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1. INTRODUCTION 

For a distributed parameter system evolving on a special domain Ω, the observability concept has been widely 

developed and survey of these developments can be found [1-3]. The purpose of an exponential estimator is to provide 

an exponential state estimation for the considered system state [4]. New direction of regional analysis for infinite 

dimensional systems has been recently explored by Al-Saphory and El Jai et al. in infinite time(may be called regional 

asymptotic or exponential analysis) as in ref.s [5-11]  and  for finite time (may be called regional observability) as in 

[12-14]. In this paper, we introduce and study the notion of exponential regional boundary reduced observability in a 

given region Γ of the domain boundary ∂Ω. Thus the developed approach is an extension of previous works to the 

regional case as in [6-15]. Moreover the relationship between this notion, regional boundary detectability and regional 

boundary strategic sensors are tackled and analyzed. The reason behind the study of this notion, there exist some 

problem in the real world cannot observe the system state in the whole domain boundary, but in a part of this domain 

boundary. The scenario described by energy exchange problem, where the aim is to determine the energy exchanged in 

a casting plasma on a plane target which is perpendicular to the direction of the flow from measurements (internal 

pointwise sensors) carried out by thermocouples [16-17] (Figure 1), 

 

  Fig. 1: Model of energy exchanged problem on Γ 

where  (1) is the torch of plasma, (2) is the probe of (steal), (3) is the insulator, Γ is the face of exchange and 𝑏1, 𝑏2 

sensor locations. This paper is organized as follows. Section 2 is devoted to the introduction of regional exponential 

detectability and considered system with  Γ𝐸-detectability and Γ-observability. We study the links of this notion with the 

regional exponential observability and strategic sensors. In Section 3, we study a regional exponential observability 

through the   relations between Γ𝐸-estimator reconstruction method and Γ𝐸- observability. In section 4 an section 5 we 

introduce regional exponential reduced observability notion for a distributed parameter system in terms of regional 

exponential reduced detectability and reduced strategic sensors. In the last section, we illustrate applications with 

different domains and circular strategic sensors of two-phase exchange systems. 
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2.  Problem Formulation   

Let Ω be a regular, bounded and open subset of ℝ𝑛 , with boundary  𝜕Ω. Let Γ be a non-empty given sub-region of 𝜕Ω,  

with positive measurement. We denote 𝒬 = Ω × (0,∞) and Θ = 𝜕Ω × (0,∞) . Let 𝑋, 𝑈, and 𝒪 be a separable Hilbert 

spaces, where 𝑋 is the state space, 𝑈 is the control space and 𝒪 the observation space. We consider 𝑋 = 𝐻1(Ω), 

𝑈 = 𝐿2(0,∞,ℝ𝑝) and 𝒪 = 𝐿2(0,∞,ℝ𝑞)  where 𝑝 and 𝑞 hold for the numbers of actuators and sensors [18]. We 

consider  the system described by the following parabolic partial deferential equations: 

          

{
 
 

 
 
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡)   = 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡)                                    𝒬

𝑥(𝜉, 0)     = 𝑥0(𝜉)                                                         Ω
𝜕𝑥

𝜕𝜈𝐴
(𝜂, 𝑡)  = 0                                                                Σ

                                     (1)               

augmented with the output function 

          𝑦(. , 𝑡) = 𝐶𝑥(. , 𝑡)                                                                                              (2) 

Where Ω holds for the closure of Ω and 𝑥0(𝜉) is supposed to be  unknown in the state space 𝑋 = 𝐻1(Ω̅). The system (1) 

is defined with a Neumann boundary conditions, 𝜕𝑥 𝜕𝑣𝐴⁄  holds for the outward normal derivative.  Thus,  𝐴 is a 

second-order linear differential operator, and is self-adjoint with compact resolvent. The operators 𝐵 ∈ 𝐿(ℝ𝑝, 𝑋) and  

𝐶 ∈ 𝐿(𝐻1(Ω̅), ℝ𝑞) depend on the strutures of actuators and sensors [19-20]. That means, in the case of pointwise 

(internal or boundary) and  boundary zone sensors (actuators), we have 𝐵 ∉ 𝐿(ℝ𝑝, 𝑋) and 𝐶 ∉ 𝐿(𝐻1(Ω), ℝ𝑞), we refer 

to see [21]. Thus, the system (1) has a unique solution [22] given by  

          𝑥(𝜉, 𝑡) = 𝑆𝐴(𝑡)𝑥0(𝜉) + ∫ 𝑆𝐴(𝑡 − 𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

0
.                                                (3)  

The problem is that how to give an approach which enables to estimate the system state in a sub-region Γ of the 

boundary as in (Figure 2), using convenient sensors. Then, the mathematical model in (Figure 2) is more general spatial 

case in (Figure 1). 

 

Fig. 2: The domain of Ω , the sub-regions ω and Γ, various sensors locations. 

The regional boundary exponential reduced estimator is defined when the output gives a part of the state vector in this 

region. We need to rewrite the hypothesizes and  some definitions in the following forms: 

 ▪ The operator  𝐾 is defined by following  

           
𝐾: 𝑋 → 𝒪                  
𝑥 → 𝐶𝑆𝐴(. )𝑥 

                                                                                          

then, we obtain 

         𝑦( . 𝑡) = 𝐾(𝑡)𝑥( . ,0)                                                                                         

where 𝐾 is bounded linear operator (this is valuable on some output function) [21]. 

▪ The operator 𝐾∗: 𝒪 → 𝑋   is the adjoint of  𝐾 defined by 

         𝐾∗𝑦∗ = ∫ 𝑆𝐴
∗(𝑠)

𝑡

0
𝐶∗𝑦∗(. , 𝑠)𝑑𝑠                                                                         
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▪ The trace operator of order zero 

         𝛾0 ∶  𝐻
1(Ω) → 𝐻1/2(𝜕Ω)                                                                                  

is linear, subjective, and continuous [23], such that 𝑥0
Γ  is the restriction of the trace of the initial state 𝑥0  to Γ.  𝛾0

∗ 

denote the adjoint of  the operator 𝛾0  given by 

         𝛾0
∗: 𝐻1/2(𝜕Ω) → 𝐻1(Ω)                                                                                  

▪ For a sub-region  Γ ⊂ 𝜕Ω let χΓ be the restriction function defined by          

       
 χ Γ : 𝐻

1/2(𝜕Ω) → 𝐻1/2(Γ)  
                           𝑥 →  χΓ𝑥 = 𝑥|Γ

                                                                         

where  𝑥|Γ is the restriction of 𝑥  to Γ.  We denote by 𝜒Γ
∗  the adjoint function of  𝜒Γ and defined by 

          𝜒Γ
∗ ∶ 𝐻1/2(Γ) →  𝐻1/2(𝜕Ω)     

 ▪  Let 𝜒𝜔 be the function defined by 

      
𝜒𝜔 : 𝐻

1(Ω) → 𝐻1(𝜔) 

                          𝑥 →  𝜒𝜔𝑥 = 𝑥|𝜔
 

where  𝑥|𝜔 is the restriction of the state x to ω. 

▪ The system (1) is 𝜔𝛦-stable if the operator 𝐴 generates a strongly continuous semi-group (𝑆𝐴(𝑡))𝑡≥0 which is 𝜔𝛦-

stable. 

▪ If The system (1) is 𝜔𝛦-stable, then the solution of autonomous system associated with (1)-(2), converges 

exponentially to zero when 𝑡 tends to ∞              

▪ The systems (1)-(2) are said to be regionally exponential detectable on 𝜔 (or  𝜔𝛦-detectable) if there exists an operator 

𝐻ω : 𝒪 → 𝐻1(ω) such that the operator (𝐴 − 𝐻ω𝐶)  generates a strongly continuous semi-group (𝑆𝐻ω(𝑡))𝑡≥0, which is 

ωΕ-stable. 

3.   𝚪𝚬-DETECTABILITY AND 𝚪𝚬-OBSERVABILITY 

It has been shown that a system which is exactly observable is detectable [2]. For linear systems, we recall the exactly 

Γ-observable [9]. Thus, regional observability definitions have been extended to regional boundary case for parabolic, 

hyperbolic as in [17, 19, 24] linear, semi-linear and nonlinear [26-27], and  with duel concept [25]. However, in this 

subsection we presents some definitions which will be used to explain the notion of the regional  boundary exponential 

detectability and observability in the state space 𝐻1/2(Γ) which is an extension from ref.s [7, 9].   

