
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220772881

G2Way A Backtracking Strategy for Pairwise Test Data Generation

Conference Paper · January 2008

DOI: 10.1109/APSEC.2008.49 · Source: DBLP

CITATIONS

41
READS

140

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Enhancment of Face Recognition by adopting pre-processing Techniques View project

Developing and evaluating a knowledge audit model in requirement elicitation process View project

Mohammad F. J. Klaib

Jadara University

7 PUBLICATIONS 99 CITATIONS

SEE PROFILE

Kamal Z Zamli

Universiti Malaysia Pahang

167 PUBLICATIONS 1,250 CITATIONS

SEE PROFILE

Nor Ashidi Mat Isa

Universiti Sains Malaysia

225 PUBLICATIONS 2,398 CITATIONS

SEE PROFILE

Mohammed I. Younis

University of Baghdad

48 PUBLICATIONS 351 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohammed I. Younis on 20 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220772881_G2Way_A_Backtracking_Strategy_for_Pairwise_Test_Data_Generation?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220772881_G2Way_A_Backtracking_Strategy_for_Pairwise_Test_Data_Generation?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enhancment-of-Face-Recognition-by-adopting-pre-processing-Techniques?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Developing-and-evaluating-a-knowledge-audit-model-in-requirement-elicitation-process?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Klaib2?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Klaib2?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Jadara_University?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Klaib2?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Malaysia_Pahang?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Sains_Malaysia?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Baghdad?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-32b0eb4f6988f10951d78b0a6d96c6cf-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc3Mjg4MTtBUzo5ODcxNTc0MjI0NDg2NUAxNDAwNTQ3MDc2MzQ3&el=1_x_10&_esc=publicationCoverPdf

Abstract

Our continuous dependencies on software (i.e. to

assist as well as facilitate our daily chores) often raise

dependability issue particularly when software is being

employed harsh and life threatening or (safety) critical

applications. Here, rigorous software testing becomes

immensely important. Many combinations of possible

input parameters, hardware/software environments,

and system conditions need to be tested and verified

against for conformance. Due to resource constraints

as well as time and costing factors, considering all

exhaustive test possibilities would be impossible (i.e.
due to combinatorial explosion problem). Earlier work

suggests that pairwise sampling strategy (i.e. based on

two-way parameter interaction) can be effective.

Building and complementing earlier work, this paper

discusses an efficient pairwise test data generation

strategy, called G2Way. In doing so, this paper

demonstrates the correctness of G2Way as well as

compares its effectiveness against existing strategies

including AETG and its variations, IPO, SA, GA, ACA,

and All Pairs. Empirical evidences demonstrate that

G2Way, in some cases, outperformed other strategies

in terms of the number of generated test data within
reasonable execution time.

1. Introduction

Nowadays, we are increasingly dependent on

software to assist as well as facilitate our daily chores.

In fact, whenever possible, most hardware

implementation is now being replaced by the software

counterpart. From the washing machine controllers,

mobile phone applications to the sophisticated airplane

control systems, the growing dependent on software

can be attributed to a number of factors. Unlike

hardware, software does not wear out. Thus, the use of

software can also help to control maintenance costs.

Additionally, software is also malleable and can be

easily changed and customized as the need arises.

Our continuous dependencies on software often

raise dependability issue particularly when software is

being employed harsh and life threatening or (safety)

critical applications. Here, rigorous software testing

becomes immensely important. Many combinations of

possible input parameters, hardware/software

environments, and system conditions need to be tested

and verified against for conformance based on the
system’s specification. Often, this results into

combinatorial explosion problem.

 Combinatorial explosion problem [3, 18] poses one

of the biggest challenges in modern computer science

due to the fact that it often defies traditional

approaches to analysis, verification, monitoring and

control. A number of techniques have been explored in

the past to address this problem. Undoubtedly, parallel

testing can be employed to reduce the time required for

performing the tests. Nevertheless, as software and

hardware are getting more complex than ever, parallel

testing approach becomes immensely expensive due to
the need for faster and higher capability processors

along state-of-the-art computer hardware. Apart from

parallel testing, systematic random testing [18] could

also be another option. However, systematic random

testing tends to dwell on unfair distribution of test

cases.

