Polymeric Chain-Assemblies of Metal Complexes with Mixed Azido-Carboxylato Bridges; Synthesis and Spectral Studies

RiyadK M. Ahmed

Taki A. Hamdan
Ahmed \mathcal{T}. Numan
Mohamad J. Al-Jeboori
(2013Ac)

Dedication

To my beloved father with respect

To my eyes.....mother

To my brothers and sisters

With love

Summary

The research on coordination polymers chemistry based on organic-metal framework with bridging ligands has accelerated during the past two decades. It is an interested hot topic in the synthetic inorganic chemistry, which allowed the fabrication of a variety of interested materials. These materials have shown a range of applications including light harvesting and magnetic properties.

The thesis is divided in three chapters. The first chapter gives a general introduction on the development of self-assembled polymeric species based on transition metal. It is also covered a summary of the literature review on the current state of the art on self-assembled coordination ploymers. Furthermore, it includes a description on various relevant topics such as the magnetic properties of macro- and micromolecules, spin crossover in transition metal compounds (SCO), the involvement of various bridging systems in the formation of self-assembled species, and highlight current examples in the synthesis of coordination polymer compounds. The uses and applications of current organic ligand systems and their metal complexes have been included in this chapter. It also includes the aim and the objectives of this investigation.

Chapter 2 represents the experimental section. It is stated material used in this work, physical measurements carried out (including spectroscopic techniques), abbreviation and chemical structures of the prepared ligands and the synthesis procedures for ligands and their metal complexes.

This work covers the preparation of five bidentate ligands capable to form polymeric structures upon complexation with metal ions; namely bis(N-carboxylatomethyl)-4,4`-dipyridinium) (\(\mathrm{L}^{1}\)), bis(N-carboxylato)-4,4`-dipyridinium) (L^{2}), bis(N-carboxylatoethyl)-4,4`-dipyridinium) (\(\mathrm{L}^{3}\)), bis(N- carboxylatopropyl)-4,4`-dipyridinium) (L^{4}) and 1,3-bis(N-carboxymethyl-4-pyridino)propane (L^{5}). Two types of ligands; one with spacer and others without were synthesised in this work.

Ligands were prepared using two methods procedures. A variety of polymeric complexes were synthesised by by heating 1 mmol of each ligand with 1 mmol of metal chloride and 2 mmol of sodium azide using a mixture of water / ethanol (4:6 $\mathrm{v} / \mathrm{v})$. Polymeric complexes of the general formula $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathrm{N}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \mathrm{nH}_{2} \mathrm{O}$, $\left[\mathrm{M}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, where $\mathrm{M}^{(\mathrm{II})}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ and $\mathrm{Cd} ; \mathrm{L}^{\mathrm{n}}=\mathrm{L}^{1}-\mathrm{L}^{5}$, are reported.

Chapter 3 describes results and discussion in which all the ligands and transition metal complexes synthesised in this investigation, were characterised comprehensively by elemental microanalysis (C.H.N), Atomic Absorption (A.A), thermal analysis, chloride content, molar conductance, melting point, IR, UV-Vis, magnetic susceptibility, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and DEPT ${ }^{13} \mathrm{C}$ - NMR and mass spectroscopy. The U.V-Vis spectra of complexes were used to elucidate the spatial arrangements of the ligand around metal ion. The complexes are air-stable solids, soluble in DMSO but not in other common organic solvents, this may be related to their polymeric structures. The molar conductivity values of complexes, except $\operatorname{Cr}(\mathrm{III})$ and $\operatorname{Ag}(\mathrm{I})$ complexes, were consistent with their nonelectrolytes, while Cr and Ag complexes gave 1:2 electrolytes, respectively. Theoretical approaches were used to confirm the coordination mode of the carboxylato moiety upon complex formation. This was based on using IR and magnetic moment measurements data. Based on the above analyses, the mode of bonding and overall suggested structure of the complexes for L^{1} is shown below:

Where $\mathbf{M}=\mathbf{C r}^{\text {III }}, \mathbf{M n}^{\text {II }}, \mathbf{F e}^{\text {II }}, \mathbf{C o}^{\text {II }}, \mathbf{N i}^{\text {III }}, \mathbf{C u}^{\text {II }}, \mathrm{Zn}^{\text {II }}, \mathbf{C d}^{\text {II }}, \mathbf{A g}^{\text {I }}$

Keywords; Polymeric complexes; Zwitterionic polydentate ligands; Structural study, theoretical treatment

List of contents

	Summary	A-C
	List of contents	1-7
	List of Tables	7-9
	List of Figures	10-16
	List of Schemes	17
	List of abbreviation	18
	Chapter one: Introduction	19
(1.1)	General Introduction	20-21
(1.2)	Introduction	22-24
(1.3)	Magnetic properties of macro- and micromolecules	24-26
(1.3.1)	Ferromagnetic materials	26-27
(1.3.2)	Antiferromagnetic materials	27
(1.4)	Spin crossover in transition metal compounds	27-29
(1.5)	Bridging systems	30
(1.5.1)	Azido bridging	30-39
(1.5.2)	Carboxylate and another type of bridging	39-49
(1.6)	Uses and applications	49-53
(1.7)	Aim of the work	54
	Chapter Two: Experimental	
(2.1)	Materials	56-57
(2.2)	Physical measurements	57
(2.2.1)	Melting points	57
(2.2.2)	Infrared spectra (FTIR)	57
(2.2.3)	Electronic spectra	57
(2.2.4)	Metal analysis	57
(2.2.5)	Elemental microanalysis	58
(2.2.6)	Chloride contents	58
(2.2.7)	Conductivity measurements	58
(2.2.8)	Mass spectra	58
(2.2.9)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ Nuclear magnetic resonance spectra (NMR)	59
(2.2.10)	Thermal gravimetric analysis	59
(2.2.11)	Magnetic moment measurement	59
(2.2.12)	Proposed molecular structure	59
(2.2.13)	Molecular modeling	59
(2.3)	Abbreviation of the ligands	59-60
(2.4)	Synthesis	61
(2.4.1)	Synthesis of the ligands without spacer	61
(2.4.1.1.1)	Synthesis of the ligand L^{1}	61
(2.4.1.1.2)	Synthesis of the ligand L^{2}	61-62
(2.4.1.1.3)	Synthesis of the ligand L ${ }^{3}$	62

(2.4.1.1.4)	Synthesis of the ligand L^{4}	62
(2.4.2.2)	Synthesis of the ligands with spacer	62
(2.4.2.2.1)	Synthesis of the ligand L^{5}	62
(2.4.1.3)	Synthesis of the ligands using second method	63
(2.4.1.3.1)	Preparation of L^{3}	63
(2.4.1.3.1.1)	Synthesis of $\mathrm{NC}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (1)	63
(2.4.13..1.2)	Synthesis of [($\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N} \mathrm{CH} 2 \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2} \mathrm{H}\right] \mathrm{Br} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2)	63
(2.4.1.3.3)	Preparation of L^{4}	63-64
(2.5)	Synthesis of the complexes without spacer	64
(2.5.1)	Synthesis of L^{1} complexes	64
(2.5.1.1)	Synthesis of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	45
(2.5.1.2)	$\begin{aligned} & \text { Synthesis of }\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \\ & {\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},} \\ & {\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}} \\ & \text { complexes } \end{aligned}$	64-65
(2.5.2)	Synthesis of L^{2} complexes	65
(2.5.2.1)	Synthesis of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	65
(2.5.2.2)	$\begin{aligned} & \text { Synthesis of }\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \\ & {\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},} \\ & {\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}} \\ & \text { complexes } \end{aligned}$	65-68
	Chapter Three: Results and Discission	
(3)	Results and Discussion	70
(3.1)	Recent development in metal-organic polymers with azidocarboxylato bridges	70
(3.2)	Synthesis and characterisation of the ligands	70-72
(3.3)	IR Spectral data for the ligands with out spacer	73
(3.3.1)	IR Spectrum of bis(N-carboxylatomethyl)-4,4`-dipyridinium) L^{1}	73

(3.3.2)	IR Spectra of ligands $L^{2}-L^{4}$	73-77
(3.4)	IR Spectral data for the ligands with spacer	78
(3.4.1)	IR Spectrum of 1,3-bis(N-carboxymethyl-4-pyridino)propane L^{5}	78-79
(3.5)	UV-Vis Spectra of the ligands	80
(3.5.1)	UV-Vis spectrum of the ligands with out spacer	80
(3.5.1.1)	UV-Vis spectrum of L^{1}	80
(3.5.1.2)	UV-Vis spectrum of L^{2}	80
(3.5.1.3)	UV-Vis spectrum of L^{3}	80
(3.5.1.4)	UV-Vis spectrum of L^{4}	80
(3.5.2)	UV-Vis spectrum of L^{5}	8-83
(3.6)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligands without spacer	84
(3.61)	${ }^{1} \mathrm{H}^{13} \mathrm{C}$ NMR spectra for the ligand L^{1}	84
(3.6.1.1)	${ }^{1} \mathrm{H}$ NMR spectrum for the ligand L^{1}	84-86
(3.6.1.2)	${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{1}	86-87
(3.6.1.3)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{1}	87-88
(3.6.2)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{2}	88
(3.6.2.1)	${ }^{1} \mathrm{H}$ NMR spectrum for the ligand L^{2}	88-89
(3.6.2.2)	${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{2}	89-90
(3.6.2.3)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{2}	90-91
(3.6.3)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{3}	91
(3.6.3.1)	${ }^{1} \mathrm{H}$ NMR spectrum for the ligand L^{3}	91-92
(3.6.3.2)	${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{3}	92-93
(3.6.3.3)	Dept ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{3}	93-94
(3.6.4)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{4}	94
(3.6.4.1)	${ }^{1} \mathrm{H}$ NMR spectrum for the ligand L^{4}	94-95
(3.6.4.2)	${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{4}	95-96
(3.6.4.3)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{4}	96-97
(3.7)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligands with spacer	97

(3.7.1)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{5}	97
(3.7.1.1)	${ }^{1} \mathrm{H}$ NMR spectrum for the ligand L^{5}	97-98
(3.7.1.2)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 for the ligand L^{5}	98-99
(3.7.1.3)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{5}	99-103
(3.8)	Mass Spectra for the ligands	104
(3.8.1)	Mass spectrum of L^{1}	104-105
(3.8.2)	The mass spectrum of L^{2}	106-107
(3.8.3)	The mass spectrum of L^{3}	107-109
(3.8.4)	The mass spectrum of L^{4}	109-110
(3.8.5)	The mass spectrum of L^{5}	111-112
(3.9)	Synthesis and characterisation of the complexes	112-114
(3.10)	IR Spectral data for the complexes	115-122
(3.10.1)	IR spectral data for L^{1} complexes	123-129
(3.10.2)	IR Spectral data for L^{2} complexes	130-136
(3.10.3)	IR Spectral data for L^{3} complexes	137-144
(3.10.4)	IR Spectral data for L^{4} complexes	145-150
(3.10.5)	IR Spectral data for L^{5} complexes	151-157
(3.11)	UV-Vis Spectral data for complexes	158
(3.11.1)	UV-Vis Spectral data for L^{1} complexes	158-163
(3.11.2)	UV-Vis Spectral data for L^{2} complexes	164-168
(3.11.3)	UV-Vis Spectral data for L^{3} complexes	169-173
(3.11.4)	UV-Vis Spectral data for L^{4} complexes	174-178
(3.11.5)	UV-Vis Spectral data for L^{5} complexes	179-183
(3.12)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and Dept C NMR spectra for the complexes	184
(3.12.1)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	184
(3.12.1.1)	${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	184-185
(3.12.1.2)	${ }^{13} \mathrm{C} \mathrm{NMR}$ spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	185-186
(3.12.1.3)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	186-187
(3.12.2)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex	187
(3.12.2.1)	${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	187-188
(3.12.2.2)	${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	188-189
(3.12.3)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	189

