
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221021650

IRPS – An Efficient Test Data Generation Strategy for

Pairwise Testing

Conference Paper · September 2008

DOI: 10.1007/978-3-540-85563-7_63 · Source: DBLP

CITATIONS

35
READS

70

3 authors:

Some of the authors of this publication are also working on these related projects:

Current Projects View project

Design and Implementation of a Contactless Smart House Network System View project

Mohammed I. Younis

University of Baghdad

48 PUBLICATIONS 351 CITATIONS

SEE PROFILE

Kamal Z Zamli

Universiti Malaysia Pahang

167 PUBLICATIONS 1,250 CITATIONS

SEE PROFILE

Nor Ashidi Mat Isa

Universiti Sains Malaysia

225 PUBLICATIONS 2,398 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohammed I. Younis on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221021650_IRPS_-_An_Efficient_Test_Data_Generation_Strategy_for_Pairwise_Testing?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221021650_IRPS_-_An_Efficient_Test_Data_Generation_Strategy_for_Pairwise_Testing?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Current-Projects-7?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Design-and-Implementation-of-a-Contactless-Smart-House-Network-System?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Baghdad?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Malaysia_Pahang?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Sains_Malaysia?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-61afbc7cbb7f801ac72108084e2b38f1-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAyMTY1MDtBUzoxMDQzMzkzODExNjE5ODVAMTQwMTg4Nzg1NTMyNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

I. Lovrek, R.J. Howlett, and L.C. Jain (Eds.): KES 2008, Part I, LNAI 5177, pp. 493–500, 2008.
© Springer-Verlag Berlin Heidelberg 2008

IRPS – An Efficient Test Data Generation Strategy for
Pairwise Testing

Mohammed I. Younis, Kamal Zuhairi Zamli, and Nor Ashidi Mat Isa

School of Electrical and Electronic Engineering, Universiti Sains Malaysia,
14300 Nibong Tebal, Penang, Malaysia
{eekamal,ashidi}@eng.usm.my

Abstract. Software testing is an integral part of software engineering. Lack of
testing often leads to disastrous consequences including loss of data, fortunes,
and even lives. In order to ensure software reliability, many combinations of
possible input parameters, hardware/software environments, and system
configurations need to be tested and verified against for conformance. Due to
costing factors as well as time to market constraints, considering all exhaustive
test possibilities would be infeasible (i.e. due to combinatorial explosion prob-
lem). Earlier work suggests that pairwise sampling strategy (i.e. based on two-
way parameter interaction) can be effective. Building and complementing ear-
lier work, this paper discusses an efficient pairwise test data generation strategy,
called IRPS. In doing so, IRPS is compared against existing strategies including
AETG and its variations, IPO, SA, GA, ACA, and All Pairs. Empirical results
demonstrate that IRPS strategy, in most cases, outperformed other strategies as
far as the number of test data generated within reasonable time.

1 Introduction

Software testing is an integral part of software engineering. Lack of testing often
leads to disastrous consequences including loss of data, fortunes, and even lives. To
ensure acceptable quality and reliability, many combinations of possible input pa-
rameters, hardware/software environments, and system configurations need to be
considered and verified against for conformance. This consideration often leads to
combinatorial explosion problem. Given limited time and resources, it is often impos-
sible to exhaustively consider all of these combinations. Thus, a sampling strategy is
needed to select a subset of these combinations in a systematic manner.

Earlier work suggests that pairwise sampling strategy (i.e. based on two-way pa-
rameter interaction) can be effective to uncover between 60 to 80 percent of faults [9]
[10]. Here, any two combinations of parameter values are to be covered by at least
one test [2]. Building and complementing earlier work, this paper proposes and im-
plements an efficient pairwise test data generation strategy, called IRPS. In doing so,
IRPS is compared against existing strategies consisting of AETG [2] and its variations
[4], IPO [12], SA [15], GA [15], ACA [15], and All Pairs [16]. Empirical results
demonstrate that IRPS strategy, in most cases, outperformed other strategies as far as
the number of test data generated within reasonable time.

494 M.I. Younis, K.Z. Zamli, and N.A. Mat Isa

2 Related Work

Existing strategies can be categorized into two dominant approaches, that is, algebraic
approaches or computational approaches [10].