A more recent and systematic solution to this

problem is based on pairwise testing strategy. Here,

any two combinations of parameter values are to be

covered by at least one test [3, 17]. Because

combinatorial explosion problem is NP-complete, it is
often unlikely that efficient strategy exists that can

always generate optimal test set (i.e. each interaction

pair is covered by only one test). Furthermore, the size

of the minimum pairwise test set also grows

logarithmically with the number of parameter and

G2Way - A Backtracking Strategy for Pairwise Test Data Generation

Mohammad F. J. Klaib, Kamal Z. Zamli,

Nor Ashidi M. Isa, and Mohammed I.

Younis

School of Electrical and Electronics

Universiti Sains Malaysia

14300 Nibong Tebal, Penang, Malaysia
Email: {eekamal, ashidi}@eng.usm.my

Rusli Abdullah

Faculty of Computer Science and Information

Technology,

Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia
Email: rusli@fsktm.upm.edu.my

quadratically with the number of values [3]. Motivated

by such a challenge, we have developed an efficient

pairwise test data generation strategy, called G2Way.

G2Way is our research vehicle to investigate the

effectiveness of a pairwise strategy as far as software

testing is concerned.
 This paper is organized as follows. Section 2

highlights the related work. Section 3 describes the

G2Way strategy is details. Section 4 highlights our

evaluation as well as comparison against existing

strategies in terms of the execution time as well as the

number of generated test data. Finally, section 5 gives

our conclusion.

2. Related Work

In order to practically address the combinatorial

explosion problem discussed earlier, different pairwise

strategies exist. According to Yu et al [16], existing

strategies can be categorized into two categories based
on the dominant approaches, that is, algebraic

approaches or computational approaches.

Algebraic approaches construct test sets using pre-

defined rules or mathematical function [16]. Thus, the

computations involved in algebraic approaches are

typically lightweight, and in some cases, algebraic

approaches can produce the most optimal test sets.

However, the applicability of algebraic approaches is

often restricted to small configurations [14, 16].

Orthogonal arrays (OA) [8, 9] and covering arrays

(CA) [8, 19] are typical example of the strategies based
on algebraic approach. Some variations of the

algebraic approach also exploit recursion in order to

permit the construction of larger test sets from smaller

ones (see reference [13]).

Unlike algebraic approaches, computational

approaches often rely on the generation of the all pair

combinations. Based on all pair combinations, the

computational approaches iteratively search the

combinations space to generate the required test case

until all pairs have been covered. In this manner,

computational approaches can ideally be applicable
even in large system configuration. However, in the

case where the number of pairs to be considered is

significantly large, adopting computational approaches

can be expensive due to the need to consider explicit

enumeration from all the combination space.

Adopting the computational approaches as the main

basis, an Automatic Efficient Test Generator (or

AETG) [2, 3] and its variant (AETGm) [4], employs a

greedy algorithm to construct the test case, that is, each

test covers as many uncovered combinations as

possible. Because AETG uses random search

algorithm, the generated test case is highly non-
deterministic (i.e. the same input parameter model may

lead to different test suites [7]). Other variants to

AETG that use stochastic greedy algorithms are: GA

(Generic Algorithm) and ACA (Ant Colony

Algorithm) [11]. In some cases, they give optimal

solution than original AETG, although they share the

common characteristic as far as being non-
deterministic in nature.

In Parameter Order (IPO) strategy [17] builds a

pairwise test set for the first two parameters. Then, IPO

strategy extends the test set to cover the first three

parameters, and continues to extend the test set until it

builds a pairwise test set for all the parameters. In this

manner, IPO generates the test case with greedy

algorithms similar to AETG. Nevertheless, apart from

deterministic in nature, covering one parameter at a

time allows the IPO strategy to achieve a lower order

of complexity than AETG.

