
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228806081

Software Engineering Framework for Developing Software Testing Products

Article · October 2002

CITATIONS

0
READS

35

2 authors:

Some of the authors of this publication are also working on these related projects:

Enhancment of Face Recognition by adopting pre-processing Techniques View project

Combinatorial Testing View project

Mohammed I. Younis

University of Baghdad

48 PUBLICATIONS 351 CITATIONS

SEE PROFILE

Kamal Z Zamli

Universiti Malaysia Pahang

167 PUBLICATIONS 1,250 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mohammed I. Younis on 29 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228806081_Software_Engineering_Framework_for_Developing_Software_Testing_Products?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228806081_Software_Engineering_Framework_for_Developing_Software_Testing_Products?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Enhancment-of-Face-Recognition-by-adopting-pre-processing-Techniques?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Combinatorial-Testing?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Baghdad?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Malaysia_Pahang?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kamal_Zamli?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed_Younis4?enrichId=rgreq-09aced0599536fb2f28d47e6f626b11c-XXX&enrichSource=Y292ZXJQYWdlOzIyODgwNjA4MTtBUzoxMDIwNjc1MzY0MDAzOTFAMTQwMTM0NjIwNTQ5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Software Engineering Framework for Developing Software Testing Products

International Journal of The Computer, the Internet and Management Vol. 16.No.3 (September-December, 2008) pp 69-75

69

Software Engineering Framework for Developing Software
Testing Products

Mohammed I. Younis and Kamal Z. Zamli

School of Electrical and Electronic Engineering
Universiti Sains Malaysia, Engineering Campus

14300 Nibong Tebal, Penang, Malaysia
younismi@gmail.com, eekamal@eng.usm.my

Abstract

The paper suggests the basic principals

that must be taken into account to achieve
high-productivity production-environment
essentially synergizing the link between
academic and industrial requirements.
Additionally, this paper also gives an
analysis of the available technology and
finally outlines the specifications and
architectural of framework for
implementation testing aspects products.

1. Introduction

Many software systems today are built

using various components. Often, system
faults are caused by unexpected interactions
among these components. One solution to
remove any such faults from a system is
software testing. Testing is a process that
requires a great deal of time and resources. It
is widely recognized in the computer science
community that testing consumes
approximately 50% of the total cost of
developing new software. Furthermore, the
cost of testing new hardware and safety
critical systems is even higher. Inadequate
testing can lead to catastrophic
consequences.

Testing is an important but expensive
part of the software and hardware
development process. To thoroughly test a
large software or hardware system, many

combinations of possible inputs must be tried
and the expected behavior of the system
must be verified against the systems
requirements. However, the size of a test
suite required to test all possible interaction
combinations could be prohibitive in even a
moderately sized project. Therefore, it is
necessary to decrease the set of test
configurations by selectively testing only a
subset of this test configuration into
systematic manner [1].

One approach to software testing is
pairwise testing. Pairwise testing helps in
detecting faults caused by interactions
among two parameters. Pairwise testing
achieves higher block and decision coverage
than traditional methods for a commercial
email system [2].

However, it is not necessary that faults
are only caused by the interaction between
two parameters. There are chances that faults
can be caused by the interaction of more than
two parameters. For example, by applying t-
way testing to a telephone software system
showing that several faults can only be
detected under certain combinations of input
parameters [3]. In fact, a study conducted by
The National Institute of Standards and
Technology (NIST) has shown that about
95% of actual faults involved up to 4-way
interactions in the software studied. And
using up to 6-way combinatorial software
testing can detect almost all of the faults [4]
[5]. Therefore, it is necessary to test

Mohammed I. Younis and Kamal Z. Zamli

 70

interactions between more than two
parameters.

A strategy that tests interactions among
more than two parameters is t-way testing.
T-way testing, where the value of t is usually
small and is referred to as the degree of
interaction requires that for any t parameters,
every combination of their values should be
covered by at least one test. T-way testing
guarantees that all t-way combinations are
tested together. The main principle behind it
is that not every parameter is responsible for
every fault in a system, and many faults can
be exposed by interactions involving only a
few parameters.