Definition 3.1: The semi-group (𝑆𝐴(𝑡))𝑡≥0 is regionally boundary exponentially stable in 𝐻1/2(Γ) (or Γ𝛦-stable) if, for 

some positive constants 𝐹Γ and 𝜎Γ, then 

          ‖𝜒𝜔𝑆𝐴(. )‖𝐿(𝐻1/2(Γ),   𝑋) ≤ 𝐹Γ 𝑒
−𝜎Γ𝑡 , 𝑡 ≥ 0                                                        (4) 

In this work,  we only need the relation (4) to be true on a given sub-region Γof the region 𝜕Ω in the following result. 

Remark 3.2: If the semi-group (𝑆𝐴(𝑡))𝑡≥0 is regionally boundary exponentially stable on 𝐻1/2(Γ), then for all 𝑥0 ∈

𝐻1 2⁄ (𝛤), the solution associated to the autonomous system of (1) satisfies 

          lim𝑡→∞‖𝛾0𝑥(. , 𝑡)‖𝐻1/2(Γ) = lim𝑡→∞‖𝛾0𝑆𝐴𝑥0(. )‖𝐻1/2(Γ) = 0                          (5) 
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Definition 3.3: The system (1) is said to be regionally boundary exponentially stable on Γ (or Γ𝛦-stable), if the operator 

A generates a semi-group which is exponentially stable on the space 𝐻1/2(Γ). 

Definition 3.4: The system  (1)-(2) is said to be regionally boundary exponentially detectable on Γ (or Γ𝛦-detectable) if 

there exists an operator   

           𝐻Γ: ℝ
𝑞 → 𝐻1/2(Γ) such that (𝐴 − 𝐻Γ𝐶),  

generates a strongly continuous semi-group (𝑆𝐻Γ(𝑡))𝑡≥0which is Γ𝛦-stable.  

However, one can deduce the following  results : Thus, the  notion of Γ𝛦-detectability is a weaker property than the 

exact Γ-observability as in (ref.s [3, 18]). 

Corollary 3.5: If the systems (1)-(2) are exactly Γ-observable, then it is Γ𝛦-detectable. This result allows 

           ∃𝛾 > 0 such that 

          ‖𝑥Γ𝛾𝑆𝐴𝑥0(. )‖𝐻1/2(Γ) ≤  𝑣‖𝐶𝑆𝐴𝑥0(. )‖𝐿2(0,∞,𝒪), ∀𝑥0 ∈ 𝐻
1/2(Γ).                      (6) 

Proof: We conclude the proof of this corollary from the results on observability  considering 𝑥Γ𝐾
∗ [20]. We have the 

following forms: 

(a)  Ι𝑚 𝐹 ⊂  Ι𝑚 𝐺  

(b) There exists 𝑣 > 0 such that ‖𝐹∗𝑥∗‖𝑃∗ ≤ 𝑣‖𝐺∗𝑥∗‖𝑈∗ , ∀𝑥
∗ ∈ 𝑉∗.     

From the right hand said of this relation ∃ 𝛭, 𝛼 > 0 with 𝑣 < 𝛭 such that 

          𝑣‖𝐺∗𝑥∗‖𝑈∗ ≤  𝛭𝑒−𝛼𝑡‖𝑥∗‖𝑈∗ 

where 𝑃 , 𝑈 and 𝑉 be a Banach reflexive space and 𝐹 ∈ 𝐿(𝑃, 𝑉), 𝐺 ∈ 𝐿(𝑈, 𝑉).  

Now, Let 𝑃 = 𝑉 = 𝐻1/2(Γ), 𝑈 = 0, 𝐹 = 𝐼 to 𝐻1/2(Γ) and 𝐺 = 𝑆∗𝐴(. )𝜒
∗
Γ𝛾

∗𝐶∗  where 𝑆𝐴(. ) is a strongly continuous 

semi-group generates by 𝐴, which is ΓΕ-stable then, it is ΓΕ-detectable ∎.  

As in EI Jai and Pritchard [28], we will develop a characterization result that links the ΓΕ-detectability in terms of 

sensors structures. 

Proposition 3.6:  Suppose that there are 𝑞 zone sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 .  If  

(1) 𝑞 ≥ 𝑟.  

(2) 𝑅𝑎𝑛𝑘 𝐺𝑛 = 𝑟𝑛 , ∀𝑛, 𝑛 = 1, . . , 𝐽           

  with 𝐺 = (𝐺𝑛)𝑖𝑗 = (〈𝜑𝑛𝑗 , 𝑓𝑖〉𝐿2(𝐷𝑖)) where 𝑠𝑢𝑝𝑟𝑛 = 𝑟 < ∞ and           𝑗 = 1,… , 𝑟𝑛 . 

  Then the systems (1)-(2) are ΓΕ-detectable.  

Proof: Since rank condition is satisfied, then the systems (1)-(2) are weakly Γ-observable for finite sub-systems of (1) 

(see [3]) and then are exactly Γ-observable. Thus, from previous corollary 3.5 we have that the systems (1)-(3) are ΓΕ-

detectable. 

4. REGIONAL EXPONENTIAL FULL ORDER OBSERVABILITY  

In this section, we present  an approach which allows construction an reconstruct regional exponential full order 

estimator (Γ𝐸𝐹𝑂- estimator) of �̂�𝑥(𝜉, 𝑡). This method avoids the calculation of the inverse operators, and the 

consideration of the initial state [16, 19]. It enables to estimate the current state in Γ without needing the effect of the 

initial state of the original system. 
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4.1  Reconstruction of  𝚪𝑬𝑭𝑶-Estimator  

We consider the system and the output specified by the following form: 

          

{
 
 

 
 
𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = 𝐴𝑥(𝜉, 𝑡) + 𝐵𝑢(𝑡)             𝒬

𝑥(𝜉, 𝑡) = 0                                            Θ

𝑥(𝜉, 0) = 𝑥0(𝜉)                                   Ω

𝑦(. , 𝑡) = 𝐶𝑥(. , 𝑡)                                 𝒬

                                                           (7) 

 Let Γ ⊂ 𝜕Ω  be a given subdomain (region) of 𝜕Ω and assume that for 𝑇 ∈ 𝐿 (𝐻1/2(Γ)), and �̂� = 𝜒Γ𝑇  there exists a 

system with state 𝑧(. , 𝑡) such that  

          𝑧(𝜉, 𝑡) = �̂� 𝑥(𝜉, 𝑡).                                                                                            (8) 

Thus, if we can build a system which is an exponential estimator for 𝑧(. , 𝑡),  then it will be an exponential estimator for 

𝑇𝛾0̂ 𝑥(𝜉, 𝑡),  that is to say an exponential estimator to the restriction of 𝑇𝑥(𝜉, 𝑡)  to the region Γ. The equations (2)-(8) 

give  

          [
𝑦
𝑧
] =  [

𝐶
�̂�
] 𝑥.                                                                                                      (9) 

 If we assume that there exists two linear bounded operators 𝑅 and 𝑆, where 𝑅:ℝ →  𝐻1/2(Γ), and 𝑆: 𝐻1/2(Γ) →

𝐻1/2(Γ), such that 𝑅𝐶 + 𝑆�̂� = Ι , then by deriving 𝑧(𝜉, 𝑡) we have  

           
𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) = �̂�

𝜕𝑥

𝜕𝑡
(𝜉, 𝑡) = �̂�𝐴𝑥(𝜉, 𝑡) + �̂�𝐵𝑢(𝑡) 

                        = �̂�𝐴𝑆𝑧(𝜉, 𝑡) + �̂�𝐴𝑅𝑦(. , 𝑡) + �̂�𝐵𝑢(𝑡).     