Based on computational approach, Schroeder and
Korel [10] developed a rather unique combinatorial

strategy based on the input and output relationship. If

one or more parameters are known to have

insignificant effect on the system (i.e. don’t care), then

the strategy randomly selects the appropriate

replacement of the don’t care value in order to perform

the reduction. Although useful for system with known

input output relationship, no reduction is possible if all

the parameters have the same importance.

A more recent strategies based on computational

approaches are IRPS [15] and AllPairs [1]. Like IPO,
IRPS is deterministic in nature. Unlike IPO and other

computational strategies, IRPS focuses on efficient

data structure for storing and searching pairs. In this

manner, IRPS appears to be the only strategy that

supports higher order interactions of parameters (i.e.

from pairwise up to 13 ways).

Similar to IRPS and IPO, All Pairs strategy (i.e.

downloadable tool) appears to share the same property

as far as producing deterministic test cases is

concerned although little is known about the actual

strategies employed due to limited availability of

references [1].
As far as other non-greedy strategies are concerned,

some approaches opted to adopt heuristic search

techniques such as hill climbing and simulated

annealing (SA) [14]. Briefly, hill climbing and

simulated annealing strategies start from some known

test set. Then, a series of transformations were

iteratively applied (starting from the known test set) to

cover all the pairwise combinations [14]. Unlike

AETG, IPO, IRPS and All Pairs strategy, which builds

a test set from scratch, heuristic search techniques can

predict the known test set in advanced. However, there
is no guarantee that the test set produced are the most

optimum.

3. The G2Way Strategy

A backtracking algorithms and search heuristics has

been discussed in Jun and Jian [14]. Although useful,

the work employed exhaustive search method typically

requiring long execution time and may be restricted to

small number of configuration. Although similar in

name, G2Way is designed to be a flexible heuristic and
does not rely on exhaustive search methods. In fact,

G2Way relies on computational backtracking search

procedure, which goes through the uncovered pairs

through recombination as a way of getting the

minimum test cases.

Adopting the computational approaches as its basis,

the G2Way strategy actually depends on two

algorithms: the pair generation algorithm and the

backtracking algorithm.

• The Pair Generation Algorithm

The pair generation algorithm works as follows.

Firstly, the algorithm finds the loop edge for the 2-way

interaction (i.e. based on the number of defined

parameters, p). Then, the algorithm performs index

searches through a loop from 0 to 2p -1. Here, for each

index, the algorithm coverts the number to binary

format. Now, if the number of binary one’s in the

index is equal to 2 (i.e. pairwise interaction), then that

index is put in the index set.

As illustration, consider an example of a system

having 3 parameters (P2, P1, P0), each of which has

(1,3,2) values respectively. In this case, based on the
number of parameters, the loop edge is 7 (i.e. 23 -1).

The index searches loop found 3 indexes having two

one’s, that is (3,5,6) respectively (see Table 1).

Table 1. Index search
Index 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Going back to the pair generation algorithm, a row

of possible pairwise values combination for each

parameter can be now generated by recombining all the

pair values for each parameter. Here, each index will

contain a number of pairs (equals to the multiplication

of values defined in each shared parameter). For our

example, the first index will have 3x2 pairs, the second
index will have 2x1 pairs, and third index will have

1x3 pairs. Hence, the total pairs are 11.

To ensure efficient implementation (i.e. reducing

time and space requirements), the pair generation

algorithm exploits row indexes to facilitate the storing

and searching of pairs, the technique similar to IPOG

[16]. Here, row indexes are used to store the indexes of

the pairs, which in turns are a structure of bits. Using

our example, row index 0 (corresponds to (P0,P1)

pairs) stores 6 pairs which are indicated as bits b0 to

b5. Similarly, row index 1 stores 2 pairs and row index
2 stores 3 pairs.