(3.12.3.1)	${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	189-190
(3.12.3.2)	${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum} \mathrm{for}\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	190-193
(3.13)	Mass of the complexes	194
(3.13.1)	Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	194-195
(3.13.2)	Mass spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	196-197
(3.13.3)	Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	198-199
(3.13.4)	Mass spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	199-201
(3.13.5)	Mass spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	202-203
(3.13.6)	Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	204-205
(3.14)	Thermal decomposition study	206
(3.14.1)	Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(L^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	206-207
(3.14.2)	Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	208-209
(3.14.3)	Thermal decomposition of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	209-211
(3.14.4)	Thermal decomposition of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	211-212
(3.14.5)	Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$ complex	213-214
(3.14.6)	Thermal decomposition of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	214-216
(3.14.7)	Thermal decomposition of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	216-217
(3.14.8)	Thermal decomposition of L^{4} complex	218-219
(3.14.9)	Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(L^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	219-220
(3.14.10)	Thermal decomposition of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	221-222
(3.14.11)	Thermal decomposition of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	222-224
(3.14.12)	Thermal decomposition of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	224-226
(3.14.13)	Thermal decomposition of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	226-229
(3.15)	Magnetic moment	230
(3.15.1)	Magnetic Moment Measurements	230-231
(3.15.1.1)	Evans balance susceptibility calculation	231-232
(3.15.1.2)	Worked examples for the calculation of magnetic moment, μ	232
(3.15.1.3)	Worked examples for the $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	232-235
(3.15.1.4)	Worked examples for the $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	235-236
(3.15.1.5)	Worked examples for the $\left.\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	237-238
(3.15.1.6)	Worked examples for the $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	238-239
(3.15.1.7)	Worked examples for the [$\left.\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	240-242
(3.15.2)	Magnetic properties of examples; experimental and modeling calcukated values	243-248
(3.16)	Theoretical calculations of the IR frequencies of the carboxylato group	248-251
(3.16.1)	Relationship between the structures and the COO^{-} Stretching frequencies of the carboxylate group	251-254

(3.17)	Molar conductance measurements	255-256
(3.18)	Conclusions and proposed molecular structure for the complexes	257
(3.18.1)	The proposed molecular structure for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes	257-259
(3.18.2)	The proposed molecular structure for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] 2 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\left(\mathrm{~N}_{3}\right)_{4}\right)\right]$ $\mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complexes:	259-261
(3.18.3)	The proposed molecular structure for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\left(\mathrm{~N}_{3}\right)_{4}\right)\right] \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes:	262-263
(3.18.4)	The proposed molecular structure for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ complexes	263-265
(3.18.5)	The proposed molecular structure for $\begin{aligned} & \left.\left.\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \\ & \left.\left.\mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \\ & \left.\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O} \text { complexes } \end{aligned}$	265-266
(3.18.6)	The proposed molecular structure for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex:	267-268
(3.19)	3D molecular modelling and analysis of bonding modes	269-278

	Prospective study	287
	References	$288-302$

List of Table

	Table	Page
(2.1)	Chemicals used in this work and their suppliers	$56-57$
(2.2)	abbreviation of structure and nomenclature of the ligands	60
(2.3)	colours, yields, melting points and metal salts quantities of $\mathrm{L}^{1}-$ complexes.	$64-65$
(2.4)	colours, yields, melting points and metal salts quantities of L^{2} complexes.	$65-66$
(2.5)	colours, yields, melting points and metal salts quantities of $\mathrm{L}^{3}-$ complexes	66
(2.6)	Colours, yields, melting points and metal salts quantities of L^{4} complexes	67
(2.7)	Colours, yields, melting points and metal salts quantities of L^{5} complexes	$67-68$
	Chapter Three: Results and adiscussions	72
(3.1)	Microelemental analysis results and some physical properties for the ligands	72
(3.2)	The solubility of the ligands in different solvents	73
(3.3)	Infrared spectral data (wave number) cm	
(3.4)	Infrared spectral data (wave number) ligands ${ }^{-1}$ of the ligand	78
(3.5)	Electronic spectral data for the ligands	81
(3.6)	1 H NMR data for the ligands without spacer measured in DMSO-d6 and chemical shift in p.p.m ($\delta)$	$101-102$
(3.7)	${ }^{13} \mathrm{C}$ NMR data for the ligands with out spacer measured in DMSO-d6 and chemical shift in p.p.m ($\delta)$	$102-103$
(3.8)	The solubility of L^{1} complexes in different solvents	113
(3.9)	Microanalysis of the L^{1} complexes, along with metal and chloride analysis	114
(3.10)	The solubility of L^{2} complexes in different solvents	115
(3.11)	Microanalysis of the L^{2} complexes, along with metal and chloride analysis	116
(3.12)	The solubility of L^{3} complexes in different solvents	117

(3.13)	Microanalysis of the L^{3} complexes, along with metal and chloride analysis	118
(3.14)	The solubility of L^{4} complexes in different solvents	119
(3.15)	Microanalysis of the L^{4} complexes, along with metal and chloride analysis	120
(3.16)	The solubility of L^{5} complexes in different solvents	121
(3.17)	Microanalysis of the L^{5} complexes, along with metal and chloride analysis	122
(3.18)	Infrared spectral data (wave number) cm^{-1} of L^{1} complexes	129
(3.19)	Infrared spectral data (wave number) cm^{-1} of L^{2} complexes	136
(3.20)	Infrared spectral data (wave number) cm^{-1} of L^{3} complexes	144
(3.21)	Infrared spectral data (wave number) cm^{-1} of L^{4} complexes	150
(3.22)	Infrared spectral data (wave number) cm^{-1} of L^{5} complexes	157
(3.23)	UV-Vis spectral data of L^{1} complexes in DMSO solutions	163
(3.24)	UV-Vis spectral data of L^{2} complexes in DMSO solutions	168
(3.25)	UV-Vis spectral data of L^{3} complexes in DMSO solutions	173
(3.26)	UV-Vis spectral data of L^{4} complexes in DMSO solutions	178
(3.27)	UV-Vis spectral data of L^{5} complexes in DMSO solutions	183
(3.28)	${ }^{1} \mathrm{H}$ NMR data for the complexes measured in DMSO-d6 and chemical shift in p.p.m (δ)	192
(2.29)	${ }^{13} \mathrm{C}$ NMR data for the complexes measured in DMSO-d6 and chemical shift in p.p.m (δ)	193
(3.30)	TG/DTG/DTA data for ligands and metal complexes	228-229
(3.31)	Values of χ_{D} for cations	233
(3.32)	Values of χ_{D} for atoms in covalent species	233
(3.33)	Values of λ_{i} for specific bond types	234
(3.34)	Calculation of magnetic moment measurements for L^{1} complexes	241-242
(3.35)	Values of spin only of the metal ions	248

(3.36)	Shows the bond angle of $\mathrm{M}-\mathrm{N}-\mathrm{M}$	248
(3.37)	Calculated frequencies (in cm^{-1}) of the COO-symmetric and antisymmetric stretches of the acetate ion interacting with metal ions	254
(3.38)	The molar conductivity measurements in DMSO for the complexes	255-256
(3.39)	The calculated bond length and bond angle of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ $\mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	270
(3.40)	The calculated bond length and bond angle of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\right.$ $\left(\mathrm{N}_{3}\right)_{4}$. $\mathrm{H}_{2} \mathrm{O}$	271
(3.41)	The calculated bond length and bond angle of [$\left.\mathrm{Fe}\left(\mathrm{L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	272
(3.42)	The calculated bond length and bond angle of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$	273
(3.43)	The calculated bond length and bond angle of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$	274
(3.44)	The calculated bond length and bond angle of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$	275
(3.45)	The calculated bond length and bond angle of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$	276
(3.46)	The calculated bond length and bond angle of [$\left.\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	277
(3.47)	The calculated bond length and bond angle of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	278
(3.48)	The calculated bond length and bond angle of [$\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	279
(3.49)	The calculated bond length and bond angle of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	280
(3.50)	The calculated bond length and bond angle of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	281
(3.51)	Minimisation energy of L^{1} complexes	282
(3.52)	Minimisation energy of L^{2} complexes	283
(3.53	Minimisation energy of L^{3} complexes	284
(3.54)	Minimisation energy of L^{4} complexes	285
(3.55)	Minimisation energy of L^{5} complexes	286

List of Figures

	Figures	Page
(1-1)	Symbolic illustration of how diamagnetic and paramagnetic materials interact with an applied magnetic field	25
(1-2)	(a) Individual spins randomly oriented in the absence of an external magnetic field; (b) when a strong enough external magnetic field is applied; (c) when the external field is removed, the individual spins return to a random orientation with no interaction	25
(1-3)	Below the TC (b) Below the TN (c) Ferromagnets behave like antiferromagnets	27
(1-4)	Schematic representation of the two possible spin states for iron(II) and iron(III) coordination compounds in an octahedral environment.	29
(1-5)	Structures of $\mu-1,3$ (end-end,), $\mu-1,1$ (end-on), $\mu-1,1,3, \mu-$ 1,1,1	30
(1-6)	Crystal structure of $\left[\mathrm{Ni}\left(\mu-\mathrm{N}_{3}\right)(\mathrm{bmdt})\left(\mathrm{N}_{3}\right)\right]_{n}(\mathrm{DMF})_{n}$	31
(1-7)	Crystal structure of $\left[\mathrm{Cu}_{3}\left(\mathrm{~N}_{3}\right)_{6}(\mathrm{DMF})_{2}\right]_{n}$	31
(1-8)	Molecular structure of $\mathrm{Cu}_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}\left(\mathrm{~N}_{3}\right)_{2}\left\{(\mathrm{py})_{2} \mathrm{CO}_{2}\right\}_{2}$ $\left.\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OH}) \mathrm{O}\right\}_{2}\right]$	32
(1-9)	X-ray crystallography of $\left[\mathrm{Mn}_{3}\left(\mathrm{~L}^{1}\right)_{2}\left(\mathrm{~N}_{3}\right)_{4}\right]_{\mathrm{n}} . \mathrm{nH} \mathrm{H}_{2} \mathrm{O}$	33
(1-10)	Crystal structure of $\left[\mathrm{Cu}_{4}\left(\mathrm{~N}_{3}\right)_{8}(\mathrm{en})_{2}\right]_{n}$	34
(1-11)	Crystal structure of $\left[\mathrm{Co}_{2}(\mathrm{pyzc})_{2}\left(\mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$	35
(1-12)	Crystal structure of $\left[\mathrm{CuCl} 2 \mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2} \mathrm{~L}\right]$	35
(1-13)	X-ray crystallography of $\left[\mathrm{Cd}_{7} \mathrm{Na}_{4}\left(\mathrm{NO}_{3}\right)_{12}\left(\mathrm{~N}_{3}\right)_{6}\right]$	36
(1-14)	Crystal structure of [$\left.\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{bpa})\right]$	37
(1-15)	Crystal structure of $\left[\mathrm{Cu}_{3}(\mathrm{Him})_{4}(\mathrm{im})_{2}\left(\mathrm{~N}_{3}\right)_{4}\right]_{n}$	38
(1-16)	Coordination environment about $\mathrm{Co}(\mathrm{II})$ in $\left[\mathrm{CO}_{2}\left(\mathrm{~N}_{3}\right)_{4}(\mathrm{TPOM})\right]_{n}$	39
(1-17)	X-ray crystallography of $\left[\mathrm{Zn}_{6}(\mathrm{IDC})_{4}(\mathrm{OH})_{2}(\mathrm{Hprz})_{2}\right]_{n}$	40
(1-18)	Crystal structure of [$\left.\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{MIDC}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](1)$	41
(1-19)	X-ray crystallography of $\left[\mathrm{Cu}^{1} \mathrm{Cu}^{\prime \prime} \mathrm{Br}_{2}(\mathrm{Hm}\right.$ $\left.\mathrm{dtc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]_{n}(1)$	42
(1-20)	Crystal structure of $\left[\mathrm{Co}_{3}(\mathrm{pybz})_{2}(\mathrm{pico})_{2}\right]_{n}$	42
(1-21)	X-ray crystallography of [$\mathrm{Ni}(\mathrm{cpna})($ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$	43
(1-22)	X-ray crystallography of $\left[\mathrm{Cu}_{2}(\mathrm{PyPzCA})_{2}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(1)$	44

