earlier, GTWay can be employed to facilitate t-way test generation, automation, and (concurrent) test exe-
cution. To enable execution, the symbolic data representations must be remapped into actual data values in the test data
specification (i.e., in the fault file). In GTWay, execution is supported by the executor algorithm. The executor algorithm sim-
ply takes the name of the defined class and methods (as well as the associated parameters and values) and automatically
generates an independent test driver to drive execution (as taken from the parser algorithm). In this manner, concurrent exe-
cution can be carried out through the judicious use of threads. Upon execution, the test results are also captured in a test log
for conformance analysis.

A complete description of the executor algorithm is depicted in Fig. 7.
4. Evaluation

The accuracy of the GTWay strategy has been demonstrated in our previous work [29]. In this paper, our evaluation fo-
cuses on two main goals: (1) to assess the effectiveness of the GTWay strategy for general t-way test data generation and
execution and (2) to compare the performance of GTWay with existing strategies, particularly by examining the size and
the time taken to produce these test sets. In the following sub-sections, we will present our complete evaluations based
on the aforementioned goals.

4.1. Assessment of GTWay t-way test data generation and execution support

To demonstrate support for high levels of interaction, we opted to use program source codes consisting of highly inter-
acting input variables. We envisioned a hypothetical program called college_acceptance that can automatically report student
acceptance for college admissions. In this program, it is assumed that the college includes four main departments: the
Department of Mathematics, the Department of Physics, the Department of Biology, and the Department of Computing.
The acceptance criteria of any of the departments depend on the student’s high school grades in eight subjects: English,
mathematics, physics, biology, computer science, art, economics, and social science. In this hypothetical problem, a student
can only be accepted into one of the departments if the following criteria are met:

� He/she passes all eight subjects (i.e., a score of 50% or better must be achieved in each subject).
� He/she scores 75% or better in the subjects that are related to the department he/she is applying for.
� The acceptance will be conditional if the English subject score is less than 75%.

Designed intentionally in this manner, it can be observed that each acceptance criterion is highly intertwined and inter-
dependent with the others. Thus, it is expected that pairwise interactions (t = 2) may not be sufficient for good coverage.
Fig. 7. The executor algorithm.

1750 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
To serve as our case study, we implemented the college_acceptance program using the Java programming language. The
implemented college_acceptance program consists of 1 class, 2 methods, 660 blocks, and 64 lines. The two methods in the
program are the main () and the testAcceptance () methods. The testAcceptance () method covers eight parameters of type
double that correspond to the scores in each individual subject (i.e., English, mathematics, physics, biology, computer sci-
ence, art, economics, and social science). Considering the subject scores based on the earlier set of criteria, a decision is made
and printed: incorrect grades, not accepted in any department, conditionally accepted in a specific department, or accepted
in a specific department.

Using the equivalence partitioning technique, the grade level can be divided into two main sets: the valid value set and
the out-of-range value set. The valid set can be further divided into three intervals: between [0,50), between [50,75), and
between [75,100]. Similarly, the out-of-range value set can be further divided into two intervals: negative values and values
greater than 100. Table 4 summarizes the selected base values for all of the valid and out-of-range value sets. The first value,
49, belongs to the first interval in the valid set. The second value, 74, belongs to the second interval, while the third value, 76,
belongs to the last interval in the valid set. The fourth value, �1, belongs to the first interval in the out-of-range set. Finally,
the fifth value, 101, belongs to the second interval in the out-of-range set. An excerpt snapshot of the test data specification
for the base test data appears in Fig. 3.

We used GTWay to generate the test cases for t = 2 to t = 8 (where t = 8 includes the exhaustive combinations) for both
valid and out-of-range sets. We concurrently executed all of the test cases against the college_acceptance program.