Table 2. Row index
Row
Index

Index b5 b4 b3 b2 b1 b0

0 3 1 1 1 1 1 1

1 5 0 0 0 0 1 1

2 6

0 0 0 1 1 1

Algorithm Pairs_Generation ()

1: begin

2: initalize Sp ={} where Sp represents the pair set

3: let n∑ = {n0......nm} where n∑ represents the values defined for each parameter, m = maximum no of parameters

4: let p = {p0 ..pj}, where p represents the sorted set of sets of values defined for each parameter

5: for index=0 to 2 m - 1

6: begin

7: let b = binary number

 b = convert index to binary

8: if (the no of ‘1’s in b = 2)

9: begin

10: calculate number of possible combinations (PCi) between the partial sets of values

11: for the shared parameters

12: begin

13: multiply {nx x ny} values from n∑

14: set the bits group (equal to PCi) in the index row to 1

15: end

16: end

17: end

18: return Sp

19: end

Figure 1. Pair generation algorithm

Based on the aforementioned discussion, the detail

of the algorithm for pair generation is shown in Figure

1 given earlier.

• The Backtracking Algorithm

The backtracking algorithm iteratively traverses the
pairwise sets in order to combine pairs with common

parameter values in order to complete a test suite

(hence, the algorithm is called backtracking). To

ensure correct test set (i.e. each pair is covered at least

once), pairs are combined if and only if the

combination covers the most uncovered pairs. In the

case where some pairs cannot be combined (i.e. due to

the fact that the values are not uniform), the

backtracking algorithm falls back to the first define

values. In this manner, the pairs can still be covered.

Finally, once, the pairs are covered, they are deleted

from the pairwise sets. Hence, the algorithm ensures
that all the pairs are covered when the pairwise set is

empty.

Based on the above discussion and using the pair

generation algorithm, the backtracking algorithm can

be summarized in Figure 2.

4. Evaluation

Our evaluation has three main goals. The first goal

is to demonstrate the correctness of the strategy as well

as to assess whether or not the generated test cases are

correct (i.e. each pair appears at least once). The

second goal is to assess the effectiveness of the G2Way

strategy for pairwise test data generation. Finally, the

third goal is to compare the performance of G2Way

against existing strategies particularly in terms of the
size and the time taken to produce these test sets. In the

next sub-sections, we will present our complete

evaluations based on the aforementioned goals.

4.1 Demonstration of Correctness

To demonstrate the correctness of the G2Way

strategy, we select a web-based configuration example

Algorithm Backtracking (Sp: Set)

1: begin

2: initialize St ={}with empty set, where St represents the generated test cases set

3: for the first two parameters

4: begin

5: create partial the test cases by selecting best values for higher parameters

 {P3….Pj}, that covers the maximum number of uncovered pairwise combinations in Sp.

 6: store generated test cases in St, and remove covered pairs from Sp (by set zero values to indicated bits).

 7: end

 8: while still found elements in Sp

 9: begin

10: add a new element in the St set with empty fields.

11: bring the first uncovered combination, decompose it to the initial value, fill it in the element set

12: for 2nd uncovered combination

13: begin

14: decompose uncovered combination

15: if (current pair element in Sp can be combined with other pair element)

16: begin

17: count number of uncovered combination

18: if (has most uncovered pairs)

19: begin

20: fill it in the element set

21: end

22: end

23: end

24: if (the element set does not have matching pair)

25: begin

26. select the first element as default values to missing parameter

27. end

28. store it in St and remove the covered pairs from Sp

29: end

30: return St

31: end

Figure 2. Backtracking algorithm

as a case study. The rationale for using this example

stemmed from the fact that historically the same data

inputs have been used by other researchers in the area

(e.g. in [5]). By adopting the same data inputs,

objective comparison may be made amongst different

strategy implementation.
Overall, the web-based configuration example

consists of 4 parameters, each of which has 3 values as

seen in Table 3.