Consider now the system ( Γ𝐸𝐹𝑂- estimator for 𝑥) 

          {

𝜕�̂�

𝜕𝑡
(𝜉, 𝑡) = 𝐹Γ�̂�(𝜉, 𝑡) + 𝐺Γ𝑢(𝑡) + 𝐻Γ𝑦(. , 𝑡)       𝒬

�̂�(𝜉, 𝑡) = 0                                                                Θ

�̂�(𝜉, 0) = �̂�0(𝜉)                                                        Ω

                                         (10) 

Where 𝐹Γ generates a strongly continuous semi-group (𝑆𝐹Γ(𝑡))𝑡≥0, which is regionally exponential stable on 𝑋 =

𝐻1/2(Γ), i.e., ∃ 𝑀𝐹Γ
, 𝛼𝐹Γ > 0,  such that  

          ‖𝜒Γ𝛾0𝑆𝐹Γ(. )‖𝐿(𝐻1/2(Γ),𝐻1/2(Γ))
≤ 𝑀𝐹Γ𝑒

−𝛼𝐹Γ𝑡 , ∀𝑡 ≥ 0.                                    (11) 

 and 𝐺Γ  ∈ 𝐿(ℝ
𝑝, 𝐻1/2(Γ)) and 𝐻Γ ∈ 𝐿(ℝ

𝑞 , 𝐻1/2(Γ)). The solution of (10) is given by  

          �̂�(. , 𝑡) = 𝑆𝐹Γ(𝑡)�̂�0(. ) + ∫ 𝑆𝐹Γ(𝑡 − 𝜏)[𝐺Γ𝑢(𝜏) + 𝐻Γ𝑦(. , 𝜏)]𝑑𝜏
𝑡

0
                      (12)   

4.2  𝚪𝑬𝑭𝑶-Observability  

 In this case, we can consider �̂� = 𝛪, and 𝑋 = 𝑍, so the operator equation �̂�𝐴 − 𝐹Γ�̂� = 𝐻Γ𝐶  of the Γ𝐸𝐹𝑂-observable 

becomes to 𝐹Γ = 𝐴 − 𝐻Γ𝐶, where 𝐴 and 𝐶 are known. Thus, the operator 𝐻Γ must be determined such that the operator  

𝐹Γ is  Γ𝐸𝐹𝑂- stable. For the system (7), consider the dynamical system  

          {

𝜕�̂�

𝜕𝑡
(𝜉, 𝑡) = 𝐴�̂�(𝜉, 𝑡) + 𝐵𝑢(𝑡) + 𝐻Γ(𝑦(. , 𝑡) − 𝐶�̂�(𝜉, 𝑡)    𝒬

�̂�(𝜂, 𝑡) = 0                                                                                 Θ

�̂�(𝜉, 0) = 0                                                                                 Ω

                         (13) 
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Thus, a sufficient condition for existence of  Γ𝐸𝐹𝑂- estimator is formulated in the following proposition. 

Proposition 4.1:  Suppose that the systems (1)-(2) are Γ𝐸𝐹𝑂-detectable, and then the dynamical system (13)  achieve the 

Γ𝐸𝐹𝑂-observability for the systems (1)-(2), i.e., 

          lim𝑡→∞‖𝑥(𝜉, 𝑡) − �̂�(𝜉, 𝑡)‖𝐻1/2(Γ) = 0. 

Proof :  By the same way with minor modifications as in ref. [6] we can prove the proposition 4.1 in different case of 

sensors (zone, pointwise) internal or boundary. 

4.3 Crossing Method From Internal To Boundary Case 

The regional boundary exponential observability in Γ (or Γ𝐸 -observability) may be seen as internal regional exponential 

observability in 𝜔𝑟 ⊂ Ω  (or 𝜔𝑟𝐸𝐹𝑂-observability) if we consider the following: 

Let ℜ be the continuous linear extension operator [23]  

          ℜ : 𝐻1/2( ) ⟶ 𝐻1(Ω) such that  

          𝜒𝛤𝛾0ℜℎ(𝜉, 𝑡) = ℎ(𝜉, 𝑡),     ∀ℎ ∈ 𝐻1/2( )                                                      (14) 

Let 𝑟 > 0 is an arbitrary and sufficiently small real and let the sets  

          𝐸 = ⋃ 𝐵(𝑧, 𝑟) and  𝜔𝑟 = 𝐸 ∩ Ω  𝑥∈𝛤                                                               (15) 

where 𝐵(𝑥, 𝑟) is the ball of radius r centered in 𝑥(𝜉, 𝑡) and Γ is a part of �̅�𝑟 (see Figure 3). 

 

Fig. 3: The Domain Ω, Sub-Domain  𝜔𝑟 and the Region Γ. 

Definition 4.2: If The system (1) is 𝜔𝑟𝐸-stable, then the solution of autonomous system associated with (1)-(2), 

converges exponentially to zero when 𝑡 tends to ∞. 

Definition 4.3: The systems (1)-(2) are said to be regionally exponential detectable on 𝜔𝑟 (or  𝜔𝑟𝐸-detectable) if there 

exists an operator 𝐻𝜔𝑟 : 𝒪 → 𝐻1(𝜔𝑟) such that the operator (𝐴 − 𝐻𝜔𝑟𝐶)  generates a strongly continuous semi-group 

(𝑆𝐻𝜔𝑟
(𝑡))𝑡≥0, which is -stable. 

Now, the method of crossing from internal  𝜔𝑟𝐸-detectability into 𝛤𝐸-detectability [29] will be given in a proposition 

below. 

Proposition 4.4: If the systems (1)-(2)  are �̅�𝑟𝐸-detectable, then it is Γ𝐸-detectable. 

Proof: Let 𝑥(𝜉, 𝑡) ∈ 𝐻1/2( )  and �̅�(𝜉, 𝑡) be an extension to 𝐻1/2(𝜕Ω). By using equation (14) and trace theorem, 

there exist ℜ�̅�(𝜉, 𝑡) ∈ 𝐻1(Ω) [23] with a bounded support such that           

          𝛾0(ℜ�̅�(𝜉, 𝑡)) = �̅�(𝜉, 𝑡) 

Since the systems (1)-(2)  are �̅�𝑟𝐸-detectable, then it is 𝜔𝑟-detectable [19, 29]. Thus, there exists an operator 

𝜒𝜔𝑟𝐾
∗: 𝒪 →  𝐻1(𝜔𝑟)  given by 



Journal  of Iraqi Al-Khwarizmi Society (JIKhS)       Volume: 1  Issue: 1  December 2017    pages: 1-18    

 

7 
 

 

 

          𝐻𝜔𝑟𝑥(. , 𝑡) = 𝜒𝜔𝑟𝐾
∗𝑦(𝜉, 𝑡) 

such that the operator (𝐴 − 𝐻𝜔𝑟𝐶)  generates a strongly continuous semi-group  (𝑆𝜔𝑟(𝑡))𝑡≥0  which is 𝜔𝑟-stable. For 

every ∈ 𝒪 , we then obtain 

           𝜒𝜔𝑟𝐾
∗𝑦(𝜉, 𝑡) = 𝜒𝜔𝑟ℜ�̅�(𝜉, 𝑡) 

and hence 

           𝜒𝛤(𝛾0𝜒𝜔𝑟𝐾
∗𝑦)(. , 𝑡) = 𝑥(𝜉, 𝑡) 

Consequently there exists an operator 

          𝐻𝛤 = 𝜒𝛤(𝛾0𝜒𝜔𝑟𝐾
∗𝑦): 𝒪 → 𝐻1/2( ) 

Such that (𝐴 − 𝐻𝛤𝐶) generates a semi-group (𝑆𝐻𝛤(𝑡))𝑡 ≥ 0 which is  𝛤𝐸-stable. Finally, the systems (1)-(2) are  𝛤𝐸-

detectable. ∎ 

Definition 4.5: The system (4) augmented with the output function (2) is said to be exactly observable on 𝜔𝑟 (or 

exactly  𝜔𝑟-observable), if 

          𝛪𝑚 (𝜒𝜔𝑟𝐾
∗) = 𝐻1(𝜔𝑟) 

The following proposition shows that �̅�𝑟𝐸𝐹𝑂-observability lead  𝛤𝐸𝐹𝑂  –observability. 

Proposition 4.6: If the systems (1)-(2) are  �̅�𝑟𝐸𝐹𝑂-observability, then it is 𝛤𝐸𝐹𝑂 -observability. 