Algebraic approaches construct test sets using pre-defined rules. Most algebraic
approaches compute test sets directly by a mathematical function [10]. Thus, the
computations involved in algebraic approaches are typically lightweight, and in some
cases, algebraic approaches can produce the most optimal test sets. However, alge-
braic approaches often impose restrictions on the system configurations to which they
can be applied [10] [18]. In a nut shell, algebraic approaches are often based on the
extensions of the mathematical methods for constructing orthogonal arrays (OA) [1]
[14], and covering arrays (CA) [8] [19]. Some variations of the algebraic approach
also exploit recursion in order to permit the construction of larger test sets from
smaller ones (see reference [17]).

Unlike algebraic approaches, computational approaches often rely on the genera-
tion of the all pair combinations. Based on all pair combinations, the computational
approaches iteratively search the combinations space to generate the required test case
until all pairs have been covered. Unlike algebraic approaches, the computational
approaches can be applied to arbitrary system configurations. Nevertheless, in the
case where the number of pairs to be considered is significantly large, adopting com-
putational approaches can be expensive due to the need to consider explicit enumera-
tion from all the combination space.

Adopting the computational approaches as the main basis, an Automatic Efficient
Test Generator (or AETG) [2] and its variant (AETG2), employs a greedy algorithm
to construct the test case, that is, each test covers as many uncovered combinations as
possible. Because AETG uses random search algorithm, the generated test case is
highly non-deterministic (i.e. the same input parameter model may lead to different
test suites [7]). Other variants to AETG that use stochastic greedy algorithms are: GA
(Genetic Algorithm) and ACA (Ant Colony Algorithm) [15]. In some cases, they give
optimal solution than original AETG, although they share the common characteristic
as far as being non-deterministic in nature.

In Parameter Order (IPO) strategy [11][12], builds a pairwise test set for the first
two parameters. Then, IPO strategy extends the test set to cover the first three pa-
rameters, and continues to extend the test set until it builds a pairwise test set for all
the parameters. In this manner, IPO generates the test case with greedy algorithms
similar to AETG. Nevertheless, apart from deterministic in nature, covering one pa-
rameter at a time allows the IPO strategy to achieve a lower order of complexity than
AETG. All Pairs strategy (i.e. downloadable tool) appears to share the same property
as far as producing deterministic test cases is concerned although little is known about
the actual strategies employed due to limited availability of references [16][6].

As far as other non-greedy strategies are concerned, some approaches opted to
adopt heuristic search techniques such as hill climbing and simulated annealing (SA)
[18]. Briefly, hill climbing and simulated annealing strategies start from some known
test set. Then, a series of transformations were applied (starting from the known test
set) until an optimum set is reached to cover all the pairwise combinations [18].
Unlike AETG and IPO, which builds a test set from scratch, heuristic search tech-
niques can predict the known test set in advance. As such, heuristic search techniques

 IRPS – An Efficient Test Data Generation Strategy for Pairwise Testing 495

can produce smaller test sets than AETG and IPO, but they typically take longer time
to complete [10].

3 The Proposed Strategy

Strategizing to construct minimum test set from the exhaustive test space is a NP-
complete problem [11], that is, it is often unlikely that efficient strategy exists that can
lways generate optimal test set (i.e. each interaction pair is covered by only one test).
Additionally, the size of the minimum pair wise test set also grows logarithmically
with the number of parameter and quadratically with the number of values [2]. Moti-
vated by such a challenge, we have opted to develop IRPS as a research vehicle to
investigate efficient strategy and data structure implementation to generate optimal
pairwise test set that can eventually be generalized for higher order interactions.
Adopting the computational approaches as its basis, the IRPS strategy for generating
pairwise test data set takes the following steps:

• Step 1: Generates all pairs and store them into compact linked list called Pi.
• Step 2: Search the Pi list and take the desired weight of the candidate case as a

test case then delete it from the Pi list.
• Step 3: repeat step 2 until the Pi list is empty.

As indicated above, the generated pairs are stored in compact linked list called Pi,
which is a linked list of linked lists. For a test set with N parameters, the Pi list con-
tains (N-1) linked list. Each linked list contains nodes equal to the number of values
defined by its parameter as well as an array of linked list that represents the pair of all
other variables in the next linked lists.