In this case, the (concurrent) execution support is a useful automation feature of GTWay. While most t-way strategies are
useful test generators (i.e., they assist in the test planning process), they often do not provide any automated execution.
Frequently, the generated test data must be manually converted into some format prior to execution. In GTWay, these as-
pects of the execution are automated. As discussed earlier, GTWay permits the actual data values and its control parameters
(e.g., class name, types, and access rights) to be specified in the fault file using a defined markup language. Because of this
Table 4
Base test cases.

Math Physics Biology English Computer science Art Economics Social science

Valid values 49 49 49 49 49 49 49 49
74 74 74 74 74 74 74 74
76 76 76 76 76 76 76 76

Out-of-range values �1 �1 �1 �1 �1 �1 �1 �1
101 101 101 101 101 101 101 101

Fig. 8. Concurrent execution snapshot.

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1751
feature, the execution of test data in GTWay involves parsing the data values and their control parameters (as defined in the
fault file) to automatically drive the execution and capture the execution log for conformance analysis.

The fact that GTWay can assist in execution introduces some timing overhead to parse the parameter values and controls
(as defined in the fault file). From an automation perspective, the timing overhead is justified; it alleviates the burden of
mapping (and executing) the values and control manually. Our experience indicates that the timing overhead is directly pro-
portional to the number of defined base test cases (approximately 50 ls per defined test).

Referring back to our execution of the college_acceptance program, we observed no errors, and the program behaved as
expected (Fig. 8). To help measure coverage, we adopted the open source coverage tool EMMA [51] from SourceForge. Using
EMMA, a number of coverage metrics were reported. The first coverage metric is the class coverage. In EMMA, the class cov-
erage refers to the ratio of covered classes to the total number of classes. The second metric, the method coverage, refers to
the ratio of covered methods to the total number of methods. The third metric, the block coverage, is defined as the ratio of
the total number of covered blocks to the total number of blocks. Finally, the last metric, the line coverage, is defined as the
ratio of the number of covered lines to the total number of lines.

The coverage results are listed in Table 5 and summarized in Fig. 9. Two conclusions can be derived from this case exam-
ple. First, GTWay can generate the required set of test data, as seen at t = 6 in Fig. 9, and give 100% coverage in the same
manner as exhaustive test data would. The second conclusion confirms our intuition that pairwise testing does not render
good coverage for highly interacting systems. Class coverage and method coverage lines are flat at 100% for all of the values
of t. Block coverage and line coverage appear to be approximately linear when t is within the interval from 2 to 6; both met-
rics then saturate at t = 6. At this point, 100% coverage is achieved for all of the metrics (i.e., class coverage, method coverage,
block coverage, and line coverage). In this case, GTWay has successfully reduced the number of test cases from 6817
(6561 + 256) to 1532 (1420 + 112), a reduction of over 75%.
4.2. Adoption of GTWay for hardware test design

To further validate GTWay and highlight the need to accomplish a large number of high interactions, we also adopted a
case study involving combinatorial hardware logic design. With the current technology in hardware logic design, we were
able to take advantage of the reprogrammable feature and implement any combinatorial circuits into a field-programmable
gate array (FPGA) board; this implementation allowed us to arrive at a generic and low-cost solution. One of the common
problems in FPGA-based designs is the need to accurately map the hardware design using a specific hardware description
Table 5
Number of test cases with coverage for the college_acceptance implementation.

t Number of test cases Class coverage (%) Method coverage (%) Block coverage (%) Line coverage (%)

Valid set Out-of-range set

2 18 8 100 100 30 23
3 58 16 100 100 50 39
4 192 38 100 100 69 60
5 539 68 100 100 96 93
6 1420 112 100 100 100 100
7 2655 128 100 100 100 100
8 6561 256 100 100 100 100

0%

20%

40%

60%

80%

100%

120%

0 2 4 6 8 10
t-way

C
ov
er
ag
e

Class Coverage

Method Coverage

Block Coverage

Line Coverage

Fig. 9. Percentage coverage chart for college_acceptance.