Proof: By using the same hypotheses in proposition 4.4 such that 

           𝑥(𝜉, 𝑡) ∈ 𝐻1/2( )  and �̅�(𝜉, 𝑡)  

be an extension to 𝐻1 2⁄ (𝜕Ω). Thus, from equation (14) and trace theorem, there exist ℜ�̅�(𝜉, 𝑡) ∈ 𝐻1(Ω) with a bounded 

support such that 

          𝛾0(ℜ�̅�(𝜉, 𝑡)) = �̅�(𝜉, 𝑡) 

Since the systems (1)-(2) are  regionally  exponentially full order observable on �̅�𝑟 (or �̅�𝑟𝐸𝐹𝑂-observable), so we can 

deduce that: 

1-The systems (1)-(2) are 𝜔𝑟𝐸𝐹𝑂-observable, thus there exists a dynamical system with 𝑥(𝜉, 𝑡) ∈ 𝑋 such that: 

          𝜒𝜔𝑇 𝑥(𝜉, 𝑡) = 𝜒𝜔ℜ�̅�(𝜉, 𝑡) 

Then we have 

          𝜒𝛤(𝛾0 𝜒𝜔
∗𝜒𝜔𝑇 𝑥)(𝜉, 𝑡) = 𝑥(𝜉, 𝑡)                                                                   (16) 

2 - The equations (2) and (16) allow: 

          [𝑦
𝑥
](𝜉, 𝑡) = [ 𝐶

𝜒𝛤(𝛾0 𝜒𝜔
∗𝜒𝜔𝑇)

] 𝑥(𝜉, 𝑡), 

and there exists two linear bounded operator �̅� and  𝐶 satisfy the relation 

          �̅� 𝐶 + 𝜒𝛤(𝛾0 𝜒𝜔
∗𝜒𝜔𝑇) = 𝐼𝛤, 
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3- There exist an operator 𝐹�̅�𝑟 is �̅�𝑟𝐸𝐹𝑂-observable, then it is 𝛤𝐸-stable (see [29]). Finally the systems (1)-(2) are  𝛤𝐸𝐹𝑂-

observable.∎ 

5. REGIONAL BOUNDARY EXPONENTIAL REDUCED OBSERVABILITY  

In this section we need some of additional assumptions, which we explain in chapter one section 1.4 for the systems 

state (1)-(2). 

5.1 Regionally Boundary Reduced System  

Let us consider 𝑋 = 𝑋1⨁𝑋2 where 𝑋1 and 𝑋2 are subspace of  𝑋.  Under the hypothesis in ref. [22], we have the 

dynamical system given by 

          {

𝜕𝑥2

𝜕𝑡
(𝜉, 𝑡) = 𝐴21𝑥1(𝜉, 𝑡) + 𝐴22𝑥2(𝜉, 𝑡) + 𝐵2𝑢(𝑡)     𝒬

𝑥2(𝜂, 𝑡) = 0                                                                       Θ

𝑥2(𝜉, 0) = 𝑥20(𝜉)                                                             Ω 

                                (17) 

augmented with output function 

          𝑦(. , 𝑡) = 𝐶𝑥1(𝜉, 𝑡)                                                                                          (18) 

The problem consists in constructing a regional exponential estimator that enables one to estimate the unknown part 

𝑥2(𝜉, 𝑡) equivalent;  now to define the dynamical system for (18). Thus, equations (17)-(18) allow the following system: 

system: 

          {

𝜕𝑎

𝜕𝑡
(𝜉, 𝑡) = 𝐴22𝑎(𝜉, 𝑡) + [𝐵2𝑢(𝑡) + 𝐴12𝑦(. , 𝑡)]      𝒬

𝑎(𝜂, 𝑡) = 0                                                                       Θ 

𝑎(𝜉, 0) = 𝑎0(𝜉)                                                             Ω

                                 (19) 

with the output function 

          �̃�(. , 𝑡) = 𝐴12𝑎(. , 𝑡)                                                                                         (20) 

where the state 𝑎 in system (19) plays the role of the state 𝑥2 in system (17). 

5.2 𝚪𝑬𝑹-Observability And 𝚪𝑬𝑹-Detectability  

As in ref. [30] we can extend these result to the case of regional reduced orderd system from regional observability and 

Γ𝐸- detectability. In this case, the equation (7) it can be given by defining the following operator 

          𝒦: 𝑥2 → 𝒦𝑥2 = 𝐴12𝑆𝐴22(𝑡)𝑥2 ∈ 𝒪 , then 𝑦(. , 𝑡) = 𝒦𝑥20(. ), with 

the adjoint 𝒦∗: 𝒪 → 𝑥2  such that 

          𝒦∗𝑦∗(. , 𝑡) = ∫ 𝑆𝐴22
∗𝑡

0
(𝑠)𝐴12

∗ 𝑦∗(. , 𝑠)𝑑𝑠. 

Let Γ ∈ 𝜕Ω and 𝜒Γ: 𝐻
1/2(Γ) → 𝐻1/2(Γ) = 𝑋2, 𝑥2 → 𝜒Γ𝑥2 = 𝑥2|Γ   

where 𝑥2|Γ  is the restriction of the state 𝑥2 to Γ.  

Definition 5.1: The systems (19)-(20) are called exactly regionally boundary exponential reduced-observable (or 

exactly Γ𝐸𝑅-observable) if 

          Ιm𝜒Γ𝛾0𝒦
∗ = 𝐻1/2(Γ) = 𝑋2 
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Definition 5.2: The systems (19)-(20) are called weakly regionally boundary exponential reduced-observable (or 

weakly Γ𝐸𝑅-observable) if 

          Ιm𝜒Γ𝛾0𝒦
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐻1/2(Γ) = 𝑋2 

This equation  Ιm𝜒Γ𝛾0𝒦
∗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is equivalent to ker𝒦𝛾0

∗𝜒Γ
∗ = {0}. 

Definition  5.3: The suite of sensors (zone or pointwise) (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 are called regional boundary exponential reduced 

strategic sensors (or Γ𝐸𝑅-strategic sensors if the systems (19)-(20) are weakly Γ𝐸𝑅-observable. 

Remark  5.4: We know the semi-group (𝑆𝐴22(𝑡))𝑡>0  on Hilbert space  𝐻1/2(Γ) is said to be Γ𝐸𝑅-stable [29], if there 

exists 𝑀𝐴22 , 𝛼𝐴22  > 0 such that 

          ‖𝑆𝐴22(𝑡)‖𝐻1/2(Γ)
≤ 𝑀𝐴22𝑒

−𝛼𝐴22(𝑡) , 𝑡 ≥ 0                                                       (21)                             

Remark 5.5:  The relation (21) is true on a given subdomain Γ ⊂ 𝜕Ω, i.e.  

          ‖𝜒Γ𝑆𝐴22(𝑡)‖𝐿(𝐻1/2(Γ),𝑋))
≤ Μ𝐴22𝑒

−𝛼𝐴22(𝑡), 𝑡 ≥ 0                                          (22) 

and then 

          lim𝑡→∞‖𝑥2(. , 𝑡)‖𝐻1/2(Γ) = 0 

Now, we refer to this as regional  boundary exponential reduced stability (or Γ𝐸𝑅- stability). 

Definition 5.6: The system (19) is said to be regional boundary exponential reduced stability (or Γ𝐸𝑅- stable) if the 

operator 𝐴22 generates a semi-group which is Γ𝐸𝑅- stable. 

 Definition 5.7: The systems (19)-(20) are said to be regional  boundary exponential reduced detectability (or Γ𝐸𝑅- 

detectable) if there exists an operator ℋΓ: ℝ
𝑞 → 𝐻1/2(Γ) such that (𝐴22 −ℋΓ𝐴12) generates a strongly continuous  

semi-group (𝑆𝐴22(𝑡))𝑡≥0,  which is  Γ𝐸𝑅- stable.  

From proposition 4.4, we have the dynamical system for (19)-(20) may be given by  

          

{
 
 

 
 
𝜕�̂�

𝜕𝑡
(𝜉, 𝑡) = 𝐴22�̂�(𝜉, 𝑡) + [𝐵2𝑢(𝑡) + 𝐴21𝑦(. , 𝑡)] +    

                  ℋΓ[�̃�(. , 𝑡) − 𝐴12�̂�(𝜉, 𝑡)]                           𝒬  

�̂�(𝜂, 𝑡) = 0                                                                   Θ

�̂�(𝜉, 0) = �̂�0(𝜉)                                                            Ω 

                                  (23) 

Where (𝐴22 −ℋΓ𝐴12) generates a strongly continuous semi-group (𝑆𝐴22(𝑡))𝑡≥0  which is  Γ𝐸𝑅- stable on the Hilbert 

space 𝑋2 ⊂ 𝑋 = 𝐻1/2(Γ),  

          (𝐵2 −ℋΓ𝐵1) ∈ 𝐿(ℝ
𝑝, 𝑋2)  

and  

          (𝐴22ℋΓ −ℋΓ𝐴12ℋΓ −ℋΓ𝐴11 + 𝐴21) ∈ 𝐿(ℝ
𝑝, 𝑋2) as in [20]. 