Table 3. Web based system
P1 P2 P3 P4

Netscape Windows LAN Local

IE Macintosh PPP Networked

Firefox Linux ISDN Screen

Based on the web-based configuration example

above, the following test set has been generated using

G2Way (see Table 4). Here, G2Way produces 10 test

data.

Table 4. Suggested test set
T# P1 P2 P3 P4

1 Netscape Windows LAN Local

2 IE Windows PPP Networked

3 Firefox Windows ISDN Screen

4 Netscape Macintosh PPP Screen

5 IE Macintosh LAN Local

6 Firefox Macintosh LAN Networked

7 Netscape Linux ISDN Networked

8 IE Linux LAN Screen

9 Firefox Linux PPP Local

10 IE Macintosh ISDN Local

In order to investigate whether or not the all pairs
are covered, it is necessary to tabulate all the pairs. In

this case, the pairwise interactions of parameters are

between (P1,P2), (P1,P3), (P1,P4), (P2,P3), (P2,P4)

and (P3,P4). Based on these interactions, the expected

total pairs will be 54 (i.e. 9 pairs/interactions x 6

interactions).

As discussed earlier, we will focus on

demonstrating the correctness of the G2Way strategy

by analyzing the resulting test case set. Here, we aim to
show that G2Way gives optimum results, that is, all

pairs of combinations are covered at least once. Table

5 lists all the pairs along with the test cases generated
by G2Way strategy that cover them (denoted as T#).

Referring to Table 5, we observe that each combination

pair appears at least once (which means that the

generated test cases include all generated pairs) and

there is no missing pair (which means that our strategy

is correct).

Table 5. Pairwise coverage
Pair Combination T# Pair Combination T#

Netscape, Windows 1 IE, Windows 2

Netscape, LAN 1 IE, LAN 5

Netscape, Local 1 IE, Local 5

Netscape, Macintosh 4 IE, Macintosh 5

Netscape, PPP 4 IE, PPP 2

Netscape, Networked 7 IE, Networked 2

Netscape, Linux 7 IE, Linux 8

Netscape, ISDN 7 IE, ISDN 10

Netscape, Screen 4 IE, Screen 8

Windows, LAN 1 Macintosh, LAN 5

Windows, Local 1 Macintosh, Local 5

Windows, PPP 2 Macintosh, PPP 4

Windows, Networked 2 Macintosh, Networked 6

Windows, ISDN 3 Macintosh, ISDN 10

Windows, Screen 3 Macintosh, Screen 4

LAN, Local 1 PPP, Local 9

LAN, Networked 6 PPP, Networked 2

LAN, Screen 8 PPP, Screen 4

Linux, LAN 8 Firefox, Windows 3

Linux, Local 9 Firefox, LAN 6

Linux, PPP 9 Firefox, Local 9

Linux, Networked 7 Firefox, Macintosh 6

Linux, ISDN 7 Firefox, PPP 9

Linux, Screen 8 Firefox, Networked 6

ISDN, Local 10 Firefox, Linux 9

ISDN, Networked 7 Firefox, ISDN 3

ISDN, Screen 3 Firefox, Screen 3

4.2 Effectiveness of G2Way Strategy

To demonstrate the effectiveness of the G2Way

strategy for pairwise test data generation, the

FileChooserDemo program [12] has been chosen as

independent open source code (i.e. downloadable from

the SUN Microsystem website). As the name suggests,

the FileChooserDemo is a program to demonstrate
various Java GUI for selection based controls (see

Figure 3).