1752 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
language (HDL) that supports FPGA boards. To evaluate the accuracy of the mapping, one must ensure that the HDL descrip-
tion conforms to the hardware implementation specification.

For our case study, a 4-bit magnitude comparator design (Fig. 10) was used for variant implementation, as suggested by
Mano [40]. Using Java as the hardware description language, as in JHDL [3], the 4-bit magnitude comparator design in Fig. 10
can be expressed as the following equivalent Java program (see Fig. 11).

Rather than exhaustively testing all parameter inputs with 28 possibilities, we adopted a mutation tool called MuJava [38]
to verify the accuracy of our design. Complementary to GTWay, MuJava is a fault injection tool that permits mutated Java
code (which is based on some defined operators) to be injected into a running Java program.

In our case study, we introduced 140 mutants (i.e., variations in the logical operators) into our 4-bit magnitude compar-
ator design using MuJava. We then used GTWay to incrementally generate the t-way tests for various values of interactions
to kill the mutants. Table 6 highlights our findings.

Table 6 indicates that, while t = 2 provides a good 92% mutant score (e.g., 110 out of 140 mutants killed), it is not until
t = 4 that all mutants were removed completely by the generated test set. The findings indicate that an exhaustive combi-
nation (i.e., t = 8) was not necessary to kill all of the mutants. Apart from supporting the earlier conclusions in Section 4.1,
this finding also illustrates the applicability of GTWay to facilitate the verification of logic designs.
4.3. Comparison of GTWay with others strategies

A number of experiments adopted from Lei et al. [36] were performed to analyze the performance of GTWay in terms of
both test size and execution time. However, unlike those utilized by Lei et al., other t-way strategies, such as IPOG, WHITCH,
Jenny, TConfig, and TVG, were included in the analysis for comparative purposes. The experiments were divided into four
groups:

i. Group 1: The number of parameters (P) and values (V) are constant, but the coverage strength (t) is varied from 2 to 6.
ii. Group 2: The coverage strength (t) and the values (V) are constant (at 4 and 5, respectively), but the number of param-

eters (P) is varied from 5 to 15.
iii. Group 3: The number of parameters (P) and the coverage strength (t) are constant (at 10 and 4, respectively), but the

values (V) are varied from 2 to 10.
iv. Group 4: The Traffic Collision Avoidance System Module (TCAS) with 12 parameters (two 10-valued parameters, one

4-valued parameter, two 3-valued parameters, and seven 2-valued parameters).
3

2

1

0

Fig. 10. Schematic diagram for the 4-bit magnitude comparator.

Fig. 11. Equivalent class Java program for the 4-bit magnitude comparator.

Table 6
Percentage of mutant scores for the 4-bit magnitude comparator (total: 140).

t-Way Test size Live mutants Killed mutants % Mutant score

2 8 10 130 92
3 16 7 133 95
4 38 0 140 100

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1753
In our experiment, all of the above-mentioned strategies were employed within our environment, which consisted of a
desktop PC with Windows XP, 1.6 GHz CPU, 1 gigabyte of RAM, and JDK 1.5 installed.

Tables 7–14 highlight the results obtained for each experimental group. We reported the results for size and time in two
separate tables for each experiment. Table 7 shows darkened cell entries for each row to indicate the best performance in
terms of test size and execution time. Note, however, that some rows have more than one cell entry with the same test size;
thus, more than two cell entries were darkened. Cells marked NA (‘‘not available’’) indicate that the results were unavailable
after one day even though the (P,V, t) values could be selected. Cells marked as NS (‘‘not supported’’) indicate that the tool
could not generate the test case for those specific (P,V, t) values.

A number of observations can be summarized based on the results in Tables 7–14. First, no single strategy is absolutely
dominant over the other strategies. IPOG is the best strategy in terms of execution time, due to its lightweight and determin-
istic algorithm implementation. The closest competitor to IPOG is Jenny. GTWay performs considerably well within accept-
able values. On average, TConfig appears to have the slowest execution time.

