
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224385741

A strategy for Grid based t-way test data generation

Conference Paper · November 2008

DOI: 10.1109/ICDFMA.2008.4784416 · Source: IEEE Xplore

CITATIONS

19
READS

70

3 authors:

Some of the authors of this publication are also working on these related projects:

Enhancment of Face Recognition by adopting pre-processing Techniques View project

Improving some existing Optimizations algorithms by the hybridizations approach to solve the combinatorial optimization problems. View project

Mohammed I. Younis

University of Baghdad

48 PUBLICATIONS 351 CITATIONS

SEE PROFILE

Kamal Z Zamli

Universiti Malaysia Pahang

167 PUBLICATIONS 1,250 CITATIONS

SEE PROFILE

Nor Ashidi Mat Isa

Universiti Sains Malaysia

225 PUBLICATIONS 2,398 CITATIONS

SEE PROFILE

All content following this page was uploaded by Kamal Z Zamli on 21 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/224385741_A_strategy_for_Grid_based_t-way_test_data_generation?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224385741_A_strategy_for_Grid_based_t-way_test_data_generation?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enhancment-of-Face-Recognition-by-adopting-pre-processing-Techniques?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Improving-some-existing-Optimizations-algorithms-by-the-hybridizations-approach-to-solve-the-combinatorial-optimization-problems?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Baghdad?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Malaysia_Pahang?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Sains_Malaysia?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nor_Ashidi_Mat_Isa?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-972bf7ad46999ace1591e00d40dbcae9-XXX&enrichSource=Y292ZXJQYWdlOzIyNDM4NTc0MTtBUzo5OTI2MzU2MDI5MDMyN0AxNDAwNjc3Njg1OTE1&el=1_x_10&_esc=publicationCoverPdf

A Strategy for Grid Based T-Way Test Data Generation

Mohammed I. Younis, Kamal Z. Zamli, and Nor Ashidi Mat Isa
School of Electrical and Electronic Engineering
Universiti Sains Malaysia Engineering Campus

14300 Nibong Tebal, Penang, Malaysia
Email: {younismi@gmail.com, eekamal@eng.usm.my, ashidi@eng.usm.my}

Abstract

Although desirable as an important activity for
ensuring quality assurances and enhancing reliability,
complete and exhaustive software testing is next to
impossible due to resources as well as timing
constraints. While earlier work has indicated that
pairwise testing (i.e. based on 2-way interaction of
variables) can be effective to detect most faults in a
typical software system, a counter argument suggests
such conclusion cannot be generalized to all software
system faults. In some system, faults may also be
caused by more than two parameters.

As the number of parameter interaction coverage
(i.e. the strength) increases, the number of t-way test
set also increases exponentially. As such, for large
system with many parameters, considering higher
order t-way test set can lead toward combinatorial
explosion problem (i.e. too many data set to consider).
We consider this problem for t-way generation of test
set using the Grid strategy. Building and
complementing from earlier work in IPOG and
MIPOG, we present the Grid MIPOG strategy
(G_MIPOG). Experimental results demonstrate that
G_MIPOG scales well against the sequential strategies
IPOG and MIPOG with the increase of the computers
as computational nodes.

1. Introduction

As an activity for ensuring quality assurances and
improving reliability, software testing is an important
part of the software engineering lifecycle. Lack of
testing often leads to disastrous consequences
including loss of data, fortunes and even lives. For
these reasons, many inputs parameters and system
conditions need to be tested against the system’s
specification for conformance. Although desirable,
exhaustive software testing is next to impossible due to
resources as well as timing constraints.

While earlier work (e.g. in [3][10]) has indicated
that pairwise testing (i.e. based on 2-way interaction of
variables) can be effective to detect most faults in a
typical software system, a counter argument suggests
such conclusion cannot be generalized to all software
system faults. For example, the study by The National
Institute of Standards and Technology (NIST) [10]
reported that 95% of the actual faults on the test
software involve 4-way interaction. In fact, almost all
of the faults are detected with 6-way interaction. Thus,
as this example illustrates, system faults caused by
variable interactions may also span more than two
parameters.

Considering more than two parameter interaction is
not without difficulties. To highlight the difficulties,
consider the TCAS is an aircraft collision avoidance
system from the Federal Aviation Administration
which has been used as case study in other related
works [2][9][10]. Here, TCAS module has twelve
parameters: seven parameters have 2 values, two
parameters have three values, one parameter has four
values, and two parameters have 10 values. Running
exhaustive test requires 460800 (i.e.,
10x10x4x3x3x2x2x2x2x2x2x2), or 12 way testing for
this system (i.e. running such test may be impossible).
Alternatively, 11-way testing requires 230400. 10-way
requires 201601. 9-way requires 120361. 8-way
requires 56742. 7-way requires 26061. 6-way requires
10851. 5-way requires 4196. 4-way requires 1265. 3-
way requires 400. Finally, 2-way requires 100 test
cases.