(1-23)	The X-ray crystallography of $\left[\mathrm{Zn}(\mathrm{dpds})\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}\right]_{n}$	45
(1-24)	The X-ray crystal structure of 2-D Cd(II) complex	45
(1-25)	Molecular crystal structure of Co(II) complex	46
(1-26)	The coordination environment of the $\mathrm{Cd}(\mathrm{II})$ ion in complex 1	47
(1-27)	X-ray structure of complex 1	48
(1-28)	Molecular structure of complex (1)	48
(1-29)	X-ray crystallography of complex (1)	49
(1-30)	The chemical structure of $1,1^{`}$-dimethyl-4,4'-bipyridinium and its dichloride salt	50
(3.1)	X-ray crystallography of $\left[\mathrm{Mn}_{2}(\right.$ bcpe $\left.)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	71
(3.2)	IR spectrum of ethyl chloroacetate	74
(3.3)	IR spectrum of 4,4-dipyridyl	74
(3.4)	IR spectrum of L^{1}	74
(3.5)	IR spectrum of ethyl chloroformate	75
(3.6)	IR spectrum of L^{2}	75
(3.7)	IR spectrum of ethyl chloropropionate	76
(3.8)	IR spectrum of L^{3}	76
(3.9)	IR spectrum of ethyl chlorobutyrate	77
(3.10)	IR spectrum of L^{4}	77
(3.11)	IR spectrum of trimethylen-4,4-dipyridin	79
(3.12)	IR spectrum of L^{5}	79
(3.13)	Electronic spectrum of L^{1}	82
(3.14)	Electronic spectrum of L^{2}	82
(3.15)	Electronic spectrum of L^{3}	82
(3.16)	Electronic spectrum of L^{4}	83
(3.17)	Electronic spectrum of L^{5}	83
(3.18)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of L ${ }^{1}$	86
(3.19)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{1}	87
(3.20)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{1}	88
(3.21)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of L^{2}	89
(3.22)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{2}	90
(3.23)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{2}	91
(3.24)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of L^{3}	92
(3.25)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{3}	93
(3.26)	Dept ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{3}	94
(3.27)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of L^{4}	95

(3.28)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{4}	96
(3.29)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{4}	97
(3.30)	${ }^{1} \mathrm{H}$ NMR spectrum of L ${ }^{5}$	98
(3.31)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{5}	99
(3.32)	DEPT ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{5}	100
(3.33)	$\mathrm{ES}(+)$ mass spectrum of L^{1}	104
(3.34)	The accurate ES (+) mass spectrum of L^{1}	105
(3.35)	El (+) mass spectrum of L^{2}	106
(3.36)	$\mathrm{ES}(+)$ mass spectrum of L^{3}	108
(3.37)	The accurate ES (+) mass spectrum of L^{1}	108
(3.38)	$\mathrm{ES}(+)$ mass spectrum of L^{4}	110
(3.39)	$\mathrm{ES}(+)$ mass spectrum of L^{5}	111
(3.40)	$\left[\mathrm{Cr}\left(\mathrm{L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	125
(3.41)	$\left[\mathrm{Mn}\left(\mathrm{L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	126
(3.42)	$\left[\mathrm{Fe}\left(\mathrm{L}^{1}\left(\mathrm{~N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}\right.$	126
(3.43)	IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	126
(3.44)	IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	127
(3.45)	IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	127
(3.46)	IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	127
(3.47)	IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	128
(3.48)	IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	128
(3.49)	IR spectrum of [$\left.\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	133
(3.50)	IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	133
(3.51)	IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	133
(3.52)	IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\left(\mathrm{~N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}\right.$	134
(3.53)	IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	134
(3.54)	IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	134
(3.55)	IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	135
(3.56)	IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	135
(3.57)	IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}\left(\mathrm{L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	135
(3.58)	IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	140
(3.59)	IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	140
(3.60)	IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	141
(3.61)	IR spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	141
(3.62)	IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	141
(3.63)	IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	142
(3.64)	IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	142
(3.65)	$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	142
(3.66)	$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	143
(3.67)	IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	147
(3.68)	IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	147

(3.69)	IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	147
(3.70)	IR spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	148
(3.71)	IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	148
(3.72)	IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	148
(3.73)	IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	149
(3.74)	IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	149
(3.75)	IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	149
(3.76)	IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	152
(3.77)	IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	152
(3.78)	IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	153
(3.79)	IR spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	153
(3.80)	IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	153
(3.81)	IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	154
(3.82)	IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	154
(3.83)	IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	156
(3.84)	IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	156
(3.85)	Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ complex	158
(3.86)	Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	159
(3.87)	Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	159
(3.88)	Electronic spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	160
(3.89)	Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	160
(3.90)	Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	161
(3.91)	Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	161
(3.92)	Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	162
(3.93)	Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	162
(3.94)	Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex	164
(3.95)	Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	165
(3.96)	Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	165
(3.97)	Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	166
(3.98)	Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	166
(3.99)	Electronic spectrum of [$\left.\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	166
(3.100)	Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	167
(3.101)	Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	167
(3.102)	Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	168
(3.103)	Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ complex	169
(3.104)	Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$ complex	170
(3.105)	Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	170
(3.106)	Electronic spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	171
(3.107)	Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	171

(3.108)	Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	171
(3.109)	Electronic spectrum of [$\left.\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	172
(3.110)	Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	172
(3.111)	Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	173
(3.112)	Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ complex	174
(3.113)	Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex	175
(3.114)	Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	175
(3.115)	Electronic spectrum of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	176
(3.116)	Electronic spectrum of [$\left.\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	176
(3.117)	Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	176
(3.118)	Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	177
(3.119)	Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex	177
(3.120)	Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	178
(3.121)	Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex	179
(3.122)	Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	179
(3.123)	Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ complex	180
(3.124)	Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	180
(3.125)	Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	181
(3.126)	Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	181
(3.127)	Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	182
(3.128)	Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(L^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	182
(3.129)	Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex	182
(3.130)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of [$\left.\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	185
(3.131)	${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum} \mathrm{in} \mathrm{DMSO-d6} \mathrm{of}\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	186
(3.132)	DEPT ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum} \mathrm{of}\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ in DMSO-d6	187
(3.133)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	188
(3.134)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	189
(3.135)	${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	190
(3.136)	${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 for [$\left.\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	191
(3.137)	Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complexes	194
(3.138)	Mass spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complexes	196
(3.139)	Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complexes	198
(3.140)	Mass spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complexes	200
(3.141)	Mass spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complexes	202
(3.142)	Mass spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complexes	204
(3.143)	TGA, DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	207
(3.144)	DSC thermogram of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	207
(3.145)	TGA, DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	208

(3.146)	DSC thermogram of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	209
(3.147)	TG thermograms of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	210
(3.148)	TG-DTG thermograms of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	210
(3.149)	DSC thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$	211
(3.150)	TGA thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	212
(3.151)	TG-DTG thermograms of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	212
(3.152)	DSC thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	212
(3.153)	TGA,DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	214
(3.154)	DSC of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$	214
(3.155)	TGA, DTG and DTA thermograms of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	215
(3.156)	DSC thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	216
(3.157)	TGA thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	217
(3.158)	TGA-DTG thermograms of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	217
(3.159)	DSC thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	217
(3.160)	TGA thermogram of L^{4} ligand in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	218
(3.161)	TG-DTG thermograms of L^{4} ligand in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	218
(3.162)	DSC thermogram of L^{4} ligand in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	219
(3.163)	TGA,DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	220
(3.164)	DSC thermogram of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	220
(3.165)	TGA thermogram of [$\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}$] complex in nitrogen at	221

	the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$	
(3.166)	TG-DTG thermograms of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	222
(3.167)	DSC thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	222
(3.168)	TGA thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	223
(3.169)	TG-DTG thermograms of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	223
(3.170)	DSC thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$	224
(3.171)	TGA thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$	225
(3.172)	TG-DTG thermograms of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	225
(3.173)	DSC thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$	226
(3.174)	TGA,DTG and DTA thermograms of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	227
(3.175)	DSC thermogram of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$	228
(3.176)	Schematic diagram of Evans's balance	231
(3.177)	The proposed polymeric structure of complexes	268
(3.178)	The proposed molecular structure of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	270
(3.179)	The proposed molecular structure of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	271
(3.180)	Proposed molecular structure of [$\left.\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	272
(3.181)	The proposed molecular structure of $\left[\mathrm{CO}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	273
(3.182)	The proposed molecular structure of [$\left.\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	274
(3.183)	The proposed molecular structure of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	275
(3.184)	The proposed molecular structure of [$\left.\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	276
(3.185)	The proposed molecular structure of [$\left.\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	277
(3.186)	The proposed molecular structure of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	278
(3.187)	The proposed molecular structure of [$\left.\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	279
(3.188)	The proposed molecular structure of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	280
(3.189)	The proposed molecular structure of $\mathrm{Na}_{2}\left[\mathrm{Ag}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	281

List of Scheme

	Scheme	Page
(3.1)	Synthesis route of ligand $\mathrm{L}^{1}-\mathrm{L}^{5}$	71
(3.2)	The structure of carboxylate syn-syn and syn-anti	85
(3.3)	The fragmentation pattern of L^{1}	105
(3.4)	The fragmentation pattern of L^{2}	107
(3.5)	The fragmentation pattern of L	109
(3.6)	The fragmentation pattern of L	110
(3.7)	The fragmentation pattern of L^{5}	112
(3.8)	The synthesis route of the complexes	113
(3.9)	The fragmentation pattern of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	195
(3.10)	The fragmentation pattern of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	197
(3.11)	The fragmentation pattern of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	199
(3.12)	The fragmentation pattern of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	201
(3.13)	The fragmentation pattern of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	203
(3.14)	The fragmentation pattern of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	205
(3.15)	Carboxylate binding mode for $\operatorname{divalent~metal~}$ ions	250
(3.16)	Optimised structures of the carboxylate moieties interacting with Fe ${ }^{2+}$	252

List of Abbreviation

1D	One dimensional
2D	two dimensional
3D	three dimensional
MOF	Metal organic framework
FM	Ferromagnetic
AF	Anti-ferromagnetic
EO	End-on
EE	End to End
SCMs	Single molecule chain magnets
XD	Paramagnetic molar susceptibility
Xp	Temperar sure independent
paramagnetism	
TIP	Curie temperature
TC	Neel temperature
TN	Low spin
LS	High spin
HS	N,N-bis(4-methoxy benoyl)-
diethylenetriamine	
DMdt	N,N-dimethyl formamide
MMF	1-mehylbenzotriazole
Pebta	Pyrazine
Pyzc	Pyrazine-2-carboxylate
Bpa	1,2-bis-(4-pyridyl)ethane
Prz	Piperazine
MIDC	2-methylimidazole-4,5-dicarboxylic
TGA	acid
FTIR	Thermal gravimetric analysis
SPM NPs	Super paramagnetic nanoparticles
MRI	Magnetic resonance imaging
MTX	Methotrexate
SCO	Spin crossover
MCE	Magneto calorimetric effect

(1.1) General Introduction

The development of self-assembled polymeric species based on transition metal compounds and multidentate ligands are of current interest, due to their potential applications in supramolecular and environmental chemistry and medicine ${ }^{(1-}$ ${ }^{5 .)}$. One approach in supramolecular chemistry has been to develop coordination polymers with unique properties. The nature of the metal and the coordination fashion of the ligands has been facilitated to develop different synthetic strategies in design and synthesis of supramolecular structures with potential applications in photochemistry, molecular magnetism ${ }^{(6-8)}$, catalysis ${ }^{(9-11)}$, optoelectronic devices and clean energy including gas sorption and carbon capture ${ }^{(12-14)}$.

The development in the design and synthesis of molecular magnetic materials has become an interested field in creating a number of new magnets. In particular, the developments of low-dimensional magnetic features one-dimensional (1D), or twodimensional (2D), such as metamagnetism, bridge the gap between paramagnetism and three-dimensional (3D) long-range magnetic ordering ${ }^{(15-17)}$. Coordination chemistry provides an effective approach to design and prepare these lowdimensional magnetic systems when magnetic transition metal ions are assembled into coordination polymers by employing suitable ligands. The key to design such materials is to select short bridging ligands that can effectively mediate the magnetic coupling and construct novel structures ${ }^{(18)}$. The most used short bridging ligands include the cyanide, dicyanamide, carboxylate and azide.