Table 7
Group 1 (size): P and V were constants (10, 5), but t varied up to 6.

Table 8
Group 1 (time): P and V were constants (10,5), but t varied up to 6.

Table 9
Group 2 (size): t and V were constants (4,5), but P varied (from 5 up to 15).

Table 10
Group 2 (time): t and V were constants (4,5), but P varied (from 5 up to 15).

1754 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
Despite being the fastest strategy in all of the experimental groups, IPOG does not provide the optimal test size. For exper-
imental Groups 1 and 2, Jenny mostly produced the optimal test size relative to the other strategies. However, for experi-
mental Groups 3 and 4, GTWay outperformed all of other strategies in test size, followed closely by the IPOG.

WHITCH and TConfig appear to cater only to small values of t (a maximum of t = 4 for the TCAS module, as shown in
Tables 13 and 14). GTWay is the only strategy that was able to address higher orders of t in all of the experimental groups.
Jenny and IPOG performed well with higher orders of t, relative to TConfig, TVG, and WHITCH. For the TCAS module given in

Table 11
Group 3 (size): P and t were constants (10, 4), but V varied (from 2 up to 10).

Table 12
Group 3 (time): P and t were constants (10, 4), but V varied (from 2 up to 10).

Table 13
Group 4 (size): TCAS module (12 multi-valued parameters, t varied from 2 to 12).

Table 14
Group 4 (time): TCAS module (12 multi-valued parameters, t varied from 2 to 12).

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1755

1756 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
Tables 13 and 14, Jenny is the only strategy other than GTWay that deals with values beyond t = 6. Note that the parameters
and values for the TCAS module are two 10-valued parameters, two 3-valued parameters, one 4-valued parameter, and seven
2-valued parameters. Based on the findings presented in the previous sub-section (Table 5), supporting values up to t = 6 can
be significantly important for testing some classes of a highly interacting system.

A subtle observation can be seen in the execution time for GTWay in the cases of t = 10, t = 11, and t = 12 in Table 14
(which involve the TCAS module), compared to earlier execution times. At a glance, the results appear to be counterintuitive.
At t = 10, the execution time is 2670.68 s, but the execution time decreases to 94.52 s at t = 11. At t = 12, the execution time
drops significantly to only 11.647 s. In the case of t = 11, the computation becomes lighter compared to the earlier case (i.e.,
t = 10), because the pair generation and backtracking search algorithms now deal with significantly fewer t-way pair com-
binations for the merger, which was close to an exhaustive number of combinations. For t = 12 (the exhaustive number of
combinations), GTWay relies on a different algorithm (i.e., it does not use the backtracking search algorithm) and degrades
to merely a pair generation algorithm. By doing so, GTWay is able to achieve a good execution time.

Concerning the overall performance of GTWay, a number of observations should be discussed. Tables 7, 9, and 11 indicate
that the test size grows exponentially, logarithmically, and quadratically in term of the strength of coverage, number of
parameters, and number of values. These results are consistent with the theoretical expectation O(vt logp) [13]. The same
observation can be derived for the execution times given in Tables 8, 10, and 12.

Finally, we conclude that obtaining an optimal size and a fast execution time are two sides of the same coin. On one hand,
a t-way strategy may be fast but generate a non-optimal solution when applied to a large test size. On the other hand, a t-
way strategy may provide an optimal size at the expense of a slower execution time (possibly due to the need for some opti-
mization process). Our present work has added a new dimension to the above-mentioned criteria by examining whether the
t-way strategy can be fully maximized for both the test generation and the (automated) test execution.
5. Conclusion

In this paper, we proposed and implemented GTWay, an efficient strategy for t-way testing. Experimental results dem-
onstrate that GTWay scales well against other strategies (e.g., WHITCH, Jenny, TConfig, TVG, and IPOG) in terms of the gen-
erated test size. Furthermore, GTWay appears to be the only strategy that addresses higher orders of t and integrates test
generation with execution as part of the tool implementation. Although it does not provide the best execution time, GTWay
is considered acceptable (due to the overhead incurred in the input–output processing and parsing of the external file for
base inputs) to permit support for automated execution. In future work, we plan to incorporate constraints and seedings into
GTWay to improve its performance.