As demonstrated above, when the number of
parameter coverage increases, the number of t-way test
set also increases exponentially. As such, for large
system with many parameters, considering higher order
t-way test set can lead toward combinatorial explosion
problem. We consider this problem for t-way
generation of test set using the Grid strategy. Building
and complementing from earlier work in IPOG and
MIPOG, we present the Grid MIPOG strategy

(G_MIPOG). Experimental results demonstrate that
G_MIPOG scales well against the sequential strategies
IPOG and MIPOG with the increase of the computers
as computational nodes.

The remainder of the paper is organized as follows.
Section 2 briefly reviews related work on t-way testing.
Section 3 gives analysis the IPOG strategy, and gives
the reasons for variant IPOG (MIPOG). Section 4
reports the design of Grid based Test generator
(GMIPOG). Section 5 gives the results of the
experiments. Section 6 provides concluding remarks
and our plan for further work

2. Overview and Related Work

Lei et al. proposes a useful strategy, called In-
Parameter-Order-General (or IPOG) [2] to support t-
way test generation. In a nut shell, IPOG generalizes an
existing strategy, called In-Parameter-Order (or IPO
[3]), from pairwise testing to support general t-way
testing. Here, as the name suggests, IPOG is based on
IPO. IPO is a test generation strategy used for Pairwise
(2-way) testing. For a system with two or more input
parameters, the IPO strategy first generates a pairwise
test set for the first two parameters. It then continues to
extend the test set to generate a pairwise test set for the
first three parameters and continues to do so for each
additional parameter until all the parameters of the
system are covered.

IPO follows two steps to extend the test when
additional parameters are added:

i. Horizontal Growth, which extends each
additional test by adding one value of the new
parameter.

ii. Vertical Growth, which adds new tests if
required after the completion of Horizontal
growth.

In their work, Lei et al. demonstrates the
effectiveness of IPOG for t-way testing and describe its
implementation tool called FireEye. Additionally, Lei
et al. have also identified the following existing tools
that support t-way testing:

• Intelligent Test Case Handler (or ITCH) [4]
• Jenny [5]
• TConfig [6]
• Test Vector Generator (or TVG) [7].

Comparative results from Lei et al. demonstrated
that IPOG performed better than all the
abovementioned tools, both in terms of the sizes of the
test sets and the execution times. For this reason, we
have adopted the IPOG strategy as our benchmark.

As part of an effort to enhance and improve IPOG,
we have implemented the modified IPOG (MIPOG) in
our earlier work (described in [8]). The key feature of
MIPOG is the fact that it generates more optimum test
set (i.e. each t-way interaction is covered by only one
test) and hence lesser combinations than that of IPOG
itself. Based on MIPOG, we are to redesign and
distribute the test generation process (called
G_MIPOG) on the GRID.

In order to understand G_MIPOG, it is necessary to
understand IPOG and MIPOG first. From Lei et al., the
IPOG strategy for t-way test generation is given in
Figure 1.

Algorithm IPOG (int t, ParameterSet ps)

{
1. initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order,

as P1, P2, …, and Pn
3. add into test set ts a test for each combination of

values of the first t parameters
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values

involving parameter Pi
 and t -1 parameters among the first i – 1

parameters
6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. choose a value vi of Pi and replace τ with τ’ = (v1,

v2,…, vi-1, vi) so that τ’ covers the
 most number of combinations of values in π
9. remove from π the combinations of values covered

by τ’
10. }
11. // vertical extension for parameter Pi
12. for (each combination σ in set π){
13. if (there exists a test that already covers σ) {
14. remove σ from π
15. } else {
16. change an existing test, if possible, or otherwise

add a new test to cover σ and remove it from π
17. }
18. }
19.}
20. return ts;
}

Figure 1. IPOG Strategy

Referring to Figure 1, we note two aspects of the

current IPOG strategy that can further be improved.
Firstly, the generation of test set (ts) is clearly unstable,
due to the possibility for changing the test case during
the vertical extension (especially for test cases that
includes don’t care). This raises the issue of
dependency between previous generated test and new

one. Secondly, the tuples for combinations in the ith
(i>t) parameter are stored in single π set. This means
that for large numbers of variables or t, the memory
requirement increases substantially. Such memory
requirement can lead to huge heap size and potentially
cause out of memory exception during runtime. In this
way, the system performance can be seriously affected.