To illustrate the concept of t-way
testing, consider a Traffic Collision
Avoidance System (TCAS) module. TCAS
is an aircraft collision avoidance system
from the Federal Aviation Administration,
and has been used in other studies of
software testing [6] [7] [8]. TCAS module
has twelve parameters: seven parameters
have 2 values, two parameters have three
values, one parameter has four values, and
two parameters have 10 values. Running
exhaustive test requires 460800 (i.e.,
10*10*4*3*3*2*2*2*2*2*2*2), or 12 way
testing for this system. Running such test
may be impossible. Alternatively, 11-way
testing requires 230400. 10-way requires
201601. 9-way requires 120361. 8-way
requires 56742. 7-way requires 26061. 6-way
requires 10851. 5-way requires 4196. 4-way
requires 1265. 3-way requires 400. Finally,
2-way requires only 100 test cases.

Earlier work suggests that t-way
sampling strategy can be effective to
systematically reduce the test data set to
some manageable combinations. Also, it
shows that the size of generated test set
proportional logarithmically with the number
of parameters. Finally, earlier work reports
that finding minimal test size is NP-
completeness problem (i.e., no unique
solution to find minimal test size), and that is
why different sampling strategies exists in

the aims of minimizing the test set. Building
and complementing earlier work, the paper
proposes an efficient framework to
standardize the available tools.

This paper is organized as follows.
Section 2 discusses some related work.
Section 3 gives analysis of available tools.
Section 4 gives the planning and the
architectural design to build the framework.
Finally, section 5 gives the conclusion.

2. Related Work

A reasonable amount of work has been

done on t-way testing in the past, but most of
it focused on pairwise or 2-way testing.
Various tools are available which implement
these approaches. Many classifications of
these strategies do exist. One of
classifications focuses on either the strategy
deterministic or not [9]. Other classifications
capture the fact that some strategies are
computational whlist others tend to be
algebraic. Here, we classify the strategies
according to their supporting t-way testing.
What follows is a brief overview on such
work previously carried out or work which is
still in progress.

For pairwise testing, there are on the
shelf commercial test tools. As examples:
OATS (Orthogonal Array Test System) [10]
[11], IRPS [12], AllPairs1 [13], AllPairs2
[14], IPO [15], TCG (Test Case Generator)
[16], Pro-Test [17], CTS (Combinatorial Test
Services) [18], ReduceArray2 [19],
TestCover [20], DDA (Deterministic Density
Algorithm) [21], OA1 [22], CTE-XL [23],
CaseMaker [24], PICT [25], rdExpert [26],
OATSGen [27], SmartTest [28], and
EXACT (Exhaustive seArch of
Combinatorial Test suites) [29]. Other tools
that support 3-way testing (as well as 2-way)
are: AETG [30] (Automatic Efficient Test
Generator), employs a greedy algorithm to
construct the test case, that is, each test
covers as many uncovered combinations as
possible. Because AETG uses random search

Software Engineering Framework for Developing Software Testing Products

International Journal of The Computer, the Internet and Management Vol. 16.No.3 (September-December, 2008) pp 69-75

71

algorithm, the generated test case is highly
non-deterministic (i.e. the same input
parameter model may lead to different test
suites [9]). Other variants to AETG that use
stochastic greedy algorithms are: GA
(Genetic Algorithm) and ACA (Ant Colony
Algorithm) [31]. In some cases, they give
optimal solution than original AETG,
although they share the common
characteristic as far as being non-
deterministic in nature. Some approaches
opted to adopt heuristic search techniques
such as hill climbing and simulated
annealing (SA) [31]. Briefly, hill climbing
and simulated annealing strategies start from
some known test set. Then, a series of
transformations were applied (starting from
the known test set) until an optimum set is
reached to cover all the pairwise
combinations [29].Unlike strategy that builds
a test set from scratch (like AETG), heuristic
search techniques can predict the known test
set in advance. As such, heuristic search
techniques can produce smaller test sets than
AETG and IPO, but they typically take
longer time to complete [6].