Referring to Figure 3, the FileChooserDemo

program has 14 parameters (1 4 valued parameters, 2 3

valued parameters, 11 2 valued parameters), the

parameters in details are:

 P1= Look and Feel (Metal, CDE/Motif, Windows,

 Windows Classic)

 P2= Dialog Type (Open, Save, Custom)

 P3= File and Directory Options (Just Select Files, Just
 Select Directories, Select Files or Directories),

 P4= Show “All Files” Filter (Checked, Not),

 P5= Show JPG and GIF Filters (Checked, Not),

 P6= With File Extensions (Checked, Not),

 P7= Show Hidden Files (Checked, Not),

 P8= Use FileView (Checked, Not),

 P9 = Use Preview (Checked, Not),

 P10= Embed in Wizard (Checked, Not),

 P11= Show Control Buttons (Checked, Not),

 P12= Enable Dragging (Checked, Not),
 P13= File and Directory Options (Single Selection,

 Multi Selection)

 P14=Show File Chooser (Select, Cancel).

Figure 3. FileChooserDemo interface

Based on the number of parameters, considering all

exhaustive combinations would require 41x32x211 =

73728 test cases. Considering pairwise testing and

using G2Way strategy, the test cases are reduced to

merely 15 (see Table 6).

Here, we are interested to investigate whether or
not the 15 suggested test cases are sufficient to test

FileChooserDemo program whilst giving acceptable

coverage (i.e. in terms of the program areas, blocks or

paths exercised by the test data). In the absence of the

specification, we believe, it is sufficient to evaluate our

test execution based on whether or not the program

behaves as expected.

 To help measure coverage, we have adopted

EMMA [6], an open source test coverage tool from

SourceForge. Using EMMA, a number of coverage

metrics can be reported. The first coverage metric is

the class coverage. In EMMA, the class coverage
refers to the ratio of the covered classes over the total

number of classes. The second metric is the method

coverage. Here, the method coverage refers to the ratio

of the covered methods over the total number of

methods. The third metric is the block coverage,

defined as the total covered blocks over the total

blocks. Finally, the last metric is the line coverage,

defined as the covered lines over the total number of

lines.

Executing the 15 suggested test cases, we observe

no errors as the program behaves as expected. Using

EMMA, we obtain the following coverage results (see
Table 7). Noted here is the fact that these metrics are
calculated based on the FileChooserDemo

implementation consisting of 9 classes, 42 methods,

2136 blocks, and 450 lines.

Table 7. Percentage coverage
Class

Coverage
Method

Coverage
Block

Coverage
Line

Coverage

100% 83% 96% 94%

Referring to the coverage results tabulated in Table

7, it is evident that the pairwise test data set generated

by G2Way is reasonably effective to exercise various

coverage metrics (i.e. 100% of class coverage, 83% of

method coverage, 96% of block coverage and 94% of

line coverage). In fact, a closer look to the source code

reveals that uncovered code comes from the exception

handling mechanism as well as dead code (which can

not be detected even with exhaustive combinations).

Thus, we conclude that G2Way strategy is effective for

pairwise test data generation.

Table 6. Suggested test suite

T# P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

1 Metal Open J.S.F T T T T T T T T T Single Select

2 CDE/Motif Open J.S.D F F F F F F F F F Multi Cancel

3 Windows Open F or D T F T F T F T F T Multi Select

4 Win.Classic Open J.S.F F T F T F T F T F Single Cancel

5 Metal Save J.S.D T T F F T T F F T Single Cancel

6 CDE/Motif Save J.S.F T F T T F F T T F Multi Select

7 Windows Save J.S.F F T T T T T F F F Multi Select

8 Win.Classic Save F or D T T T T T F T T T Single Cancel

9 Metal Custom F or D F F F T F T T T T Single Select

10 CDE/Motif Custom J.S.F T T T F T T F T T Single Cancel

11 Windows Custom J.S.D T T T T F F T T F Single Select

12 Win.Classic Custom J.S.D T F T F T T T F T Multi Select

13 CDE/Motif Open F or D T T T T T T F T F Single Select

14 Windows Open J.S.F T T F T T T T T T Single Cancel

15 Metal Open J.S.F T T T T T F T T F Multi Select

4.3 Comparison with other strategies

 Concerning comparison, we have identified the

following existing strategies that support pair wise

testing: AETG [2, 3] , AETGm [4], IPO [17], SA [14],

GA [11] , ACA [11], and AllPairs tool [1]. We

consider eight system configurations.