Overall, our experience with the current implementation prototype demonstrates that the general architecture of GTWay
is scalable. Although it currently supports automated test execution based on Java, GTWay would permit a seamless exten-
sion to support other execution platforms by integrating the parser and executor algorithms as add-on components. How-
ever, while the current GTWay prototype implementation also supports test execution for both large and small modules,
more work needs to be done to ensure full support for the test execution when involving modules that require significant
human intervention (e.g., GUI-based interactions). Finally, for support test generation and execution for very high levels
of interaction and large parameters and values (e.g., t = 2 through t = 10 for 100 parameters and 10 values), we are currently
investigating a new prototype implementation of GTWay that can be utilized within the GRID environment.
Acknowledgements

The authors acknowledge the help of Jeff Lei, Raghu Kacker, Rick Kuhn, Myra B. Cohen, and Bob Jenkins for providing us
with useful comments and background materials. This research is partially funded by the USM Fundamental Research Grant,
‘‘Investigating Heuristic Algorithm to Address Combinatorial Explosion Problem’’ and the USM Research University Grant,
‘‘Development of Variable Strength Interaction Testing Strategy for T-Way Test Data Generation.’’
References

[1] J. Arshem, TVG. <http://sourceforge.net/projects/tvg> (last accessed 24.10.10).
[2] J. Bach, AllPairs Test Generation Tool, Version 1.2.1. <http://www.satisfice.com/tools.shtml> (last accessed 24.10.10).
[3] Brigham-Young-University, Logic Design. <http://www.jhdl.org/documentation/users_manual/intro.html> (last accessed 24.10.10).
[4] R. Bryce, C.J. Colbourn, Prioritized interaction testing for pairwise coverage with seeding and avoids, Information and Software Technology Journal 48

(10) (2006) 960–970.
[5] R. Bryce, C.J. Colbourn, M.B. Cohen, A framework of greedy methods for constructing interaction tests, in: Proceedings of the 27th International

Conference on Software Engineering, St. Louis, MO, USA, 2005, pp. 146–155.
[6] R.C. Bryce, C.J. Colbourn, A density-based greedy algorithm for higher strength covering arrays, Software Testing, Verification, and Reliability 19 (1)

(2009) 37–53.
[7] K.A. Bush, Orthogonal Arrays of Index Unity, The Annals of Mathematical Statistics 23 (3) (1952) 426–434.
[8] K.-Y. Cai, Z. Dong, K. Liu, Software testing processes as a linear dynamic system, Information Sciences 178 (6) (2008) 1558–1597.
[9] K.-Y. Cai, B.-B. Yin, Software execution processes as an evolving complex network, Information Sciences 179 (12) (2009) 1903–1928.

[10] C. Catal, B. Diri, Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem, Information
Sciences 179 (8) (2009) 1040–1058.

http://sourceforge.net/projects/tvg
http://www.satisfice.com/tools.shtml
http://www.jhdl.org/documentation/users_manual/intro.html

K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758 1757
[11] D.M. Cohen, S.R. Dalal, M.L. Fredman, G.C. Patton, The AETG system: an approach to testing based on combinatorial design, IEEE Transactions on
Software Engineering 23 (7) (1997) 437–444.

[12] D.M. Cohen, S.R. Dalal, A. Kajla, G.C. Patton, The automatic efficient test generator (AETG) system, in: Proceedings of the 5th International Symposium
on Software Reliability Engineering, IEEE Computer Society, Monterey, CA, USA, 1994, pp. 303–309.