The following existing tools that support
up to 6-way testing and are either open
source or free for academic use:

IBM’s Intelligent Test Case Handler
also known as ITCH tool [32], uses the
sophisticated combinatorial algorithms to
construct test suites. It enables the user to
generate small test suites with strong
coverage properties, choose regression suites
and perform other useful operations for the
creation of systematic software test plans.
ITCH is a replacement of CTS [1]. TConfig
[33], which is from University of Ottawa.
Test Vector Generator (or TVG) [34], and
Jenny [35]. Based on limited information
available in the literature, ITCH implements
a combination of several algebraic methods
(the details of the combination are not
known), and TConfig implements a recursive
construction method. Both Jenny and TVG
seem to implement a computational method,

but the details of their algorithms are not
clear. Also, Jenny has the ability to generate
more than 6-way testing. Finally, perhaps the
most recent tool is the FireEye [6] which
implements In-Parameter-Order-General
strategy (or IPOG), a generalization of the
IPO strategy.

3. Analysis

Through the study and observation the

test case generation products, the following
points are considered:

1. There is no standardized framework
to build the test generator. So, there
are different implementations
supported by different vendors. Due
to this point it is time consuming for
both industrial developers and
academic researchers to learn the use
of each product.

2. There is no standardized formatting
for input/output parameters variables.

3. The test generations products share
the need of prove of correctness
tools. This can be made by sharing
standard tool that demonstrates
correctness. Doing that save the
efforts for each vendor.

4. There is a need to integrate the test
generator with other testing tools.
Switching from one generator to
other. In this case, the overall work
must be re-done.

5. Testing expected to run in different
operating systems. So, the products
must be functional in cross-platform
environment.

6. The system is adaptable for future
needs.

The next section gives the proposed
framework to achieve our analyzing goals.

4. Planning and Architectural Design

In this section, we explain how to build

our framework as well as give the

Mohammed I. Younis and Kamal Z. Zamli

 72

architectural design for the framework.
To achieve cross-platform functionality,

Java is perhaps the most suitable candidate
as far as programming language is
concerned. Additionally, Java is also a pure
object programming language with multiple
platform look & feel and has enormous
library that provide short cut development
cycle.

The suggested framework based on IT-
Design pyramid can be seen in Figure 1. We
suggest OOP technique to implement this
pyramid.

Figure 1. IT Design

In OOP community, there are four level

of programming according to the skills of the
programmer:
1. Architect; the term architect is somewhat

loosely defined in the industry. The
architect is defined as someone who
develops an object-oriented solution that
will meet complex sets of goals and
requirements. Whether the specification
calls for scalability to millions of users,
or a very small memory footprint, the
design must perform. The architect has
no prerequisites of programming, but
has a broad scope of program design
skills and object-oriented methodologies
[8].

2. System-programmer; is a highly trained
personals in a specific specific
programming language (such as
Assembly, C, C++, Java, etc) that
implement (Coding) the design.

3. Component-programmer; is a highly
trained personnel with strong theoretical
background and well expert on how to
convert the theoretic-specification
provided by the problem-specialists into
ready-made component.

4. Developer; is a personnel who poses the
expert know-how to utilize and develop
the system. Programmers normally
supply the developers by a ready-made
and customizable functionality to save
their development time in terms of
Application Programming Interfaces
(APIs), and then the developer can use
them in his applications or develops
other classes (libraries) for other
developers.

 In this framework, each party has its

own works as follows:
a. The problem specialists give their

theory to the components
programmers and developer, in our
case study the static components
given to the components
programmers (e.g., test case
generator) while the dynamic
components are developed by the
developers (e.g., coverage
demonstrator). Normally problem
specialists are problem specific that
may have no experts in computer.
In other direction the problem
specialists take the advantages of
the products that developed by
developers instead of building them
from scratch.

b. The developers integrate the
components provided by the
components programmers with the
ability to select the components
derived by specific vendors. They

Software Engineering Framework for Developing Software Testing Products

International Journal of The Computer, the Internet and Management Vol. 16.No.3 (September-December, 2008) pp 69-75

73

treat the components as black-
boxes. They do not know how the
actual implementation is done.

c. The components programmers
provide the concrete
implementation of the components
i.e., treat the components as white-
boxes.

d. The system-programmers tie the
components programmers to the
developers. This accomplished by
providing standard APIs to the
developer and standard SPIs the
components programmers.

