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ABSTRACT 
Within current advancement in computer architecture, the trends nowadays involve re-design and re-implement of algorithms 
to take the advantages of currently available hardware and the applicability of composition. This paper reviews the parallelizing 
of the RSA Algorithm and adopting the Chinese Remainder Theorem (CRT) to accelerate the decryption process. In addition, 
this paper proposes variant decompositions to gain extra speed up. The proposed algorithms are implemented using C# 
programming language. Finally, the practical results demonstrate the many cores’ GPU implementation obtained the highest 
speedup results for both encryption and decryption processes for variant key size and different workload; for the decryption 
process with CRT, it is noticed that the adopting CRT sequential version gives a speed up gains ~14X. The multi–core gains 
~119X speed up; while the many core GPU gains ~433X speed. Thus, CRT gives a significant speed up for the decryption 
process for all three variant implementations. In addition, in both cases for Multi-cores and Many-cores, the speed up is super 
due to composition of parallel processing and CRT.    
Keywords: RSA, GPU, CRT, DLP, TLP 

1. INTRODUCTION 
During the last  years, the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) have functioned as a secure 
communication channel on the Internet. Currently, SSL provides confidential data securely and prevents eavesdropping 
and tampering by random attackers. SSL plays a key role in online banking, E-commerce, and other Internet services to 
protect passwords and credit card numbers, as well as, social security numbers and other private information [1]. 
Unfortunately, public key algorithms are not nearly mathematical inexpensive as symmetric encryption algorithms. An 
intensive study by Zhao et al. of the SSL session shows that more than 90% of the time spent in the encryption 
operations is in the key exchange of RSA, which involves high costs calculations for sites with high traffic, where the 
rate of new connections per second can easily reach into thousands. In each SSL connection, the server has to 
implement the exchange of the encryption key that involves public key encryption. It rapidly becomes a bottleneck 
when there is a need to create a large number of connections in the server side [2].  
Due to its distinctive ability to distribute and manage keys, public key encryption has become the perfect solution to 
information security [3]. Currently, the servers that rely on public key encryption (such as SSL server) require dealing 
with a significant number (multiple-precision integer) that requires massive computing power [2]. 
From the time of its invention in 1978, RSA encryption was investigated extensively for weaknesses. Whereas it is not 
found effective ways to attacking at any time, due to years of RSA cryptanalysis a wide look at features that offered  
valuable guidelines for proper use and implementation. Because RSA provides high security and simple to implement, 
it quickly became the most widely used and commonly public key encryption. However, the expensive RSA encryption 
in real-time is still a challenge. Finding effective implementation of RSA is one of the important tasks that still needs to 
be done [4]. 
Data encryption and decryption are in general complex problems to contain complicated mathematical calculations due 
to the restrictions demand on computer resources; the processor and memory, especially, when considering the 
processing of significant amounts of data. Still, in many situations, calculations carried out by encryption algorithms 
can be divided into a large number of independent parts and implemented on different cores. It has been  observed that 
encryption and decryption of large amounts of data could be decomposed and executed in parallel [5]. 
Over the past last years, more and more, parallel computing (multi-cores/ many-cores) processors have been overriding 
sequential ones. The most important engine of processor performance growth had  increased parallelism, rather than 
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increasing clock rate and this tendency is expected to continue. Particularly, today’s modern Graphical Processing 
Units (GPUs) have grown a dimension in terms of performance exceeding traditional Central Processing Unit (CPU) 
devilishly. Numerous modern computer systems have been made of – besides a CPU –a powerful GPU  will perhaps  
operate idle most of the time and may be used as an inexpensive and immediately available co-processor for many 
general-purpose applications [6], [7]. Although different applications are executed, the implementations on massively 
parallel platforms have comparable challenges that require design / redesign algorithms to use wide parallel processing 
on autonomous data sets [8]. In addition, recent studies regarding the RSA algorithm show that the decryption process 
is more time consuming than the encryption process. As such, this paper focuses on enhancement RSA encryption/ 
decryption processes and organized as follows. Section 2 highlights the related works. Section 3 reviews RSA 
algorithms and Chinese Remainder Theorem (CRT) and gives the design and implementation of the proposed RSA 
algorithm. Section 4 discusses the results. Finally, Section 5 gives the conclusion and suggestions for future works.     