 The importance of reduced Γ𝐸𝑅- detectability is possible to define a reduced Γ𝐸𝑅- estimator for system state may be 

given by the following important result. 

Theorem 5.8: If there are 𝑞 sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 and the spectrum of 𝐴22 contains 𝐽 eigenvalues with non-negative real 

parts. The systems (19)-(20) are Γ𝐸𝑅- detectable if and only if  

1. 𝑞 ≥ 𝑚2  
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2. 𝑅𝑎𝑛𝑘 𝐺2𝑖 = 𝑚2𝑖
, ∀𝑖, 𝑖 = 1,… , 𝐽 with  

          𝐺2 = 𝐺2𝑖 = {
〈𝜑𝑗(. ), 𝑓𝑖(. )〉𝐿2(𝐷𝑖),        

𝜑𝑗(𝑏𝑖),                          
 

where sup 𝑚2𝑖
= 𝑚2 < ∞ and 𝑗 = 1,… ,∞.  

Proof : The prove is developed to the case of zone sensors in the following stapes: 

 

1) The system (19) can be decomposed by the projections 𝒫  and Ι − 𝒫,  on two parts, unstable and stable under the 

assumptions of proposition 4.6,  where 𝒫  and (Ι − 𝒫) are played the role of projection as 𝐸1, 𝐸2 [22]. The state 

vector may be given by  

 

 𝑥2(𝜉, 𝑡) = [𝑥21(𝜉, 𝑡)𝑥22(𝜉, 𝑡)]
𝑡𝑟 

 

where 𝑥21(𝜉, 𝑡)  is the state component of the unstable part of system (19), may be written in the form  

          {

𝜕𝑥21

𝜕𝑡
(𝜉, 𝑡) = 𝐴221𝑥21(𝜉, 𝑡) + 𝒫[𝐴211𝑥11(𝜉, 𝑡) + 𝐵2𝑢(𝑡)]   𝒬

𝑥21(𝜂, 𝑡) = 0                                                                                  Θ

𝑥21(𝜉, 0) = 𝑥210
(𝜉)                                                                     Ω 

                      (24) 

and 𝑥22(𝜉, 𝑡) is the component state of the stable part of system(19), given by 

          {

𝜕𝑥22

𝜕𝑡
(𝜉, 𝑡) = 𝐴222𝑥22(𝜉, 𝑡) + 𝒫[𝐴212𝑥12(𝜉, 𝑡) + 𝐵2𝑢(𝑡)]  𝒬

𝑥22(𝜂, 𝑡) = 0                                                                                 Θ  

𝑥22(𝜉, 0) = 𝑥220
(𝜉)                                                                     Ω  

                     (25)  

The operator 𝐴221 is represented by a matrix of order (∑ 𝑚2𝑖
,𝐽

𝑖=1  ∑ 𝑚2𝑖
) 𝐽

𝑖=1   given by  

 𝐴221 = 𝑑𝑖𝑎𝑔[𝜆21 , … , 𝜆21 , … , 𝜆2𝐽 , … , 𝜆2𝐽] and 𝒫𝐵2 = [𝐺21
𝑡𝑟 , 𝐺22

𝑡𝑟 , … , 𝐺2𝐽
𝑡𝑟]    

From condition (2) of this theorem, then the suite of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞   is Γ𝐸𝑅- strategic for the unstable part of the 

system (19), the subsystem (24) is weakly regionally boundary reduced-observable in Γ (or weakly Γ𝐸𝑅- observable ) 

and since it is finite dimensional, then it is exactly regionally boundary reduced-observable in Γ (or exactly Γ𝐸𝑅- 

observable). 

Therefore it is Γ𝐸𝑅- detectable, and hence there exists an operator ℋΓ
1 such that (𝐴221 − ℋΓ

1𝐴121) which satisfies the 

following: 

          ∃𝑀Γ
1, 𝛼Γ

1 > 0 such that ‖𝑒(𝐴221− ℋΓ
1𝐴121) 𝑡‖

𝐻1/2(Γ)
≤ 𝑀Γ

1𝑒−𝛼Γ
1(𝑡)    

and we have  

          ‖𝑥21(𝜉, 𝑡)‖𝐻1/2(Γ)
≤ 𝑀Γ

1𝑒−𝛼Γ
1(𝑡)‖𝒫𝑥20(. )‖𝐻1/2(Γ)

  

Since the semi-group generated by the operator 𝐴222 is Γ𝐸𝑅-stable, ∃𝑀Γ
2, 𝛼Γ

2 > 0 such that 

          ‖𝑥22(𝜉, 𝑡)‖𝐻1/2(Γ)
≤ 𝑀Γ

2𝑒−𝛼Γ
2(𝑡)‖(Ι − 𝒫)𝑥20(. )‖𝐻1/2(Γ)
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                                +∫ 𝑀Γ
2𝑒−𝛼Γ

2(𝑡−𝜏𝜏)𝑡

0
‖(Ι − 𝒫)𝑥20(. )‖𝐻1/2(Γ)

‖𝑢(𝑡)‖𝑑𝜏 

and there fore 𝑥2(𝜉, 𝑡) → 0 when 𝑡 → ∞.  Thus, the systems (19)-(20) are  Γ𝐸𝑅-detectable. 

2) If the systems (19)-(20) are Γ𝐸𝑅-detectable, then ∃ℋΓ ∈ 𝐿(𝐿
2(0,∞,ℝ𝑞), 𝐻1/2(Γ)) such that (𝐴22 −ℋΓ𝐴12) 

generates an Γ𝐸𝑅-stable, strongly continuous semi-group (𝑆𝐴22(𝑡))𝑡≥0 on the space   𝐻1/2(Γ) which satisfies the 

following  

          ∃𝑀Γ, 𝛼Γ > 0  such that ‖𝜒Γ𝑆𝐴22(𝑡)‖𝐻1/2(Γ)
≤ ΜΓ𝑒

−𝛼Γ(𝑡)  

Thus the unstable subsystem (24) is Γ𝐸𝑅-detectable. Since this subsystem is of finite dimensional, then it is exactly Γ𝐸𝑅-

observable. Therefore (24) is weakly Γ𝐸𝑅-observable and hence it is reduced Γ𝐸𝑅-strategic , i.e. 

          [𝒦𝑥Γ
∗𝑥2

∗(. , 𝑡) = 0 ⟹ 𝑥2
∗(. , 𝑡) = 0]. For 𝑥2

∗(. , 𝑡) ∈ 𝐻1/2(Γ) 

We have  

          [𝒦𝑥Γ
∗𝑥2

∗(. , 𝑡) = (∑ 𝑒𝜆𝑗𝑡〈𝜑𝑗(. ), 𝑥2
∗(. , 𝑡)〉𝐻1/2(Γ)〈𝜑𝑗(. ), 𝑓𝑖(. )〉𝐻1/2(Γ))1≤𝑖≤𝑞

𝐽
𝑗=1   

If the unstable system (24) is not Γ𝐸𝑅-strategic, ∃𝑥2
∗(. , 𝑡) ∈ 𝐻1/2(Γ)  such that 𝒦𝑥Γ

∗𝑥2
∗(. , 𝑡) = 0, this leads to  

          ∑ 〈𝜑𝑗(. ), 𝑥2
∗(. , 𝑡)〉𝐻1/2(Γ)〈𝜑𝑗(. ), 𝑓𝑖(. )〉𝐻1/2(Γ) = 0

𝐽
𝑗=1  

the state vectors 𝑥2𝑖  may be given  

          𝑥2𝑖(. , 𝑡) = [〈𝜑𝑗(. ), 𝑥2
∗(. , 𝑡)〉𝐻1/2(Γ)〈𝜑𝑗(. ), 𝑥2

∗(. , 𝑡)〉𝐻1/2(Γ)]
𝑡𝑟 ≠ 0 

We then obtain 𝐺2𝑖𝑥2𝑖 = 0, ∀𝑖, 𝑖 = 1,… , 𝐽 and there fore 𝑅𝑎𝑛𝑘 𝐺2𝑖 ≠ 𝑚2𝑖
. 