The carboxylate ligands are interesting versatile species that have been used in the development of several directions in coordination chemistry. These approaches cover the preparation of building blocks of metal organic framework (MOFs) and to study the phenomenon of the antiferromagnetic interaction. The characteristic porous properties of the MOFs compounds allowed them to be used in the applications of
hydrogen storage systems and carbon capture. On other hand, azide species is widely used in the coordination chemistry. The azide moiety can link metal ions in different fashion including a bridging mode. Depending on the coordination mode, complexes with particular structures and magnetic properties of the azido species are reported ${ }^{(19,}$ ${ }^{20}$. It is well documented that the magnetic exchange mediated via an azido bridge can be ferro- or antiferromagnetic, depending on the bridging mode and bonding parameters. The structures and thus the magnetic properties of metal azido systems are sensitive to the coligands employed in the system.

Because on these facts, the design of self-assembled polymeric species containing mixed azido and carboxylato bridges are an interested area of research. In this work, we have explored the influence of using the combination of azido and zwitterionic dicarboxylato bridges ligands on the structures and magnetic properties of polymeric self-assembled species. Moreover, the impact of varying the length of the carboxylate ligands and introducing a spacer, the flexible with easy bend or rotational, are used for the design and construction of the self-assembled species ${ }^{(21)}$ 22)

(1.2) Introduction

The current expansion in the number of porous coordination polymers reported has been fuelled primarily through a combination of new organic linker design and the realisation of many possible modes from the connection of these units by metals and metal clusters ${ }^{(23-27)}$

These interesting materials have a range of applications including light harvesting and magnetic properties. The design and synthesis of magnetic coordination polymers with peculiar structure and potential application have become a focus of intense research activities in the fields of coordination and material chemistry ${ }^{(28)}$. The key to designing such material is based on the type of the bridging ligand that can effectively mediate the magnetic interactions and construct novel structures ${ }^{(29)}$. Self-assembly of coordination polymers is influenced by medium, pH , temperature, the nature of metal ions, coordination geometry, stereochemistry, and number of coordination donors provided by ligands ${ }^{(30-32)}$. A designed synthesis of electro-conductive materials, in particular, has been a great challenge in coordination polymers, both for fundamental interests as a d- π system ${ }^{(33)}$ and for applications in new optoelectronic devices such as electroluminescent devices, thin-film transistors, and solar cells. However, only a few studies on the carrier transport properties of electro-conductive coordination polymers ${ }^{(34)}$ have been conducted due to synthetic challenges. The field of molecular magnetism has attracted much attention and seen great progress in recent years ${ }^{(35)}$. The systems studied so far consist of extended coordination networks or discrete polynuclear aggregates, in which paramagnetic metal ions are held together by short bridging ligands allowing for sufficiently strong magnetic exchange ${ }^{(36-38)}$. As a bridging ligand, an azido anion displaying multiple bridging modes and various magnetic exchange pathways between metal ions has been well used in the preparation of molecular magnetic materials ${ }^{(39)}$. These include
one (1D)-, two dimensional- (2D), or three-dimensional (3D) species with specific topologies ${ }^{(40,41)}$.

In recent years, the metal azido derivatives have provided several excellent structures and magnetic properties such as ferromagnetic with bridging azido moiety in the end-on fashion (FM EO,) chains ${ }^{(42,43)}$, anti-ferromagnetic with bridging azido moiety in the end-to-end fashion (AF EE) chains ${ }^{(44)}$, and alternating (FM/AF) systems ${ }^{(45)}$ due to alternating EE/EO bridges. 2D layers with EE bridges, AF coupling ${ }^{(46)}$ and also alternating EE/EO systems ${ }^{(47)}$ which magnetically show alternating FM/AF coupling have been characterised. Regular 3D AF compounds have also been described with only EE azido bridges ${ }^{(48)}$.

Furthermore, the carboxylate group can also efficiently transmit magnetic exchange. Therefore, combining azide and carboxylate moieties in one system is an interesting approach for constructing new materials and modulating magnetic behaviours. It has been observed that the simultaneous azide and carboxylate bridges in some systems can transmit FM interactions between neighbouring metal ions ${ }^{(49-51)}$. The observations are particularly interesting for the design of molecular ferromagnets and single molecule/chain magnets (SCMs), perhaps because of the mismatch between azide and dianionic dicarboxylates in the competition to bind metal ions and to compensate the charge of the metal ions. Magnetic properties of these polymers strongly depend on the geometry and electronic structure of both metal centres and organic carboxylate bridge ${ }^{(52)}$. The employment of neutral dicarboxylates as ligands and / or combining to 4,4`-dipyridine and 4,4`-trimethlendipyridine has the potential coordination sites involving both nitrogen of dipyridine and the carboxylate oxygen ${ }^{(53)}$. It can coordinate in a variety of coordination modes ${ }^{(54,55)}$, and provide several possibilities in creating supramolecular architectures through hydrogen bonds and $\pi-\pi$ interactions; it has been widely used to synthesise mononuclear ${ }^{(56)}$, dinuclear ${ }^{(57-59)}$, trinuclear ${ }^{(60,61)}$, and coordination polymeric compounds ${ }^{(62-64)}$. Most of these compounds were prepared using hydrothermal methods ${ }^{(55,56)}$, but several were synthesised by conventional solution methods ${ }^{(65)}$. Recently, many metal azide clusters
(usually with co-bridges), including a few single-molecule magnets, have been reported ${ }^{(66,67)}$. Metal complexes with supramolecular features in the structure have recently aroused much interest as materials with potentially new electronic, optical, magnetic, or catalytic properties. Coordination polymers have intriguing structures and wide potential applications as functional materials ${ }^{(68-72)}$.

(1.3) Magnetic properties of macro- and micromolecules

Over the years, the family of compounds that exhibited magnetic behaviour continuously grew and many of the earlier magnetic materials are based on oxides ${ }^{(73)}$. During the last two decades or so, many new compounds that exhibit exotic magnetic behaviours are reported. These include, single molecule magnets ${ }^{(74)}$, purely organic magnets ${ }^{(75)}$, dilute semiconductor ${ }^{(76)}$, etc. Along with these discoveries, some important magnetic phenomena, viz. magnetic frustration ${ }^{(77)}$, spin chirality ${ }^{(78)}$, spincrossover ${ }^{(79)}$, etc. are explored. In addition, there is a constant demand to discover materials that would combine magnetism along with other properties such as conductivity, ferroelectricity, etc. and such solids are classified as multiferroic materials ${ }^{(80)}$.

Diamagnetism is a property of all compounds that, arises with the interaction of paired electrons with an applied magnetic field. These compounds are weakly repelled by the applied field due to the orbital motion of electrons induced by the external field which creates an opposing magnetic field. When these materials are subjected to a magnetic field, they reduce the density of the field lines around them or, for a non homogenous field, move to regions of lower field strength (Figure $1.1)^{(81)}$.

Diamagnetic molar susceptibilities $\left(\chi_{\mathrm{D}}\right)$ are negative and typically range from 1 to $100 \times 10^{-6} \mathrm{emu} / \mathrm{mol}$. They are also independent of field strength and temperature ${ }^{(81)}$. Paramagnetism is exhibited by materials containing unpaired electrons which are weakly attracted to an externally applied magnetic field. When
placed in a magnetic field, these materials concentrate the density of magnetic field lines around them or, in the case of a non-homogenous field, move to regions of higher field strength, Figure (1. 1).

Figure (1. 1) Symbolic illustration of how diamagnetic and paramagnetic materials interact with an applied magnetic field

In the presence of an external field, the individual spins align with the applied field; however, the individual spins become disordered and do not interact with each other magnetically when the external field is removed, Figure (1. 2).
a.

b.

Figure (1. 2): (a) Individual spins randomly oriented in the absence of an external magnetic field; (b) when a strong enough external magnetic field is applied; (c) when the external field is removed, the individual spins return to a random orientation with no interaction.

Paramagnetic molar susceptibilities $\left(\chi_{\mathrm{P}}\right)$ are positive and typically temperature dependent. Temperature independent paramagnetism (TIP) may exist in systems where there is a mixing of the ground (singlet) state with excited states that are not thermally populated. However, being approximately $10^{-4} \mathrm{emu} / \mathrm{mol}$, TIP is significantly smaller than temperature dependent paramagnetism at low temperatures ${ }^{(81)}$.

Recently, a new class of solids have been prepared by combining the coordination constraints of the central metal atoms and the functionality of the organic ligands and are known as metal-organic framework (MOF) compounds ${ }^{(82,83)}$. These compounds offer reasonable thermal stability (typically $\sim 400^{\circ} \mathrm{C}$) and porosity ${ }^{(82,84)}$. When the central metal ion is a transition metal, preferably the 3d series, it might be expected to observe magnetic behaviour that combines the porous nature of the solid. A magnetic porous solid could find interesting applications including carbon capture and air separation ${ }^{(85)}$.

The interaction of spins with neighbouring spins in a cooperative fashion where the direction of one spin influences the directions of its neighbouring spins represent a short-ranged and only important between nearest neighbours. However, in bulk they can lead to long-range magnetic ordering without an applied field below a certain critical temperature. A few basic types of bulk magnetic properties will be defined, including ferromagnetism, antiferromagnetism and spin crossover.

(1.3.1) Ferromagnetic materials

In ferromagnetic materials the spins align in the same direction below a certain critical temperature in the absence of an external magnetic field. In this type of material, the individual spins are ferromagnetically coupled to their neighbouring spins meaning that the direction of one spin favours the parallel alignment of the neighbouring spin(s). A ferromagnet consists of spins that are all aligned parallel,

Figure (1.3 a, b). Above the critical temperature of ferromagnetic materials, called the Curie temperature (TC), they typically behave as paramagnets since the surrounding thermal energy is strong enough to overcome the strength of the ferromagnetic coupling ${ }^{(81)}$.

(1.3.2) Antiferromagnetic materials

In antiferromagnetic materials, the spins of unpaired electrons align in an antiparallel fashion in the absence of an external magnetic field and below a certain critical temperature called the Néel temperature (TN) Figure (1.3c). In antiferromagnets, the direction of an individual spin causes neighbouring spin(s) to align in an antiparallel direction. This is referred to as antiferromagnetic coupling. Above the $T N$, antiferromagnets typically behave as paramagnets, like ferromagnetic materials ${ }^{(81)}$.
a.

b.

Figure (1.3) (a) (b) Ferromagnetic, (c) antiferromagnetic

(1.4) Spin crossover in transition metal compounds (SCO)

Spin-crossover compounds represent unique class of materials with potential applications in optical switches, sensors or memory devices ${ }^{(86-88)}$ involving transition metal ions linked with organic ligands ${ }^{(89)}$. These systems show a sharp transition triggered by variation of temperature, pressure or by light irradiation between a lowspin (LS) ground state and a high-spin (HS) excited state with a thermal hysteresis
loop ${ }^{(90)}$. Spin crossover can be induced photochmically in solution, any d-d transition, the resultant excited electronic state only has lifetime around $10^{2} \mathrm{~ns}{ }^{(91)}$. The magnetic isomers of these compounds do not have different chemical structures. They reflect the ability of the same molecule to adopt one of two different electronic states, with different distribution of electronic in frontierd orbitals. The high spin state contains the maximum possible number of unpaired d-electrons, and is favoured in ligand field $\Delta_{\text {oct }}$ that is weaker than the energy required overcoming the electronic repulsion between pairs of electrons in the same d-orbital (the pairing energy). The converse is true for the low spin state. In an intermediate ligand field, the energy difference between these two states can be so small that an external stimulus will induce a transition from one to the other. Most commonly this will be change in temperature, occurring at a point where the higher vibration and configuration entropy of the high spin state overcomes the more favourable enthalpy of the stronger M-L bonds in the low spin form ${ }^{(92)}$. In addition, to their different magnetic moments, the spin states for the particular metal compounds can often be distinguished from their crystallographic ML bond lengths, which can be up to 10% shorter in the low spin form ${ }^{(93)}$. The spin crossover occurs when the individual spin in the material switch cooperatively, rather than independently of each other. Spin crossover in solution proceeds gradually with changing temperature, typically occurring over a temperature range spanning 150 K . A much greater variety of thermal; spin-transitions is occurred in the solid state, ranging from gradual to abrupt transitions that are complete within a temperature range of 1 or $2 \mathrm{~K}^{(94)}$. Discontinuous or incomplete transitions are also well-known, where fractions of the spin centres in a solid undergo spin crossover under different conditions from each other. Discontinuities in spin-crossover can reflect crystallographic phase changes, or order/disorder phenomena in the crystal, but are most common in materials containing two or more unique spin sites, which undergo spin crossover (or not) independently of each other. Particularly important shapes are dinuclear iron (II) molecules, whose iron atoms may undergo spin-crossover simultaneously (i.e. high/high \rightarrow low/low ${ }^{(95)}$ or consecutively (high/high \rightarrow high/low
\rightarrow low/low) ${ }^{(96)}$ on cooling. Alternatively, the compound may stop half-way $(\text { high/high } \rightarrow \text { high/low })^{(97)}$.