2. RELATED WORKS 
With the rapid developments in hardware and software technologies, it seems that the sequential implementation of 
algorithms is not fast enough. Parallel algorithms, on the other hand, play a significant role in maintaining rapid 
growth. Not only multi-core processors but also a powerful graphics cards are becoming more and more available [9]. 
As a result, the researcher focuses on parallelizing both RSA encryption and decryption processes. 
Fan et al. introduced an efficient software implementation of the Montgomery multiplication algorithm on a multi-core 
system. They achieved to speed up of 1.53 and 2.15 when dealing with 256 bits and 1024 bits Montgomery modular 
multiplication, respectively [10]. 
Chen and Schaumont investigated the parallelization of the Montgomery multiplication, which is still considered a very 
time- consuming process in the public key cryptography, and proposes a scalable parallel programming scheme called 
Parallel Separated Hybrid Scanning (PSHS) to map the Montgomery multiplication to the modern multi-core 
architecture. pSHS accelerates 2048 bits Montgomery multiplication by 1.97, 3.68, and 6.13 times on two-core, four-
core, and eight-core architectures respectively [11]. 
Baktir and Savas presented an efficient parallel Montgomery multiplication algorithm for software implementations on 
general-purpose multi-core processors. They achieved to speed up of 0.81 times, 3.37 times and 4.87 times with 2, 4, 
and 6 cores, respectively [12]. 
Moss et al. presented the first GPU implementation of 1024 bitsRSA’s exponentiation on NVIDIA 7800 GTX GPU 
[13]. Their experimental results showed that there was a significant latency associated with invoking operations on the 
GPU, due to the legacy GPU architecture and the application programming interface. 
Fleissner proposed a 192 bits Montgomery exponentiation algorithm, which was executed on NVIDIA 7800GTX [14]. 
Szerwinski and Guneysu employed modular exponentiations of 1024 and 2048 bits based on both Montgomery 
Coarsely Integrated Operand Scanning (CIOS) and RNS arithmetic by an NVIDIA 8800GTS GPU and the Compute 
Unified Device Architecture (CUDA) framework [15].  
Harrison and Waldron presented a high performance 1024 bits RSA modular exponentiation running on an NVIDIA 
8800 GTX, which was established on integers represented in standard radix system and RNS [16]. 
Fan et al. presented an implementation of the RSA algorithm in parallel using Java for CUDA (JCUDA) and Hadoop. 
Their experimental results had shown that the RSA algorithm speed improved in comparison to the original method on 
the CPU only [6]. 
Neves and Araujo  executed 1024 bits RSA decryption on GTX260 GPU [17].  
Yao et al.  presented an investigation into the implementation and performance of modular exponentiation. They 
focused on 1024 bits RSA decryption running on an NVIDIA 9600GT and established a peak throughput of 3863 
msg/sec which means 5 times improvement over a comparable CPU implementation [18]. 
Li et al.  developed a parallel Montgomery multiplications using CUDA 2.3 platform and NVIDIA GeForce GTX285 
GPU. Their results demonstrated that GPU’s implementation was ten times faster than CPU’s  implementation [19]. 
Zhang et al.  implemented the RSA algorithm with modular exponentiation of (512,1024, and 2048) bits, through 
comparing and analyzing the implementation of GPU and CPU. The research results showed that the GPU 
implementation was faster 45 times in comparison with multi-core CPU implementation of RSA [20]. 
Dai introduced Crypto++, which is a free and open source C ++ library of cryptographic algorithms which includes: 
ciphers, message authentication codes, one-way hash functions, public-key cryptosystems, and key agreement schemes 
[21]. 
Finally, Fadhil and Younis discussed the parallel implementation of variable key length RSA algorithm on both multi-
cores’ CPU and many-cores’ GPU [22], [23]. They proposed variant implementations (sequential, Multi-threaded RSA 
for CPU and Many-core RSA for GPU) using C# programming language and GPU.NET framework. Unlike other 
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previous works, their implementation supports variable key size up to 8192 bits. their experiments are conducted on a 
laptop with Intel Core I7 2670QM, 2.20 GHz CPU, and Nvidia GeForce GT630M GPU. The GPU implementation 
gained approximately 23 speed up factor over the sequential CPU implementation; while the multithread CPU 
implementation gained only 6 speed up factor over the sequential CPU implementation as far as the latency is 
concerned. Furthermore, the GPU’s implementation achieved throughput (Number of processed messages per second) 
~1800 msg/sec, and  ~250 msg/sec for 1024 and 2048 bits respectively due to a utilization of both data level parallelism 
(DLP) and Thread Level Parallelism (TLP).  Fix and build from earlier works, the next section discuss three variants 
implementation of RSA decryption based on CRT. 