S1: 3 3-valued parameters

S2: 4 3-valued parameters,

S3: 13 3-valued parameters,
S4: 10 10-valued parameters,

S5: 10 15-valued parameters,

S6: 20 10-valued parameters,

S7: 10 5-valued parameters

S8: 1 5-valued parameters, 8 3-valued parameters

 and 2 2-valued parameters.

Table 8 shows the size of the test set generated by

each strategy, and Table 9 shows the execution time

for each system. All the problem instances and data for

the existing strategies are taken from [15], except for

All Pairs tool (which is free for download, hence, we
can run it in our platform). Entries marked with NA are

data that are not available in these papers.

In order to ensure objective comparison, we

summarize the hardware and software platform used.

• AETG, AETGm, SA: Intel P IV 1.8 Ghz, C++

programming language, Linux Operating System

• IPO: Intel P II 450 Mhz, Java programming

language, Windows 98 operating system

• CA, ACA: Intel P IV 2.26 GhZ, C programming

language, Windows XP operating system

• All Pairs: Intel P IV 1.8 Ghz, 512 MB RAM, Perl
programming language, and Windows Vista

operating system

• G2Way: Intel P IV 1.8 Ghz, 512 MB RAM, C++

programming language, Windows Vista operating

system.

Referring to Table 8, G2Way and All pairs

generates the same number of test cases for S1. For S2,
AETG, IPO, SA, GA, and ACA outperforms G2Way

and All Pairs. For S3, AETG gives the best result as

compared to all other strategies. For S4, G2Way comes

second to ACA. For S5, G2Way outperforms IPO and

Allpairs (i.e. no data is available for other strategies).

For S6, AETG outperforms all other strategies. For S7,

G2Way outperforms other strategies. Finally, for S8,

GA and SA yield the best result.

From the above given results, it can be seen that no

strategies can claim dominance over the others.

Although having a lot of entries with NA, AETG

appears to give the best overall results. IPO gives good
result with small configuration, but appears to generate

more test set with high configuration. Perhaps, All

pairs can be comparable to G2Way as it gives similar

no of test set for small configuration. However,

G2Way often gives better results for high configuration

as compared to All pairs.

Concerning execution, it must be stressed that no

fair comparison can be made in terms of execution

time due to the differences in the computing

environment as well as the unavailability of the open

source code or executable code to run in our platform.
As noted earlier, we only manage to get access to All

pairs to run in our platform. As a general observation,

however, we believe the execution time for G2Way is

acceptable as compared with other strategies (see Table

9). Notwithstanding the differences in the computing

environment, it is clear that IPO outperformed other

strategies as far as execution time is concerned. This

may be due to fact that IPO is deterministic algorithm

and need only one run. For these reason, it requires

much less time to execute than others. Although giving

the best overall results in terms of the number of

generated test set, the execution time for AETG is
unknown.

5. Conclusion

In this paper, we propose a novel deterministic

computational strategy for pairwise testing, called

G2Way. Comparing to other strategies, our initial
evaluation results are encouraging with acceptable test

size and execution time. As part as our future work, we

are currently investigating a more general strategy

capable of handling more than 2 way interactions.

Acknowledgement

This research is funded by the USM Fundamental

Grants – Investigating Heuristic Algorithm to Address

Combinatorial Explosion Problem for Hardware and

Software Testing.

References

[1] J. Bach. "Allpairs Test Case Generation Tool",

Available from: http://tejasconsulting.com/open-
testware/feature/allpairs.html.