The great sensitivity of the electronic properties of spin-crossover compounds to relatively minor and very diverse external stimuli makes them potential candidates for a number of practical applications within molecule-based materials ${ }^{(98,99)}$, for instance as molecular switches or information storage devices ${ }^{(100)}$. As a consequence of the energy splitting of their d orbitals in a ligand field ${ }^{(101)}$, into the $t_{2} g$ and eg sets, octahedral coordination compounds of transition metal ions with electronic configurations d^{4} to d^{7} may exist in either the high-spin (HS) or the low-spin (LS) state, Figure (1.4) illustrates the iron(II) and iron(III) cases ${ }^{(102)}$. This spin state is influenced by the nature of the ligand field surrounding the metal ion. In weak fields, HS is the ground state, corresponding to the highest possible spin multiplicity; therefore, the d electrons are distributed over the; $t_{2} g$ and eg sets. On the contrary, strong fields stabilise the LS state with minimum multiplicity; in this case, the $t_{2} g$ set is completely occupied before electrons are added to the eg set, Figure (1. 4). The energy gap between these orbitals varies subject to the ligands used to generate the metal coordination compounds. If the appropriate energy gap is achieved, i.e. when favourable ligand field strength is realised ${ }^{(103,104)}$, then the compound may pass from one configuration to the other (spin crossover) by the application of an external stimulus, like temperature, pressure, or light ${ }^{(105)}$.

Where $\mathrm{h} v=$ light, $\mathrm{T}=$ temperature, $\mathrm{P}=$ pressure
Figure (1.4) Schematic representation of the two possible spin states for iron(II) and iron(III) coordination compounds in an octahedral environment

(1.5) Bridging systems

(1.5.1) Azido bridging

It is well-known that an azido anion can link metal ions in $\mu-1,1$ (end-on, EO), $\mu-1,3$ (end-to-end, EE), $\mu-1,1,3, \mu-1,1,1$ or still other modes, yielding various discrete, species with specific topologies, Figure (1. 5): ${ }^{(40.41)}$

$\mu-1,3-N_{3}$

$\boldsymbol{\mu}-\mathbf{1 , 1}-\mathbf{N}_{3}$

$\mu-1,1,3-N_{3}$

$\mu-1,1,1-N_{3}$

Figure (1. 5) Structures of $\boldsymbol{\mu - 1 , 3}$ (end-end,), $\mu-1,1$ (end-on), $\mu-1,1,3, \mu-1,1,1$

In 2006 Liu and co-workers ${ }^{(106)}$ reported the synthesis and characterisation of a new compound $\left[\mathrm{Ni}\left(\mu-\mathrm{N}_{3}\right)(\text { bmdt })\left(\mathrm{N}_{3}\right)\right]_{n}(\mathrm{DMF})_{n}$ (bmdt $=N, N^{\square}$-bis(4-methoxylbenzyl)diethylenetriamine, $\mathrm{DMF}=N, N$-dimethylformamide). The complex was characterised by X-ray structure and magnetic properties. The structure of the complex contains infinite $1 \mathrm{D} \mathrm{Ni}^{2+}$ chains bridged by single EE $\mathrm{N}_{3}{ }^{-}$with isolated solvent DMF molecules among the chains; Figure (1.6). There is only one unique Ni^{2+} ion in the structure, coordinated by six nitrogen atoms, three of which are from the ligand (bmdt) and the rest from two bridging trans azides and one terminal azide. The coordination environment of Ni can be considered as a tetragonally compressed octahedron.

Figure (1.6) Crystal structure of $\left[\mathrm{Ni}\left(\boldsymbol{\mu}-\mathbf{N}_{3}\right)(\mathrm{bmdt})\left(\mathrm{N}_{3}\right)\right]_{n}(\mathrm{DMF})_{n}$

In 2009 Boudalis and co-workers ${ }^{(107)}$ reported new polymeric compounds contain a trinuclear copper clusters $\left[\mathrm{Cu}_{3}\left(\mathrm{~N}_{3}\right)_{6}(\mathrm{DMF})_{2}\right]_{n}(1)$ and $\left[\mathrm{Cu}_{3}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{Mebta})\right] n$ (2) (where; Mebta = 1-methylbenzotriazole). The reaction of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with two equivalents of NaN_{3} in DMF gave complex 1 in a 2D coordination polymer possessing $\mu 1,1,1$ and $\mu 1,1,3$ azido ligands. The coordination spheres about Cu in (1), Figure (1. 7), and (2) are highly elongated octahedral, due to the Jahn-Teller effect. Based on the $\mathrm{Cu}^{\mathrm{II}}{ }_{3}$ repeating unit, the complexes contain 1D ferromagnetic chain.

Figure (1.7) Crystal structure of $\left[\mathrm{Cu}_{3}\left(\mathrm{~N}_{3}\right)_{6}(\mathrm{DMF})_{2}\right]_{n}$

In 2009 Papaefstathiou and co-workers ${ }^{(108)}$ reported the formation of the hexanuclear cluster $\left[\mathrm{Cu}_{6}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{4}\left(\mathrm{~N}_{3}\right)_{2}\left\{(\mathrm{py})_{2} \mathrm{CO}_{2}\right\}_{2}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OH}) \mathrm{O}\right\}_{2}\right]$ (1), and the coordination polymers $\left[\mathrm{Cu}_{4}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{2}\left(\mathrm{~N}_{3}\right)_{4}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}\right\}_{2}\right]_{n}$ (2) and $\left[\mathrm{Cu}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{2}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OMe}) \mathrm{O}\right\}\right]_{\mathrm{n}}$ (3) from the reaction of the combination of di-2-pyridyl ketone (py) ${ }_{2} \mathrm{CO}: \mathrm{PhCO}_{2}{ }^{-}: \mathrm{N}_{3}{ }^{-}$ligands in $\mathrm{Cu}^{\text {II }}$ ion solution. The structural type (cluster versus polymer) depends on the reaction solvent. Cluster 1 is antiferromagnetically coupled with an $S=0$ ground state. These complexes were characterised by single crystal X-ray, elemental analysis, and magnetic susceptibility and FTIR spectroscopy. The coordination about Cu in (1), Figure (1.8), is slightly to moderately square pyramidal; the coordination polyhedron of Cu in (2) is very distorted and can be considered either as a square pyramid or as a trigonal bipyramid.

Figure (1.8) Molecular structure of $\left[\mathrm{Cu}_{6}\left(\mathrm{O}_{2} \mathbf{C P h}\right)_{4}\left(\mathrm{~N}_{3}\right)_{2}\left\{(\mathrm{py})_{2} \mathrm{CO}_{2}\right\}_{2}\left\{(\mathrm{py})_{2} \mathrm{C}(\mathrm{OH}) \mathrm{O}\right\}_{2}\right]$

In 2010 Bu et al. ${ }^{(109)}$ reported the synthesis of new manganese complexes from the reactions of $\mathrm{Mn}^{\mathrm{II}}$ ions with azido ligands in the presence of nicotinic/isonicotinic acids. Two manganese(II) azido coordination polymers, $\left[\mathrm{Mn}_{3}\left(\mathrm{~L}^{1}\right)_{2}\left(\mathrm{~N}_{3}\right)_{4}\right]_{\mathrm{n}} \cdot \mathrm{nH}_{2} \mathrm{O}$ (1) and $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{3}\right]_{\mathrm{n}}(2)$, where $\mathrm{L}^{1}=$ nicotinate and $\mathrm{L}^{2}=$ isonicotinate, were reported. The X-ray molecular structure of (1) consists of 2D azido- $\mathrm{Mn}^{\text {II }}$ planes, while complex (2) consists of a 3 D azido- $\mathrm{Mn}^{\text {II }}$ structure with L^{2} as the co-ligand. Magnetic
susceptibility measurements reveal dominant antiferromagnetic coupling existing in 1 and 2. The environment around the $\mathrm{Mn}^{\mathrm{II}}$ atom in 1 is octahedral; Figure (1.9).

Figure(1.9) X-ray crystallography of $\left[\mathrm{Mn}_{3}\left(\mathrm{~L}^{1}\right)_{2}\left(\mathrm{~N}_{3}\right)_{4}\right]_{n} \cdot \mathrm{nH}_{2} \mathrm{O}$

Saha et al. ${ }^{(110)}$ reported the fabrication of Cu-polymer complex. The reaction of ethylenediamine with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ and an excess of NaN_{3} in a mole ratio 1:2:4 lead to the formation of copper-azido based polymer $\left[\mathrm{Cu}_{4}\left(\mathrm{~N}_{3}\right)_{8}(\mathrm{en})_{2}\right]_{\mathrm{n}}$ (1), which has been characterised by elemental analyses, IR spectroscopy, X-ray single-crystal and variable temperature magnetic study. X-ray crystal structure determination of 1 reveals that the structure consists of 1D chains of a centrosymmetric tetranuclear copper(II)-azido cluster, connected through double azido end-to-end bridges. Two different coordination spheres around Cu ions are observed, Figure (1. 10). The Cu 2 possesses an octahedral coordination environment, while Cu1 possesses a distorted square pyramidal coordination environment. Variable temperature magnetic studies (between 2 and 300 K) suggest dominant antiferromagnetic interactions in this complex.

Figure(1.10) Crystal structure of $\left[\mathrm{Cu}_{4}\left(\mathrm{~N}_{3}\right)_{8}(\mathrm{en})_{2}\right]_{\mathrm{n}}$

In 2010 Mukherjee et al. ${ }^{(111)}$ reported the crystal structures and magnetic properties of five transition metal-azido complexes with two anionic [pyrazine-2carboxylat (pyzc) and p-amino- benzoate (paba)], two neutral [pyrazine (pyz) and pyridine (py)] co-ligands. All complexes were synthesised by solvothermal methods. $\left[\mathrm{Co}_{2}(\mathrm{pyzc})_{2}\left(\mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (1) complex is a 1D, Figure (1. 11), while $\left[\mathrm{MnNa}(\mathrm{pyzc})\left(\mathrm{N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(2)$ complex is a 3 D and $\left[\mathrm{Mn}_{2}(\mathrm{paba})_{2}\left(\mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(3)$ is a 2D sheet. Complexes found to be antiferromagnetically coupled. The coordination environment of compound 1,2 and 3 is octahedral, but elongated octahedral for 4 and 5.