To improve the first aspect, we have considered
variant algorithms for both horizontal and vertical
extensions to remove dependencies (see Figure 2).
Here, the generated test case is independent of each
other and the size of the generated set would also be
optimum. Interest readers are referred to our earlier
paper in [8] for detail explanations.

Algorithm MIPOG (int t, ParameterSet ps)

{
1. initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order,

as P1, P2, …, and Pn
3. add into test set ts a test for each combination of
values of the first t parameters
4. for (int i = t + 1; i ≤ n; i ++){
5. let π be the set of t-way combinations of values

involving parameter Pi and t -1 parameters among
the first i – 1 parameters

6. // horizontal extension for parameter Pi
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. if (τ not contains don’t care){
 choose a value vi of Pi and replace τ with τ’ =

(v1, v2, dc,…, vi-1, vi) so that τ’ covers the
maximum number of combinations of values in π}

9. else { choose a value vi of Pi and search all
possible tuples that can be optimized the don’t
care(dc) to construct τ’ = (v1, v2, …, vi-1, vi) so
that τ’ covers the maximum number of
combinations of values in π and optimized dc}

10. remove from π the combinations of values covered
by τ’}

11. // vertical extension for parameter Pi
12. while (π not empty){
13. rearranges π in decreasing order.
14. Choose the first tuple and generate test case (τ)

that combine maximum number of tuples
15. delete the tuples covered by τ, add τ to local ts
16. } //while
17. return ts;
}

Figure 2. MIPOG Strategy

To improve the second aspect, we have opted to
enhance and modify the MIPOG strategy to run on the
GRID. As discussed earlier, apart from tackling out of
memory problems when dealing with high order

parameter interaction, we also aim to improve
execution time as well as the scalability of the strategy
to support higher t. The details modification of MIPOG
(or G_MIPOG) will be discussed next.

4. The Proposed Strategy (G_MIPOG)

The G_MIPOG strategy distributes the
computational processes and memory into pieces. The
complete implementation of G_MIPOG strategy is
actually based on the following design criteria.
i. Memory needs to be distributed in order to hold Pi

into relatively independent cells, called worklet.
Here, each worklet need to have its own memory
to hold the t-way combinations for a particular
value.

ii. The worklets can be in a single machine or
multiple machines (i.e. for scalability purposes).

iii. The selected test set is stored into a shared
memory controlled by TestGeneration server,
called cordlet.

4.1. Cordlet

As implied earlier, the cordlet roles are two folds: as

coordinator and server. Briefly, the cordlet works as
follows:

1. The cordlet assigns parameters values for each
worklet in advance. In this way, each worklet
knows in advance its role in the generation
process. The cordlet waits for max (maximum
number of variables) to join it to go to step2;
otherwise remain in step 1.

2. The cordlet starts with an empty test set (ts), and
generates all tuples for the first t-parameters.

3. In Horizontal extension
a. For each test case τ in test set ts, the cordlet

broadcasts τ to all worklets.
b. If τ do not contain don’t care, the cordlet

reads the weight (i.e. number of covered
tuples after adding the assigned value) from
each worklets. Then, the cordlet chooses the
value corresponding to maximum weight to
be added to ts.

c. If τ contains don’t care, the cordlet reads
the weight (number of covered tuples after
adding the assigned value) from each
worklets. The cordlet chooses the value
corresponding to maximum weight.

d. In both cases b and c, the cordlet issues
command to the selected worklet to delete
tuples from their own π set (πv). In case c,
the cordlet reads the optimized test case

(τo). Then, replace τ by τo. It should be
noted that the optimization process is done
by the worklets themselves which may
issue command to others worklets.

4. In Vertical extension.
a. The cordlet waits for the worklets to finish

their partial test set (tsvth). Then, the
cordlet collects tsvths from the worklets.
Finally, the cordlet adds each tsvth to ts.

For clarity, the complete algorithm for cordlet is given
in Figure 3.