3. DECOMPOSITION OF RSA CALCULATIONS 
Build from our earlier work [22], [23] on construction three variants implementation of the RSA Algorithm (i.e., target 
to  sequential, Muti-cores CPU, and Many-cores GPU). This section give another three variants decryption 
implementation based on CRT. 

3.1 RSA’s Exponent calculation 
The Montgomery reduction algorithm is used for RSA’s exponent calculation for both encryption and decryption 
processes [14]. The detailed of the Montgomery algorithm is illustrated in Figure 1. 

 
Figure 1 Montgomery reduction algorithm [14] 

3.2 RSA's decryption acceleration based on CRT 
The size of the decryption exponent d and the modulus n is very important because the complexity of the RSA 
decryption is directly dependent on it.  Therefore, to introduce a decryption much faster than modular exponentiation it 
is prevalent to employ the CRT during decryption. RSA-CRT differs from the standard RSA in key generation and 
decryption [24], [25]. The RSA-CRT decryption is formalized as follows: 
Let p and q be two numbers (co-prime positive integer) such that GCD (p, q) ≡ 1. If a ≡ b (mod p) and a ≡ b (mod q), 
then a ≡ b (mod p.q) [24]. 
Since the recipient knows the secret primes p and q, the following modular components can be computed: 
1.    Calculate d p ≡ d mod(p- 1) and d q ≡ d  mod( q-1). 
2.    Calculate C p ≡ C mod p and C q ≡ C mod q. 
3.    Calculate Mp ≡ Cpdp mod p and Mq ≡ Cqdq mod q. 
4.    The final result is calculated as: 
M = [(( Mq + q- Mp ). A) mod q].p+Mp 
Where A is known as the multiplicative inverse of q and can be determined by the Euclid’s extended algorithm. The 
decryption speed is about four times faster because the modulus is reduced to half the bit-size of the modulus n. This 
means that the computations are done with smaller numbers. The variables dp and dq will be referred to as the CRT 
decryption exponents. Since the primes p and q are only known to the receiver, the CRT decryption algorithm can only 
be used by the receiver to decrypt a received message [24], [25]. The data structure for storing the private key using 
CRT is illustrated in Figure 2. 
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Figure 2 The data structure of RSA’s private key with CRT 

3.3 RSA encryption / decryption process 
The RSA encryption / decryption process has been applied into three different forms in order to reveal the efficient way 
to implement the RSA algorithm, which will be explained below. As for the decryption process, it is implemented in 
two techniques: first without CRT, second with CRT. It should be mentioned that not all protocols that use RSA 
support the CRT implementation, so the two designs are implemented. 

3.3.1 Sequential RSA implementation on the CPU 

The details of the sequential implementation are given in Figure 3, which includes public class Montgomery that 
implements the Montgomery algorithm.  It should be mentioned that this class could be reused as basic computing 
(thread) for multi-core CPUs and as a kernel for GPU. 
3.3.2 Parallel RSA implementation on the multi-Cores CPU and many-cores GPU 

The main bottleneck of the RSA encryption process is the large size of data. In order to provide a parallel 
implementation of the RSA, it is desired to have no dependencies between the data.  As such, the data can be divided 
into small portions; each thread can calculate a portion. As a result, this data parallelism method increases the 
computing speed of RSA. On the thread level, the plaintext or the ciphertext is divided into several portions with the 
same length. The same encrypt or decrypt operation will be done for each portion, then the encrypt and the decrypt 
process can be done with multiple threads, each thread only needs to gain the elements which are assigned to it, and 
run the same encrypt or decrypt function for these elements (in this case Montgomery algorithm). In other words, each 
thread can independently undertake a modular exponentiation as illustrated in Figure 4. 
The details for the multi-cores CPU's implementation and the details for the many-cores GPU's are depicted in Figure 5 
and Figure 6 respectively.  
With respect to implementation processes, sequential, multi-cores CPU, and many-cores GPU have been implemented 
using C# programming language and GPU.NET framework. Figure 7 depicts the snapshot of the variant 
implementations. 
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Figure 3 Sequential RSA algorithm on the CPU 

 
Figure 4 The structure of the thread level execution 
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Figure 5 Parallel RSA algorithm on the Multi-Cores CPU 

 
Figure 6 Parallel RSA algorithm on the Many-Cores GPU 
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Figure 6 GUI’s snapshot of the RSA Implementation. 