Figure (1.11) Crystal structure of $\left[\mathrm{Co}_{2}(\mathrm{pyzc})_{2}\left(\mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}(\mathbf{1})$

In 2011 Chen and co-workers ${ }^{(112)}$ prepared a linear $\mathrm{Cu}^{\text {II }}$ coordination polymer $\left[\mathrm{CuCl}_{2} \mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2} \mathrm{~L}\right]$ (where; $\mathrm{L}=2$-[(4-phenyl-5H-1, 2, 3-triazole) methyl]pyridine). The crystal structure of the complex is found that the $\mathrm{Cu}^{\text {II }}$ cations are bridged with four types of ligand or anions, 1,2,3-triazole group in L, two different end-on azides and a tri-coordinated chloride anion, Figure (1.12). The $\mathrm{Cu}^{\mathrm{II}}$ centres exhibit two different coordination geometries in the $\mathrm{Cu}^{\text {II }}$ complex. One $\mathrm{Cu}^{\text {II }}$ cation adopts a distorted octahedral geometry and the other adopts a distorted square pyramidal geometry.

Figure (1.12) Crystal structure of $\left[\mathrm{CuCl}_{2} \mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2} \mathrm{~L}\right]$

In 2011 Liu and co-workers ${ }^{(113)}$ reported the preparation of a 3D nitratebridging heterometal-azido inorganic polymer, $\left[\mathrm{Cd}_{7} \mathrm{Na}_{4}\left(\mathrm{NO}_{3}\right)_{12}\left(\mathrm{~N}_{3}\right)_{6}\right]$, from the reaction of 3 -amino-1,2,4-triazole, $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ and NaN_{3}. The complex was characterised by elemental analysis, single crystal X-ray, fluorescence and FTIR spectroscopy. The shape of the complex was face octahedrons; Figure (1.13).

Figure (1.13) X-ray crystallography of $\left[\mathrm{Cd}_{7} \mathrm{Na}_{4}\left(\mathrm{NO}_{3}\right)_{12}\left(\mathrm{~N}_{3}\right)_{6}\right]$

In 2011 Cortes and co-workers ${ }^{(114)}$ prepared and characterised two compounds $\left[\mathrm{Co}(\mathrm{NCO})_{2}(\mathrm{bpa})\right]$ (1) and $\left.\mathrm{Cu}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{bpa})\right]$ (2) with cyanate and azido moieties, where bpa= 1,2-bis(4-pyridyl)ethane. These compounds were synthesised from the reaction of $\mathrm{KNCO}, \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with 1,2-bis(4-pyridyl)ethane for (1), and using NaN_{3} instead of KNCO in (2). These compounds were characterised by X-ray diffraction measurements, FT-IR and UV-Vis spectroscopies, thermogravimetric studies, electron spin resonance (ESR) spectroscopy, and magnetic measurements. Compound $\mathbf{1}$ shows a one-dimensional (1D) structure with tetrahedral coordination sphere. Compound 2 shows a two-dimensional (2D) structure with octahedral geometry, Figure (1. 14).

Figure (1.14) Crystal structure of $\left[\mathbf{C u}\left(\mathbf{N}_{3}\right)_{2}(\mathbf{b p a})\right]$

In 2011 Sakai and co-workers ${ }^{(115)}$ reported the preparation of $\mathrm{Cu}^{\text {II }}$ polymer complexes of the general formula $\left[\mathrm{Cu}_{3}(\mathrm{Him})_{4}(\mathrm{im})_{2}\left(\mathrm{~N}_{3}\right)_{4}\right]_{n}$ by using the $\mathrm{Cu}^{\mathrm{II}}$-imidazole (Him) complex $\left[\mathrm{Cu}(\mathrm{Him})_{4} \mathrm{Cl}\right] \mathrm{Cl}$ as the starting material. X-ray analysis revealed that it possesses an in-bridged linear-chain structure consisting of alternating dinuclear units with a symmetric end-on azido-bridged $\left[\mathrm{Cu}\left(\mu 1,1-\mathrm{N}_{3}\right)_{2} \mathrm{Cu}\right]^{2+}$ core and mononuclear units. The $\mathrm{Cu}^{\mathrm{II}}$ atoms adopt square pyramidal geometries; Figure (1. 15).
(a)

Figure (1. 15) Crystal structure of $\left[\mathrm{Cu}_{3}(\mathrm{Him})_{4}(\mathrm{im})_{2}\left(\mathrm{~N}_{3}\right)_{4}\right]_{n}$

In 2012 Gao and co-workers ${ }^{(116)}$ reported the fabrication of the $\mathrm{Co}(\mathrm{II})$ coordination polymer $\left[\mathrm{Co}_{2}\left(\mathrm{~N}_{3}\right)_{4}(\mathrm{TPOM})\right]_{n}$ (where TPOM $=$ tetrakis(4pyridyloxymethylene)methane) from the reaction of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaN}_{3}$ and TPOM in a mixed solvent of ethanol and water. The complex exhibits a three dimentional framework in which the Co (II) chains with alternating double (EO) and (EE) azido bridges are linked by the tetrapyridyl ligand in a bowl-shaped conformation. The complex was characterised by X-ray crystallography Figure (1.16), variable temperature magnetic susceptibility and IR spectroscopy. Magnetic studies demonstrated the alternating double (EO) and double (EE) azido bridges induced ferro- and antiferromagnetic interaction. The Co atom adopts octahedral geometry.

Figure (1. 16) Coordination environment about $\mathrm{Co}(\mathrm{II})$ in $\left[\mathrm{Co}_{2}\left(\mathrm{~N}_{3}\right)_{4}(\mathrm{TPOM})\right]_{\mathrm{n}}$

(1.5.2.) Carboxylate and another bridging moieties

It is well known that the shorter and more conjugated the binding bridges between the metal centres are, the more efficient the magnetic interactions and overlap between them. It is preferable to have bridges such as $\mathrm{M}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{M}$ or $\mathrm{M}-$ O-M while using the carboxylates as the linker between the metal centres. For compounds having $-\mathrm{M}-\mathrm{O}-\mathrm{M}-$ connectivity, the $\mathrm{M}-\mathrm{O}-\mathrm{M}$ angle becomes an important parameter in the magnetic behaviour. According to the Goodenough and Kanamori postulations ${ }^{(117)}$, for ideal ferromagnetic exchange, the $\mathrm{M}-\mathrm{O}-\mathrm{M}$ angle is 90° (parallel) coupling and the Weiss constant θ is positive values. For antiferromagnetic exchange it is 180° (antiparallel) coupling and the Weiss constant θ is negative. The exchanges $\mathrm{M}-\mathrm{O}-\mathrm{M}$, generally, occur though the 2 p orbital of the oxygen and the outer d orbitals of the transition metal $\left(\mathrm{d}_{M}-\mathrm{P}_{O}-\mathrm{d}_{M}\right)$ with appropriate site and spin symmetry of the respective orbitals. In carboxylato bridges ($\mathrm{O}-\mathrm{C}-\mathrm{O}$), the exchanges occur via the 2 p orbitals of the oxygen, 2 p orbitals of the carbon and the metal d orbitals $\left(\mathrm{d}_{M}-\mathrm{p}_{O}-\mathrm{p}_{C}-\mathrm{p}_{O}-\mathrm{d}_{M}\right)$ with similar symmetry consideration of the participating orbitals. In addition, the exchanges through the carboxylato bridges also may depend on the bridging modes of the carboxylate oxygens with the transition metal within the compound. The most commonly observed bridging modes of the
carbxylate oxygen in these structures are syn-syn, syn-anti, and anti-anti arrangements. It has been observed that the carboxylate group with syn-syn and antianti bridging modes exhibit relatively stronger interaction compared to the syn-anti mode. Since the metal d orbitals are delocalised towards the oxygen 2 p orbitals of the carboxylate bridges, the oxygen 2 p orbitals would be more favourably oriented to have the maximum overlap through the syn-syn and anti-anti modes rather than in the syn-anti mode. In addition, the oxygen 2 p orbitals also overlap with the same carbon 2 p orbital through the syn-syn and the anti-anti bridging modes and with different carbon 2 p orbitals in the syn-anti bridging mode. This would result in an overlap that may not be strong for the syn-anti arrangement ${ }^{(118)}$.

In 2007 Lu et al. ${ }^{(119)}$ reported the preparation of Zn complex $\left[\mathrm{Zn}_{6}\right.$ $\left.(\mathrm{IDC})_{4}(\mathrm{OH})_{2}(\mathrm{Hprz})_{2}\right]_{n}$ from the hydrothermal reaction of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{IDC}$ and Hprz, (where; IDC= imidazole-4,5-dicarboxylate, Hprz = piperazine), and water under $180^{\circ} \mathrm{C}$ for 2 days to give pale-yellow needle-shaped crystals of Zn complex. The complex was characterised by single crystal X-ray which shows each Zn^{2+} has a five-coordinated sphere in a slightly distorted trigonal-bipyramidal coordination environment, Figure (1. 17).

Figure (1.17) X-ray crystallography of $\left[\mathrm{Zn}_{6}(\mathrm{IDC})_{4}(\mathrm{OH})_{2}(\mathrm{Hprz})_{2}\right]_{n}$

Song and co-workers ${ }^{(120)}$ synthesised and characterised a range of complexes based on the reaction of 2-methyl-imidazole-4,5-dicarboxylic acid ($\mathrm{H}_{3} \mathrm{MIDC}$) with different salts (ZnII and MnII). The $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{MIDC}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](1)$ complex is a 0-D
constructed by $\mathrm{H}_{2} \mathrm{MIDC}^{-}$and Zn centres, Figure (1. 18). However, $\left[\mathrm{Mn}(\mathrm{HMIDC})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{H}_{2} \mathrm{O}$ (2) complex displays a polymeric 1-D chiral chain structure constructed by HMIDC $^{-2}$ and Mn centres connected into a 3-D supramolecular framework with a 1-D channel. The complex $\left[\mathrm{Zn}_{3}(\mathrm{MIDC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{DMF})_{2}\right]_{0.5} \mathrm{H}_{2} \mathrm{O}(3)$ shows a 2-D puckered structure composed of MIDC $^{3-}$ and Zn . These compounds were characterized by IR, C.H.N, X-ray, TGA and fluorescence. The geometry of these compounds is octahedral.

Figure (1.18) Crystal structure of $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{MIDC}\right)_{2}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{2}\right](\mathbf{1})$

In 2010 Okubo and co-workers ${ }^{(121)}$ reported the synthesis and characterisation of mixed-valence $\mathrm{Cu}^{\mathrm{I}}-\mathrm{Cu}^{\text {II }}$ coordination polymers with one dimensional, infinitechain structures, $\left[\mathrm{Cu}_{2}^{\mathrm{I}} \mathrm{Cu}^{\mathrm{II}} \mathrm{X}_{2}(\mathrm{Hm}-\mathrm{dtc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]_{\mathrm{n}}$, where: Hmdtc $=$ hexamethylene dithiocarbamate; $\mathrm{X}=\mathrm{Br}-(1), \mathrm{I}^{-}(2)$, from the reaction of CHCl_{3} solution of $\mathrm{Cu}^{\mathrm{II}}(\mathrm{Hm}-$ $\mathrm{dtc})_{2}$ with a mixture of acetone/acetonitrile solution of $\mathrm{CuBr} . \mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$ in compound (1) and using copper fluoride in (2). These compounds were characterised by X-ray diffraction. Complex (1) consists of a mononuclear copper (II) unit $\mathrm{Cu}^{\mathrm{II}}(\mathrm{Hm}-\mathrm{dtc})_{2}$ and dinuclear copper(I) units $\mathrm{Cu}_{2}^{\mathrm{I}}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{X}_{2}$, Figure (1. 19). Magnetic studies revealed that these complexes have a relatively strong antiferromagnetic interaction. The coordination environment of Cu atoms in these complexes is square planar for mononuclear and tetrahedral for dinuclear.

Figure (1. 19) X-ray crystallography of $\left[\mathrm{Cu}_{2}{ }_{2} \mathrm{Cu}^{\mathrm{II}} \mathrm{Br}_{2}(\mathrm{Hm}-\mathrm{dtc})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]_{\mathrm{n}}(1)$

In 2010 Miao Du and co-workers ${ }^{(122)}$ reported the synthesis of coordination polymer of the general formula $\left[\mathrm{Co}_{3}(\mathrm{pybz})_{2}(\text { pico })_{2}\right]_{\mathrm{n}}$ (1) (where; pybz=4-(pyridin-4yl)benzoate, pico $=3$-hydroxypicolinate), contains $2 \mathrm{D}\left[\mathrm{Co}_{3}(\text { pico })_{2}\right]_{\mathrm{n}}{ }^{+2 \mathrm{n}}$ layers, which are further cross-pillared by exo tridentate bridging pybz ligands to form a threedimensional structure. The bulk magnetic behaviour of 1 exhibits ferromagnetic longrange ordering below 2.6 K . The coordination environment of each Co 1 and Co 2 is octahedral, Figure(1. 20).