Algorithm Grid-Cordlet (int t, ParameterSet ps)
{
1. Initialize test set ts to be an empty set
2. denote the parameters in ps, in an arbitrary order,
 as P1, P2, …, and Pn
3. add into test set ts a test for each combination of
 values of the first t parameters
4. Waits for (max values) worklets to connect and
 assign values to worklets. broadcasts t,Ps
5. for (int i = t + 1; i ≤ n; i ++){
6. // horizontal extension for parameter Pi
 Send ts size
7. for (each test τ = (v1, v2, …, vi-1) in test set ts) {
8. broadcast τ to all worklets.
9.If (τ not contains don’t care) {
 reads the weight from each worklets
 chooses vi corresponding to maximum weight to be
 added to τ, issue command delete to worklet with
 wmax}//if
 else{ reads the weight from each worklets
 chooses vi ,τo corresponding to maximum
 weight worklet
 read τo from worklet max
 replace τ by τo}//else
10. }// horizontal
11. // vertical extension for parameter Pi
12. for (v=1; v<=N; i++){// N connected worklets
13. read ts[v] from the worklet[v]
14. adds each ts[v] to ts
15. }// loop v
16.}// loop i
17.return ts;
}// algorithm

Figure 3. Algorithm for Grid Cordlet

4.2 Worklet

In this section, we now describe how the worklet
works.

1. The worklet first connects to the cordlet. Then, it
reads the assigned value (v) from the cordlet, and
the input vector. For example, for 10 5-valued
parameters the input vector will be {
5,5,5,5,5,5,5,5,5,5}.

2. The worklet generates its own partial tuples set
(πv).

3. In Horizontal extension
a. The worklet reads test case τ in test set ts

from the cordlet.
b. If τ not contains don’t care. The worklet

determines the weight of τ. sends the weight
to the cordlet.

c. If τ contains don’t care, the worklet
optimizes the don’t care to have as much
weight as possible and sends the weight to
the cordlet.

d. The worklet reads the command from
cordlet, if it contains delete the worklet
deletes tuples covered by τ (in case b) or τo
(in case c) from (πv).

4. In Vertical extension
a. The worklet arranges πv in decreasing order

and choose the first tuple and generates test
case with maximum weight. Step 4 is
repeated untill (πv) is empty. Then, the
worklet sends local test set (tsvth) to the
cordlet.

The complete algorithm for the worklet is given in
Figure 4.

Algorithm Worklet ()
{
1. Connect to cordlet
2. read t,Ps from cordlet
3. read assigned value (v) from cordlet
3. for (int i = t + 1; i ≤ n; i ++){
5. Generates local π, where π is the set of t-way
 combinations of values involving v
 and t -1 parameters among the first i – 1 parameters
6. // horizontal extension for parameter Pi
 read ts size
7. for (1..ts size) {
8. read τ from the cordlet
9.If (τ not contains don’t care) {
 writes the weight to cordlet
 read the command from cordlet
 if it is delete command delete tuples covered by τ
 from π }//if
 else{ produce τo (optimize don’t care)
 writes the weight to cordlet
 read the command from cordlet
 if it is delete command delete tuples covered

Table 1. Results For 7 to 10 5-Valued Parameters in 6-Way Testing
#Parameters 7 8 9 10

Test Case Size 15625 28125 40146 45168
Time(MIPOG) (Single Computer) 118.703 485.047 1637.097 4657.457
Time(G_MIPOG) (6-Computers) 55.234 183.184 626.797 1552.125

Speedup 2.149 2.648 2.838 3.203

Table 2. Results Using 1 to 11 Computers for 10 10-Valued Parameters in 4-Way Testing
Computers Time Speedup Test Case Size
1 (MIPOG) 77882.16 1

2 (G_MIPOG) 43680.404 1.783
3 (G_MIPOG) 31140.4 2.501
4 (G_MIPOG) 24089.749 3.233
5 (G_MIPOG) 17150.883 4.541
6 (G_MIPOG) 15193.554 5.126
7 (G_MIPOG) 14928.537 5.217
8 (G_MIPOG) 14789.624 5.266
9 (G_MIPOG) 12928.645 6.024
10 (G_MIPOG) 9570.184 8.138
11 (G_MIPOG) 9352.967 8.327

27306

Table 3. Results Using t=2 to 11 for TCAS Module

T-Way Time(MIPOG) Time(G_MIPOG) Speedup Test Case Size
2 0.156 0.292 0.534 100
3 0.609 0.547 1.113 400
4 3.234 2.578 1.2544 1265
5 36.797 29.125 1.263 4196
6 301.128 214.091 1.406 10851
7 1772.407 1086.7 1.631 26061
8 10242.09 5839.276 1.754 56742
9 36284.7 19124.78 1.897 120361