4. RESULTS AND DISCUSSION 
In order to compare the speed up gained of parallelizing RSA on multi-core CPU and many core GPU computing 
environments against sequential Montgomery implementations, a series of experimental groups are conducted. First, 
implement the sequential RSA algorithm on the CPU with various key sizes and then record the execution time and 
data throughput. Second, execute parallel RSA algorithm on multi-core CPU and GPU, and record related results as 
well, and observe the enhancement of adopting the CRT for decryption process in all cases. Table 1 shows the 
specifications of the platform that is adopted for evaluation purpose. The test groups are defined as follows: 

•    Group 1: Input messages varied in size that are convenient with the size of the encryption key (one byte less than 
modulus size). 

•    Group 2: Fixed  the load size to be 600 messages to measure the throughput. Here, we are more interested in 
determining the speed up gain as far as the throughput is concerned. Each message is one byte less than the modulus 
size. 

The results of applying Group1 are tabulated in Table 2. All execution times are measured in milliseconds (ms). 
Furthermore, the execution time shown in the tables is the average execution time (running the experiment 10 times 
and take the average execution time). It should be mentioned that during the experimentation the difference between a 
minimum and maximum time is just less than 100ms which is negligible. All row-by-row cell entries are shaded to 
refer to the minimum time or maximum speed up. To ensure fair speed up for the parallel implementation, we consider 
the sequential time of the proposed sequential version. As for the execution time, it is seen that the GPU 
implementation begins to be faster than the other two implementations when the key size is 3072 bits and higher for the 
encryption process.  Compared to the decryption process, it can be seen that the time was taken to decrypt a message is 
more than that needed to encrypt one; that is due to the public exponent (e) which is smaller than the private exponent 
(d). The CRT algorithm is used with the decryption process to further increase the gained speed up; that is due less 
mathematical calculation, task level parallelism, and hence free resources are available to further computing. With 
regard to the execution time, the GPU super passes the other two for all key sizes; it can also be inferred that the GPU 
is more powerful with heavy computations.   
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Table 1: Specifications of the experiment’s platform 

 

 
 
 
 
 
  

 

 

 

 

 
 

 

 

Table 2: The execution time (ms) for encryption/ decryption of message with variable key size 

 
In order to judge the performance of the parallel implementations, the speed up is calculated for Table 2 using the 
speed up performance equation: 

Speedup=time original / time after enhancement                (1) 

The speed up is tabulated in Table 3. Where S1 is the speed up for the multi-cores CPU implementation and S2 is the 
speed up for the many-cores GPU implementation. In addition, in the case of decryption; the speed up is calculated with 

Specifications Platform 
Processor Intel® Core™ 7-2670QM CPU @ 

2.20GHz 
CPU Speed 2195 MHz 
CPU Cores ( Logical) 8 
RAM 12GB 
Hard Drive 750GB 
Graphics Card GeForce GT 630M 
Operating System Windows 7 64-bit  
Processor Cores 96 
Number of multiprocessors 2 
Total amount of global memory 2048MB 
Total amount of constant 
memory 

64 KB 

Total amount of shared memory 
per block 

48 KB 

Total amount of registers 
available per block 

32768 

Warp size 32 
Maximum number of threads per 
block 

1024 

Maximum sizes of each 
dimension of a block 

1024*1024*64 

Maximum sizes of each 
dimension of a grid 

65536*65536*65536 

GPU Core speed 810 MHz 
Memory Interface Width: 128 bit 
Memory Bandwidth (GB/sec): 32 
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respect to original decryption (i.e., without CRT); which is denoted by S0 for sequential decryption.  The results of 
applying Group2 are tabulated in Table 4. 