To understand how the Pi list works, consider a 4 3-valued parameters system, A =
{a0,a1,a2}; B = {b0,b1,b2}, C = {c0,c1,c2}, and D {d0,d1,d2}. In this example, we

have 23
2

4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 = 54 possible pairs of combinations.

Table 1. Pi Linked list for storing combination pairs for 4-3 valued parameters

a 0
 b 0 b 1 b 2
 c 0 c 1 c 2
 d 0 d 1 d 2

b 0
 c 0 c 1 c 2
 d 0 d 1 d 2

c 0
 d 0 d 1 d 2

a 1
 b 0 b 1 b 2
 c 0 c 1 c 2
 d 0 d 1 d 2
a 2
 b 0 b 1 b 2
 c 0 c 1 c 2
 d 0 d 1 d 2

b 1
 c 0 c 1 c 2
 d 0 d 1 d 2

b 2
 c 0 c 1 c 2
 d 0 d 1 d 2

c 1
 d 0 d 1 d 2

c 2
 d 0 d 1 d 2

 (i n d e x) i = 0 i = 1 i = 2

496 M.I. Younis, K.Z. Zamli, and N.A. Mat Isa

In this case, the complete Pi linked list can be visualized as in Table 1 given ear-
lier. Node a0 with the pairs linked list array contains the following pairs (<a0,b0>,
<a0,b1>, <a0,b2>, ……………,<a0,d2>). Here, this list contains only pairs that are
based on a0. Similarly, the same observation can be seen with other nodes in the lists.
The significant of such arrangement is the fact that less storage unit is required as
compared to storing all pairs in clear pairwise combinations. Considering the afore-
mentioned example and assuming each variable takes a unit of storage, then arranging
in clear pairwise combinations would require (54*2=108) storage unit. Using similar
calculation, adopting our arrangement strategy requires merely 3+(3*9)+3+(3*6)+
3+(3*3)=33 storage unit.

To describe the IRPS strategy in details, it is necessary to define a number of ter-
minologies. The weight of the candidate test case is defined as the number of pairs
that are covered by that candidate. For example, the test case combination of
a0b0c0d0 covers the pairs (<a0,b0>,<a0,c0>,<a0,d0>,<b0,c0>,<b0,d0>, and <c0,d0>)
and the variables b0,c0,d0 in node a0, c0,d0 in node b0, and finally d0 in node c0 , so
its weight=6. The maximum weight, wmax, for N parameters can be calculated by the
following:

wmax= N*(N-1)/2

Here, if N=4, then wmax=4*3/2=6. The miss variable is defined as the difference
between the maximum weight and the weight of the candidate test case. The intersec-
tion of node in the list i with the list (i+1) is defined as the intersection between the
node and all nodes given by the first row. IRPS strategy constructs a double linked list
that stores the original i node and the intersection with the second node in i+1 list, as
well as the rest of the nodes. If the first row in the pairs array is empty, the intersec-
tion process will be performed with all values of the nodes in the next list and the
miss variable is reduced by one (if miss>0). Otherwise, the intersection process will
be terminated and the iteration moves to the next node. The candidate test case is
obtained by taking the node value in each node in the doubly linked list. For the last
node, the candidate test case takes the current value and the first element in the pair
array. The candidate test case is taken as a test case only if its weight satisfies the
desired weight criteria. If not, the intersection process will continue with the other
nodes in the list (by deleting the last node in the doubly linked list and replace it with

for (i=0;i<N-;i++) // i is the index of pi list
 begin //start the search with maximum weight
 w=N(N-1)/2;
 while (list(i) is not empty
 begin
 if (there exist candidate test case from the intersection of a node in ith List
 with the remaining i+1 ,…,N-1 Lists)
 delete the test case from pi list;
 else //not find a test case with the desired weight so :
 w--; //decrease the weight
 end
end

Fig. 1. The search algorithm

 IRPS – An Efficient Test Data Generation Strategy for Pairwise Testing 497

the intersection with next node in the list, or when there is no next node in the list, the
strategy will delete the last two nodes and continue with the iteration). In other words,
the intersection process goes horizontally when the target weight is not found and
grows vertically in recursive fashion. Finally, the delete operation operates by delet-
ing each variable (if they exist) in each node.