Here, we construct the Γ𝐸𝑅- estimator for parabolic distributed parameter system (1), we need to present the following 

remarks 

 

Remark 5.9:  Now, choose the following decomposition: 

  

          �̂� = [
�̂�1
�̂�2
] = [

𝑦
𝜑 +ℋΓ𝑦

] 

which estimates exponentially the state vector  

          𝑥 = [
𝑥1
𝑥2
] 

 then, the dynamical system (23) is given by the following system: 

          

{
 
 

 
  
𝜕𝜑

𝜕𝑡
(𝜉, 𝑡) = (𝐴22 −ℋΓ𝐴12)𝜑(𝜉, 𝑡) +                        

                [𝐴22ℋΓ −ℋΓ𝐴12ℋΓ −ℋΓ𝐴11 + 𝐴21]

                  𝑦(𝜉, 𝑡) + [𝐵2 −ℋΓ𝐵1]𝑢(𝑡)                    𝒬

𝜑(𝜂, 𝑡) = 0                                                                   Θ

𝜑(𝜉, 0) = 𝜑0(𝜉)                                                          Ω

                                     (26) 

which defines an Γ𝐸𝑅- estimator for 𝑇Γ𝑥2(𝜉, 𝑡) if  

1. lim𝑡→∞‖𝜑(𝜉, 𝑡) − 𝑇Γ𝑥2(𝜉, 𝑡)‖𝐻1/2(Γ) = 0 

2. 𝑇Γ: 𝐷(𝐴22) → 𝐷(𝐴22 −ℋΓ𝐴12) where 𝑇Γ = 𝜒Γ𝛾0𝑇 and 𝜑(𝜉, 𝑡)  is the solution of system (26). 
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Remark 5.10: The dynamical system (26) estimates the regional boundary exponential reduced state of the system (1) 

if the following conditions satisfies: 

1. ∃𝐿 ∈ 𝐿(0, 𝐻1/2(Γ)) and 𝑀 ∈ 𝐿(𝐻1/2(Γ)) such that: 

    𝐿𝐴12 +𝑀𝑇Γ = ΙΓ   

2.  𝑇Γ𝐴22 − (𝐴22 −ℋΓ𝐴12)𝑇Γ = ℋΓ𝐴12 and (𝐵2 −ℋΓ𝐵1) = 𝑇Γ𝐵2 

3. The system (26) defines an Γ𝐸𝑅- estimator for the system (1). 

4. If 𝑋 = 𝑋2 and 𝑇Γ = ΙΓ then, in the above case, we have  

   𝐴22 − (𝐴22 −ℋΓ𝐴12) = ℋΓ𝐴12 

Remark 5.11: The system (1) is Γ𝐸𝑅-observable if there exists an Γ𝐸𝑅-estimators (26) which estimates the regional 

boundary exponential reduced state the system. Now, we present the sufficient condition of the regional boundary 

exponential reduced observability notion as in the following main result. 

Theorem 5.12: If the systems (19)-(20) are Γ𝐸𝑅- detectable, then it is Γ𝐸𝑅- observable by the dynamical system (25), 

that means 

          lim𝑡→∞‖(𝜑(𝜉, 𝑡) +ℋΓ𝑦(𝜉, 𝑡)) − 𝑥2(𝜉, 𝑡)‖𝐻1/2(Γ) = 0, 

Proof: The solution of the dynamical system (23) is given by 

          �̂�(𝜉, 𝑡) = 𝑆ℋΓ
(𝑡)�̂�0(𝜉) + ∫ 𝑆ℋΓ

(𝑡 − 𝜏)[𝐵2𝑢(𝜏)
𝑡

0
 

                     +𝐴21𝑦(𝜉, 𝜏) +ℋΓ�̃�(𝜉, 𝜏)]𝑑𝜏                                                              (27) 

From the equation (20), we have  

          �̃�(𝜉, 𝑡) = 𝐴12𝑎(. , 𝑡) =
𝜕𝑥1

𝜕𝑡
(𝜉, 𝑡) − 𝐴11𝑥1(𝜉, 𝑡) − 𝐵1𝑢(𝑡)                             (28) 

By using (27) and (28), we obtain  

          �̂�(𝜉, 𝑡) = 𝑆ℋΓ
(𝑡)�̂�0(𝜉) + ∫ 𝑆ℋΓ

(𝑡 − 𝜏)ℋΓ
𝜕𝑥1

𝜕𝑡
(𝜉, 𝑡)𝑑𝜏 +

𝑡

0
 

                         ∫ 𝑆ℋΓ
(𝑡 − 𝜏)

𝑡

0
[𝐵2𝑢(𝜏) +   𝐴21𝑦(𝜉, 𝜏)] 

                         −ℋΓ𝐴11𝑥1(. , 𝜏) −ℋΓ𝐵1𝑢(𝜏)𝑑𝜏.                                                    (29)                        

and we can get 

          ∫ 𝑆ℋΓ
(𝑡 − 𝜏)ℋΓ

𝜕𝑥1

𝜕𝑡
(𝜉, 𝑡)𝑑𝜏 =

𝑡

0
ℋΓ𝑥1(. , 𝑡) − 𝑆ℋΓ

(𝑡)ℋΓ𝑥10(. )    

                              +(𝐴22 −ℋΓ𝐴12) ∫ 𝑆ℋΓ
(𝑡 − 𝜏)ℋΓ𝑥1(. , 𝜏)𝑑𝜏

𝑡

0
                            (30)   

Using Bochner integrability properties and closeness of  (𝐴22 −ℋΓ𝐴12), the equation (30) becomes 

          ∫ 𝑆ℋΓ
(𝑡 − 𝜏)ℋΓ

𝜕𝑥1

𝜕𝑡
(𝜉, 𝑡)𝑑𝜏 =

𝑡

0
ℋΓ𝑥1(. , 𝑡) − 𝑆ℋΓ

(𝑡)ℋΓ𝑥10(. )                   

                           +∫ 𝑆ℋΓ
(𝑡 − 𝜏)

𝑡

0
(𝐴22 −ℋΓ𝐴12)ℋΓ𝑥1(𝜉, 𝜏)𝑑𝜏                              (31) 

Substituting  (31) into (29), we have 

          �̂�(. , 𝑡) = 𝑆ℋΓ
(𝑡)�̂�0(. ) − 𝑆ℋΓ

(𝑡)ℋΓ𝑥10(. ) + ℋΓ𝑥1(. , 𝑡) 

                      +∫ 𝑆ℋΓ
(𝑡 − 𝜏)[𝐴22ℋΓ −ℋΓ𝐴12ℋΓ −ℋΓ𝐴11 + 𝐴21]

𝑡

0
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                     𝑥1(. , 𝑡)𝑑𝜏 + ∫ 𝑆ℋΓ
(𝑡 − 𝜏)[𝐵2 −ℋΓ𝐵1]𝑢(𝜏)𝑑𝜏

𝑡

0
.                                 (32)                     

Setting 𝜑(. , 𝑡) = �̂�(. , 𝑡) − ℋΓ𝑦(. , 𝑡), with 𝜑0(. ,0) = �̂�0(. ) −ℋΓ𝑥10(. ), where 𝑦0(. ) = 𝑥10(. ). Now, assume that 

(𝐴22ℋΓ −ℋΓ𝐴12ℋΓ −ℋΓ𝐴11 + 𝐴21) and (𝐵2 −ℋΓ𝐵1) are bounded operators, the equation (32) can be differentiated 

to yield the following system 

          

{
 
 

 
  

𝜕𝜑

𝜕𝑡
(𝜉, 𝑡) = (𝐴22 −ℋΓ𝐴12)𝜑(𝜉, 𝑡) + (𝐴22ℋΓ −ℋΓ𝐴12ℋΓ    

−ℋΓ𝐴11 + 𝐴11)𝑦(. , 𝑡) + (𝐵2 −ℋΓ𝐵1)𝑢(𝑡)  𝒬

𝜑(𝜂, 𝑡) = 0                                                                           Θ              

𝜑(𝜉, 0) = 𝜑0(𝜉)                                                                 Ω              

 

and therefore  

          
𝜕𝑧

𝜕𝑡
(𝜉, 𝑡) −

𝜕𝑥2

𝜕𝑡
(𝜉, 𝑡) = (𝜑(𝜉, 𝑡) + ℋΓ𝑦(𝜉, 𝑡) − 𝑥2(𝜉, 𝑡) 