5. Conclusion and Discussions

In this paper, we propose industrial

standard framework for building and testing
products. The benefits for this framework
can be derived as follows:
1. Twin academic-industrial benefits. The

academics will take the advantages of the
developed products and give their
enhancement, researches, and
components with short cut time, while
the industry take these researches and
integrate with system as developer
libraries and/or components.

2. Solving the problem of multiple vendors
and multiple versions while making both
the developer and end-users independent.

3. The separation of concerns is inherently
provided by the framework due to
modularity design.

4. The standardization is provided by the
system programmers that give industrial
standard APIs to the developers and
industrial standard SPIs to the
components programmers.

5. The framework provides very high re-
usability. The system is reusable due to
the following factors:
5.1. The engines and their

correspondence SPIs classes
provide the functionality of client-
stub and server-skeleton

respectively, which are reused
during any interaction between the
client and the server (provider).

5.2. A service-provider can serve many
clients at the same time.

5.3. A good implementation of the
clients-components (i.e.,
partitioning the developer layer into
sub-layers) which yields
heterogeneous ready-made libraries
that can be re-used by another
application. And that leading the
way towards shortcut development
cycle.

5.4. The system obeys the standards
strictly.

6. The system is scaleable that can be
extended horizontally (by adding
functionality) and vertically (by adding
providers).

7. The adaptive maintenance is achieved by
the framework that enables the
developers to install alternatives
implementation.

8. The system is upgradeable which means
of replacement the current provider by
another version (e.g. when fast or more
reliable version is available), without
effecting the applications.

9. The system is cross-platform because it
uses only the basic Java-Classes (i.e.
pure Java implementation).

10. The test code and test-data is centrally
maintained, which results in cheaper
maintenance. At the same time the clients
remain independent.

11. The ability to derive standard metrics to
compare the efficiency of each product.

Acknowledgment

This research is funded by the generous

grants – “Investigating Heuristic Algorithm
to Address Combinatorial Explosion
Problem” from Ministry of Higher Education
(MOHE), Malaysia.

Mohammed I. Younis and Kamal Z. Zamli

 74

References

[1] C. P. Jayaswal (2006), "Automated
Software Testing Using Covering
Arrays", MSc thesis: University of
Texas at Arlington, December.

[2] K. Burr and W. Young (1998),
"Combinatorial Test Techniques:
Table-based Automation, Test
Generation and Code Coverage", in
Proc. Intl. Conf. on Software Testing
Analysis & Review.

[3] S. R. Dalal, A. Jain, N. Karunanithi, J.
M. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz (1999), "Model
based testing in practice", in Proc. of
the Intl. Conf. on Software Engineering
(ICSE), pp. 285–294.

[4] D. R. Kuhn and M. J. Reilly (2002),
"An Investigation of the Applicability
of Design of Experiments to Software
Testing", in Proc. of the 27th
NASA/IEEE Software Engineering
Workshop, NASA Goddard Space
Flight Center, December.

[5] D. R. Kuhn, D. Wallace, and A. Gallo
(2004), "Software Fault Interactions
and Implications for Software Testing",
IEEE Transactions on Software
Engineering, vol. 30, June.

[6] Y. Lei, R. Kacker, D. R. Kuhn, V.
Okun, and J. Lawrence (2007), "IPOG:
A General Strategy for TWay Software
Testing," in Proc. of the 14th Annual
IEEE Intl. Conf. and Workshops on the
Engineering of Computer-Based
Systems, Tucson, AZ, March, pp. 549-
556.

[7] M. Hutchins, H. Foster, T. Goradia,
and T. Ostrand (1994), "Experiments
on the effectiveness of dataflow- and
controlflow-based test adequacy
criteria", in Proc. of the 16th Intl. Conf.
On Software Engineering, May, pp.
191–200.

[8] D. R. Kuhn and V. Okun (2006),
"Pseudo-exhaustive Testing For

Software", in Proc. of the 30th
NASA/IEEE Software Engineering
Workshop, April 25-27, 2006.