Figure 1 depicts the search algorithm for the proposed IRPS strategy. Here, the al-
gorithm is terminated whenever the Pi list is empty in order to guarantee that all pairs
are covered and each pair only appears at most once in the final generated test cases
(i.e. to achieve optimum solution).

4 Evaluation

Our evaluation has two main goals. Firstly, we want to investigate the growth in the
size of the test sets generated by IRPS strategy, as well as the time taken to produce
those test sets based on the given number of parameters and values. Secondly, we
want to compare the performance of IRPS against existing tools particularly in terms
of the size and the time taken to produce the test sets. To perform the evaluation, we
have applied IRPS to three series of system configurations. In the first series, the
number of parameters (p) and the number of variables (v) are equal to each other, the
numbers(n) are (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 16) respectively. In the second
series, the number of parameters is fixed to be 5, and the number of variables is varied
from 2 to 10.

Table 2. Results for n=2 to 11 n n-valued parameters

Case Name

n=p=v
size

time

CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10

2
4

<0.001

3
9

<0.001

4
16

0.011

5
25

0.015

6
44

0.087

7
49

0.034

8
64

0.077

9
116

240.2

10
149

16.35

11
121

0.121

Table 3. Results for 5 parameters with 2 to 10 values

Case Nam e

value(v)
size

tim e

CA11 CA12 CA 13 CA 14 C A15 CA 16 CA17 CA18 CA19

2
6

0.01

3
12
0.015

4
16

0.016

5
25

0.015

6
44

0.077

7
49

0.057

8
78

0.133

9
96

0.178

10
114

0.184

Table 4. Results for 2 to 10 parameters with 5 values
p

Case Name

parameter(p)
size

time

CA20 CA21 CA22 CA23 CA24 CA25 CA26 CA27 CA28

2
25

0.053

3
25
0.054

4
25

0.114

5
25

0.015

6
25

0.031

7
37

0.32

8
41

0.78

9
44

1.45

10
45

1.928

498 M.I. Younis, K.Z. Zamli, and N.A. Mat Isa

Tables 2, 3 and 4 show the experimental results for the three series of system con-
figurations respectively. The columns in the three tables are self-explanatory. Note
that the execution times are shown in seconds, and all the results were collected using
a laptop running Windows Vista with 1.6GHZ CPU and 512 MB memory. The entire
tool is implemented using Java Development Kit 1.4 (JDK1.4) platforms.

For pairwise interaction, the optimal size can be viewed as the product of the two
maximum numbers of variables. This observation can be seen in the case of CA1,
CA2, CA3, CA4, CA6, CA7, and CA10 from Table 2. Similar observation can be
seen in the case of CA13, CA14, and CA16 from Table 3. The generated test case is
also minimal in size, as depicted in CA20, CA21, CA22, CA23 and CA24 from Table
4 respectively. Here, we conclude that the size of generated test case depends linearly
on the optimal size of the generated test case.

As far as execution time is concerned, we observe that the execution time is sig-
nificantly independent on the number of parameters and values when the size is not
minimal. This is due to the nature of the algorithm that generates the heavy weighted
test case first, deletes them from the Pi list, and then searches again for the uncovered
pairs. In this way, the size of the generated test case and the execution time depend
on the phenomena of greedy algorithm rather than the number of parameters and
values.

We observe that the size and execution time of CA9 (10 10-valued parameters) is
greater than CA10 (11 11-valued parameters), according to Table 2, and the size of
CA7 (8 8-valued parameters) is greater than CA17 (8 5-valued parameters) according
to Tables 2, and 3 respectively. Here, we conclude that the behavior of IRPS is unpre-
dictable in term of the execution time due to the exhaustive search nature when drift-
ing from optimal size, but running the test case generator produces the same test set
on every case (thus, IRPS strategy is deterministic).