Table 3: The speed up calculation for Group 1 

 
According to Table 3, It is clear that the speed up increase linearly as far as the key length is concerned, due to the 
requirements of intensive computing. The speed up is not very high for the encryption process. Thus, it is 
recommended to use the sequential RSA implementation for small key size (less than 3072 bits); otherwise, it is 
recommended to use GPU implementation for higher key lengths as well as for decryption process with any key length.  
For the decryption process with 8192 bits length (without CRT), it can be seen that the multi-cores CPU only gains 
~6X speed up; when the many-cores GPU gains ~23X; so the speed up is much higher with the many core GPU 
implementation even for small key size. Furthermore,  for the decryption process with CRT, it is noticed that the 
adopting CRT sequential version gives a speed up gains ~14X. The multi–core gains ~119X speed up; while the many 
core GPU gains ~433X speed. Thus, CRT gives a significant speed up for the decryption process for all three variant 
implementations. In addition, in both cases for Multi-cores and Many-cores, the speed up is super due to the 
composition of parallel processing and CRT.  As such, it is recommended to use CRT decryption whenever possible. 

Table 4: The execution time (ms) for encryption/decryption of 600 messages with variable key size 

 
 

Refers to Table 2, To encrypt one message with 2048 bits key, 1.04 ms is taken for the sequential version which means 
approximately to encrypt 600 messages that would take 624 ms. But as seen in Table 4, 3563.504 ms are taken which 
means more time due to looping overhead as well as context switching performed by the operating system. Now, let's 
see the speed up gain for multi-core version. In order to encrypt one message with 2048 bits key, 2.82 ms is taken for 
multi-core that means to encrypt 600 messages, 1692 ms would be taken. But as seen in Table 4, 1120.078 ms are taken 
which means that it is 1.51 times faster than the expected one due to free resources available for computing which can 
be occupied by available threads and overlapping operations among threads which hide the memory latency 
significantly. In addition, as far as the speedup and throughput are concerned, the multi-cores CPU implementation 
with 2048 encryption is ~3.2X faster than the sequential one; whilst it has more latency time for a single message (refer 
to Table 3 it has slow down by ~X 0.37). Finally, the same observation could be noted for the GPU environment. From 
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Table (2), 1.9 ms is taken to encrypt one message with 2048 bits key for many core GPU that means to encrypt 600 
messages which would take 1140 ms. But as we notice in Table (4), 1102.763 ms are taken which means it is 1.034 
times faster than the expected one. Moreover, as far as the speedup and throughput are concerned, the many cores GPU 
implementation with 2048 encryption is ~3.23X faster than the sequential one; whilst it has more latency time for a 
single message (refer to Table 3 it has slow down by ~X 0.547). As such, it is recommended to use parallel 
implementation as far as the throughput is concerned for both encryption and decryption processes. The same 
observations are valid for variety key sizes. Gained throughput by the GPU exceeds the multi-core and sequential 
implementations. Furthermore, CRT gives extra throughput due to light computation associated with the decryption 
process in all three variant implementations as Tabulated in Table 5.   

Table 5: The throughput (message per second) for encryption/ decryption processes with variable key size 

 
According to Table 5, unlike the latency enhancement, the throughput decreases as the key length increases due to 
extensive computation associated with a higher modulus. 

5. CONCLUSIONS 
This paper has been proposed three variant implementations for RSA algorithm, sequential, multi-cores CPU, and 
many-cores GPU, of executing modular exponentiation using the Montgomery algorithm. In addition, two variant 
implementations are done for the decryption process (with and without CRT). According to the practical results, the 
multi-cores CPU implementation gained speed up for the encryption process more than the speed up for the decryption 
process. While the GPU implementation also gained speed up for the encryption process, an excellent speed up is 
gained for the decryption process. These results are gained as far as the latency is concerned. In addition to working in 
a parallel manner, results show that an extra speed up can be gained by using CRT. Furthermore, additional speed up 
can be gained as far as the throughput is concerned. Due to overlapping of multithread operation whenever free 
resources are available. Results reveal that the GPU is appropriate to speed up the RSA algorithm. From our case study 
on parallelizing RSA algorithm on multi-cores CPU and many-cores GPU by decomposition the algorithm in 
independent data level and/or task level parts, a noticeable speed up and throughput can be gained. As such, further 
research on parallelizing different complex computational systems is the forthcoming stream to reflect the current 
advancement in computer architecture. 
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