[9] M. Grindal, J. Offutt, and S. F. Andler
(2004), "Combination Testing
Strategies: A Survey", GMU Technical
Report ISE-TR-04-05 July.

[10] K. A. Bush (1952), "Orthogonal Arrays
of Index Unity", Annals of
Mathematical Statistics vol. 23, pp.
426-434.

[11] R. Mandl (1985), "Orthogonal Latin
Squares: an Application of Experiment
Design to Compiler Testing,"
Communications of the ACM, vol. 28
(10), pp. 1054-1058.

[12] M. I. Younis, K. Z. Zamli, and N. A.
M. ISA, "IRPS - An Efficient Test Data
Generation Strategy for Pairwise
Testing ", in Lecture Notes in Artificial
Intelligence Vol. 5177, Springer, pp.
493-500

[13] http://www.satisfice.com/testmethod
.shtml.

[14] http://www.mcdowella.demon.co.uk/
allPairs.html.

[15] Y. Lei and K. C. Tai (2002), "In-
Parameter-Order: A Test Generating
Strategy for Pairwise Testing", IEEE
Transaction on Software Engineering
vol. 28 (1), pp. 1-3.

[16] Y. Tung and W. S. Aldiwan (2000),
"Automating Test Case Generation for
the New Generation Mission Software
System", in Proc. of the Aerospace
Conference, Big Sky, MT, USA, pp.
431-437.

[17] http://www.sigmazone.com/protest.
htm.

[18] http://www.alphaworks.ibm.com/tech/
cts.

[19] G. T. Daich (2003), "Testing
Combinations of Parameters Made
Easy", in Proc. of the IEEE Systems
Readiness Technology Conference
(AUTOTESTCON 2003), Sept, pp. 379-
384.

Software Engineering Framework for Developing Software Testing Products

International Journal of The Computer, the Internet and Management Vol. 16.No.3 (September-December, 2008) pp 69-75

75

[20] http://www.testcover.com.
[21] R. Bryce and C. J. Colbourn (2007),

"The Density Algorithm for Pairwise
Interaction Testing", Software Testing,
Verification and Reliability, vol. 17,
pp. 159 – 182.

[22] http://www.software-metrics.org.
[23] E. Lehmann and J. Wegener (2000),

"Test Case Design by Means of the
CTE XL", in Proc. of the 8th European
International Conference on Software
Testing, Analysis & Review (EuroSTAR
2000) Kopenhagen, Denmark
December.

[24] Y. Tsubery (2007), "Implementation
Of CaseMaker In MIS BU–Comverse",
http://www.casemakerinternational.co
m, Sept.

[25] http://download.microsoft.com.
[26] L. Copeland (2004), A Practitioner's

Guide to Software Test Design: STQE
Publishing.

[27] R. Krishnan, S. M. Krishna, and P. S.
Nandhan (2007), "Combinatorial
Testing: Learnings from our
Experience", ACM SIGSOFT Software
Engineering Notes vol. 32, pp. 1-8,
May.

[28] http://www.smartwaretechnologies
.com.

[29] J. Yan and J. Zhang (2006),
"Backtracking Algorithms and Search
Heuristics to Generate Test Suites for
Combinatorial Testing”, in Proc. of the
30th Annual International Computer
Software and Applications Conference
(COMPSAC'06), September, pp. 385-
394

[30] M. B. Cohen (2004), "Designing Test
Suites for Software Interaction
Testing", PhD Thesis, University of
Auckland.

[31] T. Shiba, T. Tsuchiya, and T. Kikuno
(2004), "Using Artificial Life
Techniques to Generate Test Cases for
Combinatorial Testing,", in Proc. of the
28th Annual Intl. Computer Software

and Applications Conference
(COMPSAC'04), Hong Kong, China,
September, pp. 72-77.

[32] http://www.alphaworks.ibm.com/tech
/whitch.

[33] http://www.site.uottawa.ca/~awilliam.
[34] http://sourceforge.net/projects/tvg.
[35] http://www.burtleburtle.net/bob/math.

View publication statsView publication stats

https://www.researchgate.net/publication/228806081