As for comparison, we have identified the following existing strategies that support
pairwise testing: AETG [2] [3], AETG2 [15] [5], IPO [12], SA [15], GA [15], ACA
[15], and All Pairs tool [16]. We consider eight systems namely; S1: 3 3-valued pa-
rameters, S2: 4 3-valued parameters, S3: 13 3-valued parameters, S4: 10 10-valued
parameters, S5: 10 15-valued parameters, S6: 20 10-valued parameters, S7: 10 5-
valued parameters, and S8: 1 5-valued parameters, 8 3-valued parameters and 2 2-
valued parameters. The system configurations are: AETG2 & SA: C++, Linux, Intel P IV
1.8 GHZ; IPO: Java, Windows 98, Intel P II 450 MHZ; CA, & ACA: C, Windows XP, P IV
2.26 GHZ; AllPairs: Perl, Windows Vista, P IV 1.6 GHZ, 512 MB RAM; and IRPS: Java,
Windows Vista, P IV 1.6 GHZ, 512 MB RAM.

Table 5 shows the size of the test set generated by each strategy, and Table 6
shows the execution time for each system. All the problem instances and data for the
existing strategies are taken from [12], [15], and [5] except for All Pairs tool (avail-
able freely, which we run side by side with our tool). Entries marked with NA are
data that are not available in these papers.

Referring to Table 5, IRPS always generate smaller test cases than ALL Pairs and
in some cases generates less (i.e. S4, S5, S6, and S7) or equals to that of IPO (i.e.S2,
S3). IRPS also generates less the cases compared to AETG2 (except S6), GA and
ACA (except S8). While IRPS outperformed AETG in S8, AETG outperformed
IRPS in S3, and S6. Finally, SA outperformed IRPS (in S3, S6, and S8). Unlike
AETG, AETG2, GA, ACA and IRPS; SA does not have the practical advantage of the

 IRPS – An Efficient Test Data Generation Strategy for Pairwise Testing 499

Table 5. Comparison on the size of the test set generated by existing strategies

S ystem

S1
S2
S3

A E T G A E T G 2 IPO SA G A A C A A ll Pa irs IR P S

N A
9

15

N A
11
17

N A
9

17

N A
9

16

N A
9

17

N A
9

17

10
10
22

9
9

17
S4
S5
S6
S7
S8

N A N A 169 N A 157 159 177 149
N A N A 361 N A N A N A 390 321
180 198 212 183 227 225 230 210
N A N A 47 N A N A N A 49 45
19 20 N A 15 15 16 21 17

Table 6. Comparison on the time taken to generate test set (in seconds) for existing strategies

S y stem

S 1
S 2
S 3

A E T G A E T G 2 IP O S A G A A C A A ll P a ir s IR P S

N A
N A
N A

N A
N A
N A

N A
N A
N A

N A
N A
N A

N A
N A
N A

N A
N A
N A

0 .0 8
0 .2 3
0 .4 5

< 0 .0 0 1
0 .0 0 4
3 9 .2 3

S 4
S 5
S 6
S 7
S 8

N A N A 0 .3 N A 8 6 6 1 1 8 0 5 .0 3 1 6 .3 5
N A N A 0 .7 2 N A N A N A 1 0 .3 6 1 1 2 4
N A 6 0 0 1 N A 1 0 8 3 3 6 3 6 5 7 0 8 3 2 3 .3 3 2 1 3
N A N A 0 .0 5 N A N A N A 1 .0 2 1 .9 2 8
N A 5 8 N A 2 1 4 2 2 3 1 0 .3 5 2 .0 2

greedy algorithm as the implementation is not based on such an algorithm. Here, in
the absence of the greedy algorithm, the construction of the test set can not utilize the
useful property that the test case created earlier has more significant impact as far as
the interaction coverage is concerned [15].

Admittedly, no fair comparison can be made in terms of execution time from exist-
ing strategies due to the differences in the computing environments, and the unavail-
ability of the open source code or executable code to run in our platform (with the
exception of ALL Pairs tool). Nevertheless, as a general observation; we believe that
the execution time for IRPS is still acceptable as compared to other strategies (see
Table 6). Not considering the computing differences, IPO outperforms all other
strategies. One reason may be that IPO employs deterministic algorithm and needs
only one run. Thus, IPO requires much less time to execute than others. SA includes
the time taken to find all sized test sets through binary search process, hence, requir-
ing more run time than others. In short, no strategies can clearly be dominant in all.