[2] D.M. Cohen, S.R. Dalal, M.L. Fredman, and
G.C.Patton, "The AETG System: An Approach to

Testing Based on Combinatorial Design",IEEE

Transactions On Software Engineering, 23(7), July
1997, pp. 437-444.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C.
Patton, and N.J. Bellcore, "The Combinatorial Design
Approach to Automatic Test Generation", vol. 13:
IEEE Software, Sep 1996, pp. 83-89.

[4] M.B. Cohen, "Designing Test Suites For Software

Interaction Testing", School of Computer Science,

Univ. of Auckland, PhD Thesis (2004).
[5] C. J. Colbourn, M.B. Cohen, and R.C. Turban, "A

Deterministic Density Algorithm for Pairwise
Interaction Coverage", In Proc. of the IASTED Intl.
Conference on Software Engineering, February 2004,
pp. 242-252.

[6] "EMMA: a free Java code coverage tool", Available

from: http://emma.sourceforge.net/, 2006.
[7] M. Grindal, J. Offutt, and S.F. Andler, "Combination

Testing Strategies: A Survey", GMU Technical

Report ISE-TR-04-05, July 2004.
[8] A. Hartman and L. Raskin. "Problems and Algorithms

for Covering Arrays", Discrete Math., July 2004, pp.
149-156, 2004, Elsevier.

[9] A.S. Hedayat, N.J.A. Sloane, and J. Stufken.
Orthogonal Arrays: Theory and Applications. New

York: Springer, 1999.
[10] P. J. Schroeder and B. Korel, "Black-Box Test

Reduction Using Input-Output Analysis", in Proc. Of

the International Symposium on Software Testing and

Analysis (ISSTA 2000) Portland, OR, USA, 2000.

[11] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using
Artificial Life Techniques to Generate Test Cases for
Combinatorial Testing", in Proc. of the 28th Annual

International Computer Software and Applications

Conference COMPSAC 2004, Hong Kong, 2004, pp.
72-77.

[12] SUN. "How to Use File Choosers", Available from:
http://java.sun.com/docs/books/tutorial/uiswing/

components/filechooser.html.
[13] A.W. Williams and R.L. Probert, "A Practical

Strategy for Testing Pair-wise Coverage of Network
Interfaces", in Proc. of the 7th International

Symposium on Software Reliability Engineering,
1996, pp. 246-254.

[14] J. Yan and J. Zhang, "Backtracking Algorithms and
Search Heuristics to Generate Test Suites for

Combinatorial Testing", in Proc. of the 30th Annual

International Computer Software and Applications

Conference (COMPSAC'06). vol. 1, 2006, pp. 385-
394.

[15] M.I. Younis, K.Z. Zamli, and N.A.M. Isa, "IRPS –An
Efficient Test Data Generation Strategy for Pairwise
Testing,", in Proc. of the 12th International

Conference on Knowledge-Based and Intelligent

Information & Engineering Systems KES2008 Zagreb,
Croatia, 2008.

[16] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J.
Lawrence, "IPOG: A General Strategy for T-Way
Software Testing,", in Proc. of the 14th Annual IEEE

International Conference and Workshops on the

Engineering of Computer-Based Systems, 2007, pp.
549-556.

[17] Y. Lei and K.C. Tai, “In-Parameter-Order: A Test

Generation Strategy for Pairwise Testing", In Proc. of

the 3rd IEEE International High-Assurance Systems

Engineering Symposium, Washington, DC, USA:
1998, pp. 254-261

[18] K.Z. Zamli, N.A. M. Isa, M.F.J. Klaib, and S.N.
Azizan, "Designing a Combinatorial Java Unit
Testing Tool", in Proc. of the IASTED Intl.

Conference on Advances in Computer Science and

Technology (ACST 2007), Phuket, Thailand, April
2007.

[19] L. Zekaoui, "Mixed Covering Arrays on Graphs And

Tabu Search Algorithms", Ottawa-Carleton Institute

for Computer Science, University of Ottawa, Canada,
Master Thesis (2006).

View publication statsView publication stats

https://www.researchgate.net/publication/220772881