10 41481.672 21832.46 1.9 201601
11 14939.891 7821.932 1.91 230400

 by τo from π }//else
10. // vertical extension for parameter Pi
11. create local ts
12.while (π!empty){
13. arranges π in decreasing order.
14. choose the first tuple and generate test case that
 combine maximum number of tuples (τ)
15. delete the tuples covered by τ, add τ to local ts }
 //while
16. send local ts to worklet
} //algorithm

Figure 4. Algorithm for Worklet

5. Evaluation

Here, we are interested to investigate whether or not

there is speedup gain from distributing MIPOG in
G_MIPOG. Three experiments are applied to both
MIPOG and G_MIPOG in order to gauge the speedup.
Here, the speedup is defined as ratio of the time taken

by single computer to the time taken by multiple
computers. The experimental goals are: to investigate
the speedup as the number of parameters increases; to
investigate the speedup as the number of computers
increases; and to investigate on whether or not there
are significant increase in speedup as parameter
coverage increases.

To achieve the first goal we apply MIPOG, and
G_MIPOG (consists of 6 computers) to 5-valued
parameters, and changing the number of parameters
from 7 to 10, and fixed t=6, as given in Table 1. To
achieve the second goal, we have fixed t=4, with 10
10-valued parameters. Then, we determine the speedup
using 2 to 11 computers. The results are shown in
Table 2. Finally, we apply G_MIPOG to Traffic
Collision Avoidance System (TCAS) module. As
discussed earlier, TCAS is an aircraft collision
avoidance system from the Federal Aviation
Administration, and has been used in other studies of
software testing [2] [9] [10]. TCAS module has twelve
parameters: seven parameters have 2 values, two

parameters have three values, one parameter has four
values, and two parameters have 10 values. We use 2
computers, and vary t from 2 to 11 to determine the
speedup, as given in Table 3.

Figures 5, 6 and 7 demonstrate the speedup
obtained from Tables 2, 3, and 4 respectively. Figure 5
demonstrates the speedup increases linearly as the
number of parameters increases. Figure 6 demonstrates
the speedup also increases as the number of computers
increases. The maximum speedup is obtained when the
number of computers equal to the maximum number of
variables plus one. Here, each worklet is assigned for
each parameter value to a single computer as well as
one other computer as cordlet.

Referring to Figure 7, we also observe that the
speedup increases logarithmically as the strength of
coverage increases. It should be noted that there is no
speedup gained for this strategy when t=2, due to the
network overhead required for coordination as well as
for inter-process communications.

0

0.5

1

1.5

2

2.5

3

3.5

6 7 8 9 10 11

Number Of Parameters

S
pe

ed
up

Figure 5. Speedup vs number of parameters from

Table 1

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12

Number Of Computers

Sp
ee

du
p

Figure 6. Speedup vs the number of computers

from Table 2

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12

t-way

Sp
ee

du
p

Figure 7. Speedup vs the strength of coverage (T)

from Table 3

6. Conclusion

In this paper, we investigate the Grid based strategy
for generating t-way test set. Our practical results are
encouraging particularly in terms execution time,
whilst keeping the optimized test set size. As part as
our future work, we are currently study further
optimization for the test size and further reduction in
execution time. As part of our future work, we will be
integrating G_MIPOG for Grid Based Automated
Testing Environment under our USM-GRID Grants.

References

[1] P. Niemeyer and J. Peck, Exploring Java, 2nd Edition ed.:
O'Reilly, September 1997.
[2] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J.
Lawrence, "IPOG: A General Strategy for T-Way Software
Testing," in the Proc. of the 14th Annual IEEE Intl. Conf.
and Workshops on the Engineering of Computer-Based
Systems, Tucson, AZ, March 2007, pp. 549-556.
[3] Y. Lei and K. C. Tai, "In-Parameter-Order: A Test
Generating Strategy for Pairwise Testing," IEEE Transaction
on Software Engineering vol. 28 (1), pp. 1-3, 2002.
[4] http://www.alphaworks.ibm.com/tech/whitch.
[5] www.burtleburtle.net.
[6] http://www.site.uottawa.ca/~awilliam.
[7] http://sourceforge.net/projects/tvg.
[8] M. I. Younis, K. Z. Zamli, and N. A. M. Isa, "MIPOG -
Modification of the IPOG Strategy for T-Way Software
Testing", submitted for publication.
[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc. of the 16th
Intl. Conf. on Software Engineering, pp. 191–200, May
1994.
[10] D. R. Kuhn, V. Okun, “Pseudo-exhaustive Testing For
Software,” In the Proc of the 30th NASA/IEEE Software
Engineering Workshop, April 25-27, 2006.

View publication statsView publication stats

https://www.researchgate.net/publication/224385741