To conclude, here in this paper, we propose a novel deterministic computational
strategy for pairwise testing with efficient data structure for storing and searching
pairs. Our initial evaluation results are encouraging particularly in terms of test suite
size within acceptable execution time. As part as our future work, we are currently
investigating a new parallel search algorithm for IRPS to be implemented under the
GRID environment, supported by the USM GRID - Research University Grant.

500 M.I. Younis, K.Z. Zamli, and N.A. Mat Isa

References

1. Bush, K.A.: Orthogonal Arrays of Index Unity. Annals of Mathematical Statistics 23, 426–
434 (1952)

2. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An Approach
to Testing Based on Combinatorial Design. IEEE Trans. on Software Engineering 23(7),
437–443 (1997)

3. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The Combinatorial Design Approach
to Automatic Test Generation. IEEE Software 13(5), 83–88 (1996)

4. Cohen, M.B.: Designing Test Suites for Software Interaction Testing, PhD Thesis, Univer-
sity of Auckland (2004)

5. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing Test Suites for
Interaction Testing. In: Proc. of the 25th Intl. Conf. on Software Engineering (ICSE 2003),
Dallas USA. IEEE CS Press, Los Alamitos (2003)

6. Copeland, L.: A Practitioner’s Guide to Software Test Design. STQE Publishing (2004)
7. Grindal, M., Offutt, J., Andler, S. F.: Combination Testing Strategies: A Survey. In: GMU

Technical Report ISE-TR-04-05 (July 2004)
8. Hartman, A., Raskin, L.: Problems and Algorithms for Covering Arrays. Discrete Mathe-

matics 284(1-3), 149–156 (2004)
9. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software Fault Interactions and Implications for

Software Testing. IEEE Trans. on Software Engineering 30(6), 418–421 (2004)
10. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: A General Strategy for T-

Way Software Testing. In: 14th Annual IEEE Intl. Conf. and Workshops on the Engineer-
ing of Computer-Based Systems, Tucson, AZ, March 2007, pp. 549–556. IEEE CS Press,
Los Alamitos (2007)

11. Lei, Y., Tai, K.C.: In-Parameter-Order: A Test Generating Strategy for Pairwise Testing.
In: Proc. 3rd IEEE Intl. Symp. On High Assurance System Engineering, November 1998,
pp. 254–261 (1998)

12. Lei, Y., Tai, K.C.: In-Parameter-Order: A Test Generating Strategy for Pairwise Testing.
IEEE Transaction on Software Engineering 28(1), 1–3 (2002)

13. Maity, S., Nayak, A., Zaman, M., Bansal, N., Srivastava, A.: An Improved Test Genera-
tion Strategy for Pair-Wise Testing. In: Fast Abstract ISSRE 2003 (2003)

14. Mandl, R.: Orthogonal Latin squares: an application of experiment design to compiler test-
ing. Communications of the ACM 28(10), 1054–1058 (1985)

15. Shiba, T., Tsuchiya, T., Kikuno, T.: Using Artificial Life Techniques to Generate Test
Cases for Combinatorial Testing. In: 28th Annual Intl. Computer Software and Applica-
tions Conference (COMPSAC 2004), Hong Kong, China, September 2004, pp. 72–77
(2004)

16. http://www.satisfice.com
17. Williams, A.W., Probert, R.L.: A Practical Strategy for Testing Pair-Wise Coverage of

Network Interfaces. In: Proc. of the 7th Intl. Symp. on Software Reliability Engineering
(ISSRE), White Plains, New York (1996)

18. Yan, J., Zhang, J.: Backtracking Algorithms and Search Heuristics to Generate Test Suites
for Combinatorial Testing. In: Proc. of the 30th Annual Intl. Computer Software and Ap-
plications Conference (COMPSAC 2006), Chicago USA, September 2006, vol. 1, pp.
385–394. IEEE CS Press, Los Alamitos (2006)

19. Zekaoui, L.: Mixed Covering Arrays on Graphs and Tabu Search Algorithms. In: MSc
Thesis, Ottawa-Carleton Institute for Computer Science, University of Ottawa, Canada
(September 2006)

View publication statsView publication stats

https://www.researchgate.net/publication/221021650

	IRPS – An Efficient Test Data Generation Strategy for Pairwise Testing
	Introduction
	Related Work
	The Proposed Strategy
	Evaluation
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