Figure (1. 20) Crystal structure of $\left[\mathrm{Co}_{3}(\mathrm{pybz})_{2}(\text { pico })_{2}\right]_{\mathrm{n}}$

In 2011 Lv et al. ${ }^{(123)}$ reported the formation of two coordination polymers, namely $\left[\mathrm{M}(\mathrm{cpna})(\mathrm{phen})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}} \quad\left(\mathrm{M}=\mathrm{Ni}, \quad 1 ; \quad \mathrm{Cd}, 2, \quad \mathrm{H}_{2}\right.$ cpna $=5-(2-$
carboxylphenyl)nicotic acid, phen = 1,10-phenanthroline), under hydrothermally condition. X-ray single crystal diffraction studies show that the two complexes are isostructural polymers. They have 1D chain structures, which are further extended into 3D metal-organic supramolecular frameworks by p-p stacking interactions. Magnetic studies for complex 1 show antiferromagnetic coupling between the adjacent $\mathrm{Ni}^{\mathrm{II}}$ centres. The complexes revealed octahedral geometries about metal centre, Figure (1. 21).

Figure (1. 21) X-ray crystallography of $\left[\mathrm{Ni}\left(\text { (cpna)(phen)(} \mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$

Liu and co-workers ${ }^{(124)}$ reported the formation of polymer complexes. The reaction of 2 equiv. amount of copper(II) nitrate hexahydrate with 1 equiv. of 5-methyl-1-pyridin-2-yl-1H-pyrazole-3-carboxylic acid (PyPzCA) in presence of triethyl amine as a base to give a 1D coordination polymeric compound $\left[\mathrm{Cu}_{2}\left(\mathrm{PyPzCA}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right.$ (1). Complex $\left[\mathrm{Cu}\left(\mathrm{PymPzCA}^{2}\right)\right] .2 \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{NEt}_{3}$ (2) was prepared by using 1-(4,6-dimethyl-pyrimidin-2-yl)-5-methyl-1H-pyrazole-3carboxylic acid PymPzCA instead of PyPzCA. In 1, both of the copper atoms (Cu1 and Cu 2) adopted distorted square pyramidal geometry; Figure (1. 22). While in 2, the central copper atom has distorted trigonal bipyramidal geometry. These
complexes were characterised by X-ray crystallography, elemental analysis, magnetic susceptibility measurement and FTIR spectroscopy.

Figure (1. 22) X-ray crystallography of $\left[\mathrm{Cu}_{2}\left(\mathrm{PyPzCA}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(1)\right.$

In 2011 Zheng and co-workers ${ }^{(125)}$ reported the synthesis and characterisation of the supramolecular complexes, $\left[\mathrm{Zn}(\mathrm{dpds})\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}\right]_{\mathrm{n}}$ (1), $\left[\mathrm{Zn}(\mathrm{dpds})\left(\mathrm{C}_{7} \mathrm{H}_{7}\right.\right.$ $\left.\mathrm{COO})_{2}\right]_{\mathrm{n}}(2)$, and $\left[\left\{\mathrm{Zn}(\mathrm{dpds})\left[\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COO})_{2}\right]\right\} . \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$ (3) (dpds=4,4-${ }^{-}$-dipyridyldisulfide, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=$ benzoic acid, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{COOH}=$ m-methylbenzoic acid, $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{COOH})_{2}=$ phthalic acid). The $\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}\right]$ moieties in 1 are connected by dpds to generate a 1-D helical chain. In 2 , the $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{COO}\right)_{2}\right]$ moieties are bridged by two dpds ligands of different chiralities to form a discrete chiral macrocycle chair-like structure. The $\mathrm{ZnN}_{2} \mathrm{O}_{2}$ tetrahedral in 3 is alternately linked by a pair of dpds and phthalate ligands to form a 1-D double-stranded chain, which is assembled via (S ...S) weak interactions into a 2-D layer. The resulting 2-D layers are inclined parallel into 3-D supramolecular architecture. The coordination environment of Zn in 1 is tetrahedrel, in 2 is regular octahedral, while in 3 is distorted tetrahedral; Figure (1. 23).

Figure (1. 23) X-ray crystallography of $\left[\mathrm{Zn}(\mathrm{dpds})\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right)_{2}\right]_{\mathrm{n}}$
In 2012 Yao et al. ${ }^{(126)}$ synthesised Cd-complex of the general formula $\left[\mathrm{Cd}(\mathrm{OH}-\mathrm{BDC})(\mathrm{bpe})_{1.5}\right]_{\mathrm{n}}$ (where; $\mathrm{BDC}=5$-hydroxyisophthalic acid, bpe $=1,2$-bis(4pyridyl)ethane) from the reaction of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{HO}-\mathrm{H} 2 \mathrm{BDC}$ and bpe in a mixed solvent of water and ethanol ($\mathrm{V} / \mathrm{V}=5: 1$) to form a 2-D complex. This 2-D double layer motif is further interlocked with the neighbouring ones in the parallel fashion, to give a 3-D complex. The Cd (II) ion is seven coordinated and can be described as pentagonal bipyramid geometry, Figure (1.24).

Figure (1. 24) X-ray crystal structure of 2-D Cd(II) complex

In 2012 Kumar et al. ${ }^{(127)}$ reported the synthesis and characterisation of $\left.\left[\mathrm{Co}(\mathrm{II})(1,4 \text {-benzenedicarboxylate })_{2} \text { (pyridine) }\right)_{2}(\text { water })_{2}\right]$ complex from the reaction of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with pyridine and 1,4-benzenedicarboxylic acid in a mole ratio of $1: 4: 2$. The X-ray reveals that the $\mathrm{Co}(\mathrm{II})$ complex consists of 1 D polymeric chain. The Co(II) atom adopts octahedral geometry, Figure (1. 25).

Figure (1.25) Molecular crystal structure of Co(II) complex

In 2012 Du et al. ${ }^{(128)}$ worked on the formation of two new compounds [$\left.\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{Cd}_{2} \mathrm{~N}_{8} \mathrm{O}_{16}\right](1)$ and $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{CdN}_{3} \mathrm{O}_{5}\right](2)$ from the similar reaction condition but different solvent media. These compounds were synthesised from the reaction of [4,4--bis(3,3-dicyano)pyridine] (pydcy) with $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The X-ray diffraction reveals that cyanogens motifes of ligand was hydrolysed to carboxylic acid through in situ ligand reaction (Hpydca${ }^{-}$, pydca ${ }^{2-}$, pydca ${ }^{-}=4,4^{-}$-bis(3, 3^{-}-dicarboxyl) pyridine. Compound 1 form dimeric carboxylate bridged, while compound 2 gives a 3D framework. In the complexes, the geometry about Cd is a distorted octahedral; Figure (1. 26).

Figure (1.26) The coordination environment of the $\mathbf{C d}($ II) ion in complex 1

In 2012 Jiao et al. ${ }^{(129)}$ reported the formation of two cobalt(II) coordination polymers, namely $\left[\mathrm{Co}_{1.5}(\mathrm{PhCOO})_{3}(\mathrm{bbbm})_{1.5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] n(1)$ and $[\mathrm{Co}(\mathrm{chdc})-(\mathrm{bbbm})] n$ (2) (bbbm = 1,10- (1,4-butanediyl)bis $-1 \mathrm{H}-$ benzimidazole, H_{2} chdc $=1,4-$ cyclohexanedicarboxylic acid), by hydrothermal reaction of cobalt acetate tetrahydrate with the corresponding acid, bbbm ligand and sodium hydroxide at a molar ratio of 1:1:1:2. These complexes were characterised by single crystal X-ray, TGA and FTIR spectrophotometer. The cobalt(II) centres display different environments, with trigonal-bipyramidal and octahedral geometries in 1, Figure(1. 27), and a tetrahedral geometry in 2. The 1D linear chains of complex 1 and ladderlike chains of complex 2 are bridged by bbbm in bis-monodentate coordination mode; the variation of the carboxylate co-ligand effectively tunes the resulting framework architecture.

Figure (1. 27) X-ray structure of complex 1

In 2012 Roesky et al. ${ }^{(130)}$ reported the synthesis of three polymeric complexes of lead with the general formula $\left[\operatorname{Pb}\left\{\left(\eta 6-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2} \mathrm{bpe}\right]_{n}(\mathbf{1}),[\mathrm{Pb}\{(\eta 6-$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}(1,10-\mathrm{phen})\right]$ (2) and $\left[\mathrm{Pb}\left\{\left(\eta 6-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right\}_{2}(2,2-\right.$ bipy $\left.)\right]$ (3), from the reaction of $\left[\left\{\eta 6-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right\}-\mathrm{Cr}(\mathrm{CO})_{3}\right]$ with lead(II) acetate in the presence of trans-1,2- bis(4-pyridyl)ethene, 1,10- phenanthroline, and 2,2bipyridine, which gave a one-dimensional coordination polymer and mononuclear complexes. These compounds were characterised by X-ray single crystal, elemental analysis, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, TGA and IR spectroscopy. The environment structure around Pb atom is square pyramidal. Figure (1.28) represents the molecular structure of (1).

Figure (1. 28) Molecular structure of complex (1)

In 2012 Corbella and co-workers ${ }^{(131)}$ obtained a range of tetranuclear $\mathrm{Mn}^{\text {III }}$ compounds by assembling two dinuclear units, $\left[\{\mathrm{Mn}(\mathrm{L})(\mathrm{NN})\}_{2}(\mu-\mathrm{O})\right]^{4+}$ with aliphatic dicarboxylate ligands; succinato, glutarato and adipato, and $\mathrm{N}, \mathrm{N}=2,2^{`}$ bipyridine (bpy) or 1,10-phenanthroline (phen). Complexes of the general formula $\left[\{\mathrm{Mn}(\mathrm{L})(\mathrm{NN})\}_{4}(\mu-\mathrm{Cm})_{2}(\mu-\mathrm{O})_{2}\right] \mathrm{X}_{4}\left[\mathrm{X}=\mathrm{ClO}_{4}, \mathrm{~N}, \mathrm{~N}=\right.$ bpy and $\mathrm{Cm}=\mathrm{C}_{4}(\mathbf{1}), \mathrm{C}_{5}(2)$ and $\mathrm{C}_{6}(3) ; \mathrm{X}=\mathrm{ClO}_{4}, \mathrm{NN}=$ phen and $\mathrm{Cm}=\mathrm{C}_{4}(4), \mathrm{C}_{5}(5)$ and $\mathrm{C}_{6}(6) ; \mathrm{X}=\mathrm{NO}_{3}, \mathrm{NN}=$ bpy and $\left.\mathrm{Cm}=\mathrm{C}_{5}(7)\right]$ are reported. Compound 4 shows a dominant ferromagnetic coupling, while the rest display antiferromagnetic couplings. The molecular structure shows the Mn atom adopts octahedral geometry; Figure (1.29) represents the X-ray crystal structure of (1).

Figure (1. 29) X-ray crystallography of complex (1)

(1.6) Uses and applications

Organic compounds based on pyrdinium core including carboxylate derivatives and their metal complexes, including magnetic complexes, are of particular interest due to their wide applications in agriculture, medicine, catalysis, luminescence, optical devices and energy.

(1.6.1) In agriculture

Mixtures of diquat and paraquat-quaternary ammonium herbicides are widely used to control crop and aquatic weeds. The structures of these herbicides are shown below; Figure (1. 30) ${ }^{(132)}$.