                                 = (𝐴22�̂�(𝜉, 𝑡) + 𝐵2𝑢(𝑡) + 𝐴21𝑦(. , 𝑡) +ℋΓ(�̃�(𝜉, 𝑡) 

                                 −𝐴12�̂�)(𝜉, 𝑡) − 𝐴21𝑥1(𝜉, 𝑡) − 𝐴22𝑥2(𝜉, 𝑡) − 𝐵2𝑢(𝑡) 

                                 = (𝐴22 −ℋΓ𝐴12)(�̂�(𝜉, 𝑡) − 𝑥2(𝜉, 𝑡))                                     (33) 

From the relation  

          ‖𝜒Γ𝑆ℋΓ
(𝑡)𝑥20(. )‖𝐻1/2(Γ)

≤ ΜℋΓ
𝑒−𝛼ℋΓ(𝑡) 

we obtain  

          ‖�̂�(. , 𝑡) − 𝑥2(. , 𝑡)‖𝐻1/2(Γ) ≤ ‖𝜒Γ𝑆ℋΓ
(𝑡)‖

𝐻1/2(Γ)
   

                                        ‖�̂�(. ,0) − 𝑥2(. ,0)‖𝐻1/2(Γ) 

                                       ≤ ΜℋΓ
𝑒−𝛼ℋΓ(𝑡)‖�̂�(. ,0) − 𝑥2(. ,0)‖𝐻1/2(Γ) 

                                      → 0 as 𝑡 → ∞                                                                      (34) 

Where the component �̂�(𝜉, 𝑡) is an exponentially estimator of 𝑥2. Then, we have the system (23) is Γ𝐸𝑅-observable for 

the systems (18)-(19).∎ 

From the previous theorem 5.12, we can deduce the following definition which characterizes another new strategic 

sensor: 

Definition 5.13: A sensor is Γ𝐸𝑅-strategic sensor if the corresponding system is Γ𝐸𝑅-observable. 

6.  APPLICATION TO EXCHANGE SYSTEM 

Consider the case of two-phase exchange systems described by the following  coupled parabolic equations as in [4] 

          

{
 
 

 
 
𝜕𝑥1

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = 𝛼

𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(𝑥1(𝜉1, 𝜉2, 𝑡) − 𝑥2(𝜉1, 𝜉2, 𝑡))𝒬

𝜕𝑥2

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = 𝛾

𝜕2𝑥2

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(𝑥1(𝜉1, 𝜉2, 𝑡) − 𝑥2(𝜉1, 𝜉2, 𝑡))𝒬

𝑥1(𝜂1, 𝜂2, 𝑡) = 0, 𝑥2(𝜂1, 𝜂2, 𝑡) = 0                                                      Θ

𝑥1(𝜉1, 𝜉2, 𝑡) = 𝑥10(𝜉1, 𝜉2),   𝑥1(𝜉1, 𝜉2, 𝑡) = 𝑥10(𝜉1, 𝜉2)                     Ω 

          (35)     
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and consider Ω = (0,1) × (0,1) with sub-region Γ = (𝛼1, 𝛽1) × (𝛼2, 𝛽2) ⊂ 𝜕Ω.  Suppose that it is possible to measure 

the states 𝑥1(. , 𝑡),  by using 𝑞 zone sensor(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 .  The output function (2) is given by 

          𝑦(𝑡) = 𝐶𝑥1(. , 𝑡)   

           = [∫
𝐷1
𝑥1(𝜉1, 𝜉2, 𝑡)𝑓1(𝜉1, 𝜉2)d𝜉1𝜉2, … , ∫𝐷𝑞𝑥1(𝜉1, 𝜉2, 𝑡)𝑓𝑞(𝜉1, 𝜉2)d𝜉1𝜉2]

𝑡𝑟

  

Now, the problem is to estimate exponentially 𝑥1(𝜉1, 𝜉2, 𝑡). Consider now 

          
𝜕𝑥

𝜕𝑡
= [

𝜕𝑥1

𝜕𝑡
𝜕𝑥2

𝜕𝑡

] = [
𝐴11 𝐴12
𝐴21 𝐴22

] [
𝑥1
𝑥2
]                                                                        (36) 

where 

          𝐴11 = 𝛼
𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽, 𝐴22 = 𝛾

𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽 

and    𝐴12 = 𝐴21 = −𝛽Ι.  

From theorem 5.12, we can construct regional  boundary reduced estimator for system (35) if the sensors(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞   

are Γ-strategic for the unstable part of the subsystem 

          

{
 
 

 
 
𝜕𝑥1

𝜕𝑡
((𝜉1, 𝜉2, 𝑡) = 𝛾

𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(𝑥1(𝜉1, 𝜉2, 𝑡)               

                              −𝑥1(𝜉1, 𝜉2, 𝑡)                                                𝒬 

𝑥1(𝜂1, 𝜂2, 𝑡) = 0                                                                       Θ

𝑥1(𝜉1, 𝜉2, 0) = 𝑥10(𝜉1, 𝜉2)                                                       Ω

                        (37) 

where that 𝛾 = 0.1 and 𝛽 = 1. If we choose the sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  such that 

𝑦(𝑡) = [∫
𝐷1
𝑥1(𝜉1, 𝜉2, 𝑡)𝑓1(𝜉1, 𝜉2)d𝜉1𝜉2, … , ∫𝐷𝑞𝑥1(𝜉1, 𝜉2, 𝑡)𝑓𝑞(𝜉1, 𝜉2)d𝜉1𝜉2]

𝑡𝑟

≠ 0, 

then, there exists ℋΓ ∈ 𝐿(ℝ
𝑞 , 𝐻

1

2(Γ)) such that the operator (𝐴22 −ℋΓ𝐴12) generates a strongly continuous stable 

group on the space 𝐻1/2(Γ). Thus we have 

          lim𝑛→∞‖𝑤(. , 𝑡) + ℋΓ𝑥1(. , 𝑡) − 𝑥2(. , 𝑡)‖𝐻1/2(Γ) = 0, 

where 

     

{
 
 

 
 
𝜕𝑤

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = 𝛾

𝜕2𝑤

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(1 +ℋΓ)𝑤(𝜉1, 𝜉2, 𝑡)                              

                          +(𝛾 − 𝛼ℋΓ)
𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽 (ℋΓ

2 − 1)(𝜉1, 𝜉2, 𝑡)    𝒬 

𝑤(𝜂1, 𝜂2, 𝑡) = 0                                                                                                 Θ    

𝑤(𝜉1, 𝜉2, 0) = 𝑤0(𝜉1, 𝜉2)                                                                                 Ω   

     (38) 

In this section, we give the specific results related to some examples of sensors locations and we apply these results to 

different situations of the domain, which usually follow from symmetry considerations. 

We consider the two-dimensional system defined on Ω = (0,1) × (0,1) with the case of system described by the 

following equations: 
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{
 
 

 
 
𝜕𝑥2

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = 𝛾

𝜕2𝑥2

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(𝑥2(𝜉1, 𝜉2, 𝑡)                        

                            −𝛽𝑥1(𝜉1, 𝜉2, 𝑡)                                   𝒬                  

𝑥2(𝜂1, 𝜂2, 𝑡) = 0                                                             Θ                  

𝑥2(𝜉1, 𝜉2, 0) = 𝑥20(𝜉1, 𝜉2)                                            Ω                 

                  (39) 

augmented with the output function 

          𝑦(𝑡) = 𝐶𝑥1(. , 𝑡)                                                                                              (40) 

Let Γ = Π𝑖=1
2 (𝛼1, 𝛽1) × (𝛼2, 𝛽2),  In this case the eigenfunctions and eigenvalues for the dynamic system (39) given by  

          𝜑𝑖𝑗(𝜉1, 𝜉2) =
2

√(𝛽1−𝛼1)(𝛽2−𝛼2)
sin 𝑖𝜋 (

(𝜉1−𝛼1)

(𝛽1−𝛼1)
) sin 𝑗𝜋(

(𝜉2−𝛼2)

(𝛽2−𝛼2)
)                         (41) 

          𝜆𝑖𝑗 = −(
𝑖2

(𝛽1−𝛼1)
2 +

𝑗2

(𝛽2−𝛼2)
2) 𝜋

2,    𝑖, 𝑗 ≥ 1                                                     (42) 

we examine the two cases illustrated in (Figures 18and 19). 