[13] D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton, The combinatorial design approach to automatic test generation, IEEE Software 13 (5) (1996) 83–88.
[14] M.B. Cohen, Designing Test Suites for Software Interaction Testing, Ph.D. Thesis, Computer Science, University of Auckland, 2004.
[15] M.B. Cohen, C.J. Colbourn, A.C.H. Ling, Constructing strength three covering arrays with augmented annealing, Discrete Mathematics 308 (13) (2008)

2709–2722.
[16] M.B. Cohen, M.B. Dwyer, J. Shi, Coverage and adequacy in software product line testing, in: Proceedings of the ISSTA Workshop Role of Software

Architecture for Testing and Analysis, ACM, Portland, Maine, USA, 2006, pp. 53–63.
[17] M.B. Cohen, M.B. Dwyer, J. Shi, Exploiting Constraint Solving History to Construct Interaction Test Suites, in: Proceedings of the Testing: Academic and

Industrial Conference Practice and Research Techniques (MUTATION 2007), IEEE Computer Society, UK, 2007, pp. 121–132.
[18] M.B. Cohen, M.B. Dwyer, J. Shi, Interaction testing of highly-configurable systems in the presence of constraints, in: Proceedings of the 2007

International Symposium on Software Testing and Analysis, ACM, London, UK, 2007, pp. 129–139.
[19] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, C.J. Colbourn, Constructing test suites for interaction testing, in: Proceedings of the 25th International

Conference on Software Engineering, Portland, Oregon USA, 2003, pp. 38–48.
[20] C.J. Colbourn, M.B. Cohen, R.C. Turban, A deterministic density algorithm for pairwise interaction coverage, in: Proceedings of the IASTED International

Conference on Software Engineering, vol. 17, Innsbruck, Austria, 2004, pp. 345–352.
[21] G.T. Daich, Testing combinations of parameters made easy [software testing], in: Proceedings of the IEEE Systems Readiness Technology Conference

(AUTOTESTCON 2003), 2003, pp. 379–384.
[22] Z. Ding, K. Zhang, J. Hu, A rigorous approach towards test case generation, Information Sciences 178 (21) (2008) 4057–4079.
[23] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mallows, A. Iannino, Applying design of experiments to software testing, in: Proceedings of the

International Conference on Software Engineering (ICSE ’97), ACM Press, New York, Boston, MA, 1997, pp. 205–215.
[24] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, D.R. Kuhn, Refining the in-parameter-order strategy for constructing covering arrays, NIST Journal of

Research 113 (5) (2008) 287–297.
[25] M. Grindal, J. Offutt, J. Mellin, Conflict Management when using combination strategies for software testing, in: Proceedings of 18th Australian

Software Engineering Conference, Melbourne, Australia, 2007, pp. 255–264.
[26] A. Hartman, T. Klinger, L. Raskin, IBM Intelligent Test Case Handler. <http://www.alphaworks.ibm.com/tech/whitch> (last accessed 24.10.10.
[27] B. Hnich, S.D. Prestwich, E. Selensky, B.M. Smith, Constraint models for the covering test problem, Constraints 11 (2–3) (2006) 199–219.
[28] B. Jenkins, Jenny. <http://www.burtleburtle.net/bob/math/jenny.html> (last accessed 24.10.10.
[29] M.F.J. Klaib, K.Z. Zamli, N.A.M. Isa, M.I. Younis, R. Abdullah, G2Way – a backtracking strategy for pairwise test data generation, in: Proceedings of the

15th IEEE Asia–Pacific Software Engineering Conference, Beijing, China, 2008, pp. 463–470.
[30] R. Krishnan, S.M. Krishna, P.S. Nandhan, Combinatorial testing: learnings from our experience, ACM SIGSOFT Software Engineering Notes 32 (3) (2007)