6.1 Internal Rectangular Zone Sensor 

For discussing this case, suppose the systems (39)-(40) where the sensor supports 𝐷𝑖  is the located in Ω as in (Figure 4). 

The output function can be written by the form 

           𝑦(𝑡) = ∫
𝐷1
𝑥1(𝜉1, 𝜉2, 𝑡)𝑓1(𝜉1, 𝜉2)d𝜉1𝜉2,                                                         (43) 

 

Fig. 4: Rectangular Domain, Region Γand Location 𝐷 with Rectangular Support Sensor. 

Then, the sensor(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  may be sufficient for Γ𝐸𝑅-observability, and there exists ℋΓ ∈ 𝐿(ℝ
𝑞 , 𝐻

1

2(Γ)) such that the 

operator (𝐴22 −ℋΓ𝐴12) generates a strongly continuous stable semi-group on the space 𝐻1/2(Γ). Thus we have 

          lim𝑡→∞‖(𝑤(𝜉1, 𝜉2, 𝑡) + ℋΓ𝑥2(𝜉1, 𝜉2𝑡)) − 𝑥1(𝜉1, 𝜉2, 𝑡)‖𝐻1/2(Γ) = 0, 

where 

          

{
 
 

 
 
𝜕𝑤

𝜕𝑡
((𝜉1, 𝜉2, 𝑡) = 𝛾

𝜕2𝑤

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(1 +ℋΓ)𝑤(𝜉1, 𝜉2, 𝑡)               

              +(𝛾 − 𝛼ℋΓ)
𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽 (ℋΓ

2 − 1)(𝜉1, 𝜉2, 𝑡)      𝒬   

𝑤(𝜂1, 𝜂2, 𝑡) = 0                                                                                    Θ

𝑤(𝜉1, 𝜉2, 0) = 𝑤0(𝜉1, 𝜉2)                                                                   Ω

           (44) 

If 𝐷𝑖 = Π𝑖=1
2 [𝜉0𝑖 − 𝚤𝑖 , 𝜉0𝑖 + 𝚤𝑖],with [𝜉0𝑖 − 𝛼𝑖/𝜉0𝑖 + 𝛼𝑖] ∈ 𝑄 then, we have the following result. 

Proposition 6.1: Let 𝑓𝑖 are symmetric about line 𝑥0𝑖 = 𝜉0𝑖 and the sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 are not strategic for the systems 

(39)-(40), and then these systems are not Γ𝐸𝑅-observable by the Γ𝐸𝑅-estimator systems (3.44). If for any 𝑖0 ∈ 1 ≤ 𝑖 ≤ 𝑞 

such that  

          
𝑖0(𝜉0𝑖−𝛼𝑖)

𝛽1−𝛼1
,
𝑗0(𝜉0𝑖−𝛼𝑖)

𝛽2−𝛼2
∈ 𝑄 
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Proof: Suppose that  𝑖0 = 1, and  [𝛽1−𝛼1/𝛽2−𝛼2] ∈ 𝑄,  then there exists 𝑗0 ≥ 1  such that  

          𝑆𝑖𝑛  𝑗0(𝛽1−𝛼1/𝛽2−𝛼2) = 0.  But 

          𝑦(𝑡) = 〈𝑓1, 𝜑01𝑗0〉 = (
4

(𝛽1−𝛼1)(𝛽2−𝛼2)
)1/2∫

𝛼2− 𝚤2

𝛼2+𝚤2
∫
𝛼1−𝚤1

𝛼1+𝚤1
𝑓1(𝜉1, 𝜉2)  

                                          𝑠𝑖𝑛 [
𝑗0𝜋(𝜉01−𝛼1)

𝛽1−𝛼1
] 𝑠𝑖𝑛 [

𝑗0𝜋(𝜉02−𝛼2)

(𝛽2−𝛼2)
] 𝑑𝜉1𝑑𝜉2 = 0 

6.2 Internal Pointwise Sensor 

Consider the case of pointwise sensor located inside of Ω.  The system (39) augmented with the  following output 

function: 

          𝑦(𝑡) = ∫
Ω\𝜔

𝑥2(𝜉1, 𝜉2, 𝑡)𝛿(𝜉1 − 𝑏1, 𝜉2 − 𝑏2)𝑑𝜉1𝑑𝜉2                                     (45)  

 Where 𝑏 = (𝑏1, 𝑏2) ∈ Ω as in (Figure 5) is the location of pointwise sensor with (𝑏1 − 𝛼1)/(𝛽1 − 𝛼1) and (𝑏2 −

𝛼2)/(𝛽2 − 𝛼2) ∈ 𝑄.  

 

Fig. 5: Rectangular Domain Ω, Region Γ.  

Then, the sensor (𝑏, 𝛿𝑏) may be sufficient for Γ𝐸𝑅-observability [9], and there exists ℋΓ ∈ 𝐿(ℝ
𝑞 , 𝐻

1

2(Γ)) such that the 

operator (𝐴22 −ℋΓ𝐴12) generates a strongly continuous stable semi-group on the space 𝐻1/2(Γ). Thus we have  

          lim𝑡→∞‖(𝑤(𝜉1, 𝜉2, 𝑡) + ℋΓ𝑥2(𝜉1, 𝜉2𝑡)) − 𝑥1(𝜉1, 𝜉2, 𝑡)‖𝐻1/2(Γ) = 0, 

where  

          

{
 
 

 
 

𝜕𝑤

𝜕𝑡
(𝜉1, 𝜉2, 𝑡) = 𝛾

𝜕2𝑤

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽(1 +ℋΓ)𝑤(𝜉1, 𝜉2, 𝑡)            

             +(𝛾 − 𝛼ℋΓ)
𝜕2𝑥1

𝜕𝜉2
(𝜉1, 𝜉2, 𝑡) + 𝛽 (ℋΓ

2 − 1)(𝜉1, 𝜉2, 𝑡)      𝒬 

𝑤(𝜂1, 𝜂2, 𝑡) = 0                                                                                   Θ

𝑤(𝜉1, 𝜉2, 0) = 𝑤0(𝜉1, 𝜉2)                                                                   Ω

              (46) 

   Then, we have the following result 

Corollary 6.2: The systems (39)-(45) are not  Γ𝐸𝑅-observable by the  Γ𝐸𝑅-estimator (46), If for any  𝑖0 ∈ 1 ≤ 𝑖 ≤ 2,  

𝑗0 ∈ 1 ≤ 𝑖 ≤ 𝑞  such that 

          
𝑖0(𝑏1−𝛼1)

𝛽1−𝛼1
,
𝑗0(𝑏2−𝛼2)

𝛽2−𝛼2
∈ 𝑄 

Proof: Assume that  𝑖0 = 1,  and [𝛽1−𝛼1/𝛽2−𝛼2] ∈ 𝑄,  then there exists 𝑗0 ≥ 1  such that 

          𝑆𝑖𝑛  𝑗0(𝑏1 − 𝛼1)/(𝛽1 − 𝛼1)  = 0. But  

          𝑦(𝑡) = 〈𝑓1, 𝜑01𝑗0〉 = (
4

(𝛽1−𝛼1)(𝛽2−𝛼2)
)1/2

 ∫
Ω/𝜔

𝛿𝑏(𝑏1, 𝑏2) 

                                     𝑠𝑖𝑛 [
𝑗0𝜋(𝑏1−𝛼1)

𝛽1−𝛼1
] 𝑠𝑖𝑛 [

𝑗0𝜋(𝑏2−𝛼2)

(𝛽2−𝛼2)
] 𝑑𝜉1𝑑𝜉2 = 0 
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Remark 6.3: These results can be extended to the following: 

(1) Case of Neumann or mixed boundary conditions [29]. 

(2) Case of boundary (pointwise, filament and zone) sensors as in [31]. 

CONCLOSION 

The concept developed in this paper is related to the regional boundary exponential reduced observability in connection 

with the strategic sensors characterizations. Various interesting results concerning the choice of  sensors are given and 

illustrated in specific situations. Many questions still opened. For example, the problem of finding the optimal sensor 

location ensuring such an objective. The result of regional exponential reduced observability concept of hyperbolic 

linear or semi linear or nonlinear systems is under consideration.  
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