1–8.
[31] D.R. Kuhn, Y. Lei, R. Kacker, Practical combinatorial testing: beyond pairwise, IT professional, IEEE Computer Society 10 (3) (2008) 19–23.
[32] D.R. Kuhn, V. Okun, Pseudo exhaustive testing for software, in: Proceeding of the 30th NASA/IEEE Software Engineering Workshop, 2006, pp. 25–27.
[33] R. Kuhn, Y. Lei, R. Kacker, Practical combinatorial testing: beyond pairwise, IEEE IT Professional 10 (3) (2008) 19–23.
[34] E. Lehmann, J. Wegener, Test case design by means of the CTE XL, in: Proceedings of the 8th European International Conference on Software Testing,

Analysis & Review (EuroSTAR 2000), Copenhagen, Denmark, 2000, pp. 1–10.
[35] Y. Lei, R. Kacker, D. Kuhn, V. Okun, J. Lawrence, IPOG/IPOD: efficient test generation for multi-way software testing, Journal of Software Testing,

Verification, and Reliability 18 (2008) 125–148.
[36] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence, IPOG: a general strategy for t-way software testing, in: Proceedings of the 14th Annual IEEE

International Conference and Workshops on the Engineering of Computer-Based Systems, Tucson, AZ, USA, 2007, pp. 549–556.
[37] Y. Lei, K.C. Tai, In-parameter-order: a test generation strategy for pairwise testing, in: Proceedings of the 3rd IEEE International High-Assurance

Systems Engineering Symposium, Washington, DC, USA, 1998, pp. 254–261.
[38] Y. Ma, J. Offutt, Y. Kwon, MuJava: An Automated Class Mutation System, Journal of Software Testing, Verification and Reliability 15 (2) (2005) 97–133.
[39] R. Mandl, Orthogonal Latin Squares: An Application of Experiment Design to Compiler Testing, Communications of the ACM, vol. 28, New York, NY,

USA, 1985, pp. 1054–1058.
[40] M.M. Mano, Digital Design, third ed., Prentice Hall Inc., 2002.
[41] C. Nie, B. Xu, L. Shi, G. Dong, Quality of software architectures and software quality-automatic test generation for N-way combinatorial testing, Lecture

Notes in Computer Science 3712 (2005) 203–211.
[42] P.J. Schroeder, P. Faherty, B. Korel, Generating expected results for automated black-box testing, in: Proceedings of the 17th IEEE International

Conference on Automated Software Engineering (ASE’02), Edinburgh, UK, 2002, pp. 139–148.
[43] P.J. Schroeder, E. Kim, J. Arshem, P. Bolaki, Combining behavior and data modeling in automated test case generation, in: Proceedings of the 3rd

International Conference on Quality Software (Qsic 2003), 2003, pp. 247–254.
[44] P.J. Schroeder, B. Korel, Black-box test reduction using input-output analysis, in: Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA 2000), Portland, OR, USA, 2000, pp. 21–24.
[45] T. Shiba, T. Tsuchiya, T. Kikuno, Using artificial life techniques to generate test cases for combinatorial testing, in: Proceedings of the 28th Annual

International Computer Software and Applications Conference (COMPSAC’04), IEEE Computer Society, Hong Kong, 2004, pp. 72–77.
[46] N.J.A. Sloane, Home page. <http://www.research.att.com/�njas/> (last accessed 24.10.10).
[47] Smartware, SmartTest – Pairwise Testing tool. <http://www.smartwaretechnologies.com/smarttestprod.htm> (last accessed 24.10.10).
[48] B. Stevens, E. Mendelsohn, Efficient software testing protocols, in: Proceedings of the 8th IBM Centre for Advanced Studies Conference (CASCON ’98),

Toronto, ON, 1998, pp. 279–293.
[49] K.C. Tai, Y. Lei, A test generation strategy for pairwise testing, IEEE Transactions on Software Engineering 28 (1) (2002) 109–111.
[50] Y.-W. Tung, W.S. Aldiwan, Automating test case generation for the new generation mission software system, in: Proceedings of the Aerospace

Conference, vol. 1, Big Sky, MT, USA, 2000, pp. 431–437.
[51] Vlad-Roubtsov, EMMA: a free Java code coverage tool. <http://emma.sourceforge.net/> (last accessed 24.10.10.
[52] A.W. Williams, TConfig. <http://www.site.uottawa.ca/�awilliam> (last accessed 24.10.10).
[53] A.W. Williams, Determination of test configurations for pair-wise interaction coverage, in: Proceedings of the 13th International Conference on Testing

of Communicating Systems, 2000, pp. 57–74.
[54] A.W. Williams, Software Component Interaction Testing: Coverage Measurement and Generation of Configurations. Ph.D. Thesis, School of Information

Technology and Engineering, University of Ottawa, 2002.
[55] A.W. Williams, R.L. Probert, A measure for component interaction test coverage, in: Proceedings of the ACSI/IEEE International Conference on

Computer Systems and Applications (AICCSA 2001), IEEE Computer Society, Beirut, Lebanon, 2001, pp. 304–311.
[56] A.W. Williams, R.L. Probert, A practical strategy for testing pair-wise coverage of network interfaces, in: Proceedings of the 7th International

Symposium on Software Reliability Engineering, 1996, pp. 246–254.
[57] J. Yan, J. Zhang, Backtracking algorithms and search heuristics to generate test suites for combinatorial testing, in: Proceedings of the 30th Annual

International Computer Software and Applications Conference (COMPSAC’06), vol. 1, Chicago, 2006, pp. 385–394.
[58] J. Yan, J. Zhang, A backtracking search tool for constructing combinatorial test suites, Journal of Systems and Software 81 (10) (2008) 1681–1693.

http://www.alphaworks.ibm.com/tech/whitch
http://www.burtleburtle.net/bob/math/jenny.html
http://www.research.att.com/~njas/
http://www.research.att.com/~njas/
http://www.smartwaretechnologies.com/smarttestprod.htm
http://emma.sourceforge.net/
http://www.site.uottawa.ca/~awilliam
http://www.site.uottawa.ca/~awilliam

1758 K.Z. Zamli et al. / Information Sciences 181 (2011) 1741–1758
[59] M.I. Younis, K.Z. Zamli, Assessing combinatorial interaction strategy for reverse engineering of combinational circuits, in: Proceedings of the IEEE
Symposium on Industrial Electronics and Applications (ISIEA2009), Kuala Lumpur, Malaysia, 2009, pp. 473–478.

[60] M.I. Younis, K.Z. Zamli, N.A.M. Isa, IRPS – an efficient test data generation strategy for pairwise testing, in: Proceedings of the 12th International
Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES2008), Springer, Verlag, Zagreb, Croatia, 2008, pp. 493–500.

[61] M.I. Younis, K.Z. Zamli, M.F.J. Klaib, Z.C. Soh, S.C. Abdullah, N.A.M. Isa, Assessing IRPS as an efficient pairwise test data generation strategy, International
Journal of Advanced Intelligence Paradigms (IJAIP) 2 (1) (2010) 90–104.

[62] K.Z. Zamli, N.A.M. Isa, M.F.J. Klaib, S.N. Azizan, A tool for automated test data generation (and execution) based on combinatorial approach,
International Journal of Software Engineering and Its Applications 1 (1) (2007) 19–34.

	Design and implementation of a t-way test data generation strategy with automated execution tool support
	Introduction
	Related work
	Overview of the GTWay strategy
	The parser algorithm
	The t-way pair generation algorithm
	The backtracking algorithm
	Execution algorithm

	Evaluation
	Assessment of GTWay t-way test data generation and execution support
	Adoption of GTWay for hardware test design
	Comparison of GTWay with others strategies

	Conclusion
	Acknowledgements
	References