Figure (1. 30) The chemical structure of 1,1` -dimethyl-4,4'-bipyridinium and its dichloride salt

Paraquat (1,1`-dimethyl-4,4'-bipyridinium) and its dichloride salt (1,1`, dimethyl4, 4`-bipyridinium dichloride) are broad-spectrum contact plant killers and herbage desiccants that were introduced commercially during the past 25 years. Today, they rank among the most widely used herbicides globally and are frequently used in combination with other herbicides. The recommended paraquat field application rates for terrestrial weed control, and for aquatic weed control.

(1.6.2) In biomedical

The super paramagnetic nanoparticles (SPM NPs) have been considered as attractive magnetic probes for biological imaging and therapeutic applications ${ }^{(133,134)}$. In normal biological conditions, these SPM NPs are not subject to strong magnetic interactions in the dispersion due to the randomisation of their magnetisation and are readily stabilised in physiological conditions. Under an external magnetic field, however, they exhibit a magnetic signal far exceeding that from any of the known biomolecules and cells. This makes SPM NPs readily identified by a magnetic sensing device from the ocean of biomolecules ${ }^{(135)}$.

For SPM NPs to be useful for biomedical applications, they should be first stabilised against the absorption of plasma proteins and non-specific uptake by reticuloendothelial system (RES), like macrophage cells ${ }^{(136)}$. NPs coupled with these molecules tend to be recognised by these cells and endocytosed for internalisation,
achieving target-specific binding ${ }^{(135)}$. The cancer detection sensitivity by ferrite NPs are further evaluated. The $\mathrm{MnFe}_{2} \mathrm{O}_{4}$ NPs were coupled with the cancer-targeting Herceptin, an antibody specifically binding to the HER2/neu marker over-expressed on the surface of breast and ovarian cancers ${ }^{(137)}$.

Magnetic nanoparticles have been extensively studied for their diverse biomedical applications such as magnetic resonance imaging (MRI) contrast agents, hyperthermia, targeted drug delivery, biosensing, and protein separation ${ }^{(138,139)}$. In particular, their use as MRI contrast agents has received considerable attention. MRI has several advantages over other imaging modalities, including high spatial resolution, excellent soft tissue contrast, and non-usage of radioisotopes or X-rays. However, it usually provides poor anatomic descriptions because of its inherent low sensitivity, which hampers the visualization of subtle changes in tissues ${ }^{(140)}$. Unlike gadolinium, iron is one of the most abundant metallic elements in living organisms and is essential for various biological processes, including oxygen transport by hemoglobin and cellular respiration by redox enzymes. Iron oxide nanoparticles are known to be biologically well tolerated and benign ${ }^{(140)}$.

On targeted delivery, SPM NPs have distinct advantages over the other polymer based delivery systems: (1) the pathway of the drug can be readily tracked in the biological systems through SPM NPs by MRI; (2) the drug-NPs can be guided or held in place by an external magnetic field; and (3) under an alternate magnetic field, the SPM NPs act as a heater and can trigger controlled drug release ${ }^{(141)}$. Therapeutic drugs are normally coupled to SPM NPs via a covalent bond. Hydrophobic drugs can also be adsorbed onto NP surface to be stored in the NP coating layer to preserve their activity ${ }^{(142)}$. Ideally, the drug-NPs are introduced in the biological systems and concentrated in the targeted area by an active targeting. Drug release can proceed by simple diffusion or through enzymatic activity or the changes in physiological conditions such as pH or temperature ${ }^{(143)}$. Methotrexate (MTX), a chemotherapeutic drug that can target many cancer cells whose surfaces are over expressed by folate receptors, can be conjugated with $\mathrm{Fe}_{3} \mathrm{O}_{4}$ NPs through an amide bond ${ }^{(144)}$.

The notable changes of the SCO behaviour under applied pressure ${ }^{(145)}$ may be exploited in pressure sensors when remote sensing of pressure through observation of a colour change is required. Although currently limited to low temperature ranges, memory effects in SCO compounds may ultimately play a role in holographic devices ${ }^{(146,147)}$. Indeed, due to the large difference in the Fe-donor atom distances observed for the HS and LS states ${ }^{(148)}$ the refractive index of an iron SCO system is expected to be substantially different in the two spin states, therefore inducing unusual photo-refractive properties which may be utilized to generate phase holograms ${ }^{(149,150)}$.

One peculiar feature of magnetic materials is the temperature change following a variation of the applied magnetic field in adiabatic conditions. Magnetocalometric effect (MCE) which results in a temperature drop during an adiabatic magnetasation , is a valid alternative to gas decompression for cooling. The entropy change of a magnetic system once it is exposed to a magnetic field that in general, polarized the magnetic moment, thus reducing the degrees of freedom of the system. When the field is brought to zero, the magnetic contributions to the entropy increase. If the process of demagnetization occurs with out any heat flow from the environment to the magnetic system, that is, in adiabatic conditions, a drop in temperature of the magnetic system occurs. The ferromagnetic materials that are mainly based on lanthanide alloys or, more recently, on manganites, are investigated for cooling around room temperature, while paramagnetic demagnetization is used for cryogenic temperatures ${ }^{(151)}$.

(1.6.3) Miscellaneous

MOFs with the luminescence properties ${ }^{2}$ have potential applications in sensor devices ${ }^{(152)}$. The development of optical sensors for oxygen is important in biology, industry. The determination of oxygen concentration can help to clarify the function
of oxygen in biological systems as well as in many cell culture applications ${ }^{(153)}$. MOF materials provide a nitro oxide (NO) therapeutic substrate with tunable physical and chemical properties ${ }^{(154)}$. MOF substrates are ${ }^{(155)}$ indeed viable NO donor materials. These NO donor MOF materials have increased storage capacity over previous NO donors ${ }^{(156)}$.

Supramolecular polymer gels are used to elucidate the structures at different length scales, and to explore their promise in applications as diverse as tissue scaffolds for regenerative tissue engineering, hybrid materials or novel electronic materials ${ }^{(157,158)}$.

It is well documented that MOF materials provide a range of porous materials for the applications of clean energy, including hydrogen storage and carbon capture ${ }^{(159)}$.

(1.7) Aim of the work

During the past years, intense research work has been focused on the design and fabrication of flexible ligand-based complexes. This is because of their intriguing framework connectivity and potential applications in the fields of magnetic, ion exchange, porous, luminescence and optical devices. Moreover, metal organic framework complexes is used in biomedicine because of the activation towards disease, especially killing of cancer cell without damaging normal cells because some types of cancer cells were more sensitive to temperature excess of $41^{\circ} \mathrm{C}$. Therefore, the aim of this work could summarise as follows:

- Synthesis of five ligands, including three new ligands $\left(\mathrm{L}^{2}-\mathrm{L}^{4}\right)$, of pyridylbased containing carboxylato moieties with and without spacer.
- Preparation of polymeric metal complexes of these ligands with some metal ions via self-assembly approach.
- Study the magnetic properties of these polymeric complexes which can be used in the field of;
- Biomedicine and biosensing applications, in particular iron complexes.
- Industrial applications, this will focus on the uses of copper, manganese, cobalt and nickel complexes.
- Study the stereochemistry and the possible structures of the prepared complexes.

chapter Two

(2) Experimental

(2.1) Materials

All reagents used in this work and their suppliers are listed in Table (2-1), and used as received without further purification.

Table (2.1); Chemicals used in this work and their suppliers

Material	Company source of supply	Purity \%
4,4`-dipyridine & B.D.H & 99 \\ \hline Trimethylene 4,4`-dipyridine	Aldrich	98
Ethyl chloroacetate	Aldrich	99
Ethyl chloroformate	Aldrich	98
Ethyl-3-chloropropionate	Aldrich	98
Ethyl-4-chlorobutyrate	Aldrich	98
Chromium(III) chloride. $6 \mathrm{H}_{2} \mathrm{O}$	Merck	99
Manganese(II) chloride. $4 \mathrm{H}_{2} \mathrm{O}$	Merck	99
Iron(II) chloride. $4 \mathrm{H}_{2} \mathrm{O}$	Fluka	98
Cobalt(II)chloride. $6 \mathrm{H}_{2} \mathrm{O}$	RieDel-DeHaen	99
Nickel(II) chloride. $6 \mathrm{H}_{2} \mathrm{O}$	Fluka	99
Copper(II) chloride. $2 \mathrm{H}_{2} \mathrm{O}$	Merck	99
Zinc(II) chloride	Aldrich	99
Cadmium(II) chloride. $2 \mathrm{H}_{2} \mathrm{O}$	B.D.H	99
Silver nitrate	B.D.H	98
Sodium azide	B.D.H	99
Silver oxide	Merck	99
Acetone	RieDel-DeHaen	99

Continued Table (2-1)		
HCl (37\%)	RieDel-DeHaen	----
DMSO	Fluka	99
DMF	Fluka	99
CCl $_{4}$	Aldrich	99
Ethanol	RieDel-DeHaen	99
Methanol	RieDel-DeHaen	99
Triethylamine	Aldrich	98

(2.2) Physical measurements

The following measurements were used to characterise the ligands and their metal complexes;

(2.2.1) Melting points

Melting points of compounds were obtained on an Electro-thermal Stuart melting point SMP40.

(2.2.2) Infrared spectra (FTIR)

Infrared spectra were recorded as KBr discs using a Shimadzu 8400s FT-IR spectrophotometer in the range $4000-400 \mathrm{~cm}^{-1}$.

(2.2.3) Electronic spectra

Electronic spectra were measured from 200-900 nm for $10^{-3} \mathrm{M}$ solutions in DMSO at $25{ }^{\circ} \mathrm{C}$ with (UV-Vis) spectrophotometer type Shimadzu 1800, using quartz cell of 1.0 cm length.

(2.2.4) Metal analysis

Metals content of complexes were determined using a Shimadzu (A.A) 680G atomic absorption spectrophotometer.

(2.2.5) Elemental microanalysis

Elemental analyses (C, H and N) for selected compounds were carried out on a Heraeus instrument (Vario EL), at the University of at Manchester Metropolitan (MMU) and Imperial College London (IC), U.K.

(2.2.6) Chloride contents

Chloride content for complexes were determined using potentiometer titration method on a 686-titro processor-665 Dosimat-Metrohm Swiss.

(2.2.7) Conductivity measurements

Electrical conductivity measurements of the complexes were made with DMSO solutions at $25{ }^{\circ} \mathrm{C}$ using a Eutech Instruments Con. 150 digital conductivity meter.

(2.2.8) Mass spectra

Mass spectra for ligands and some metal complexes were obtained by positive Electron-Impact (EI), accurate Electrospray (ES) and Matrix Assisted Laser Desorption Ionisation Time of Flight MS (MALDI-TOF MS) was recorded on a VG autospec micromass spectrometer on BRUKER DALTONICS. The spectra were recorded at the EPSRC Swansea Mass Spectroscopy Facility, U.K.

(2.2.9) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT Nuclear magnetic resonance spectra (NMR)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT NMR spectra for the ligands and some complexes were acquired in DMSO- d_{6} solution using a Jeol-400 MHz spectrometer with tetramethylsilane (TMS) as an internal standard for ${ }^{1} \mathrm{H}$ NMR analysis. The samples were recorded at MMU and IC, U.K.

(2.2.10) Thermal gravimetric analysis

Thermogravimetric analysis was carried out using a Perkin-Elmer 7 Series thermal analyzer. The measurement was conducted under nitrogen atmosphere at a heating rate $20^{\circ} \mathrm{C} / \mathrm{min}$. The samples were recorded at MMU and IC, U.K.

(2.2.11) Magnetic moment measurement

Magnetic moments at room temperature were measured with a magnetic susceptibility balance (Johnson Matthey Catalytic System Division). The samples were recorded at MMU and IC, U.K.

(2.2.12) Proposed molecular structure

The molecular structures of the complexes were generated using CS 2006 Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$.

(2.2.13) Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. It is an interactive graphics program that allows rapid structure building, geometry optimization with minimum energy and molecular display. It is well known program and has the ability to handle transition metal complexes ${ }^{(161)}$. The correct stereochemistry was assured through the manipulation and modification of the molecular coordinates to obtain reasonable low energy molecular geometries.

(2.3) Abbreviation of the ligands

Table (2.2) describes the suggested abbreviation, structures and nomenclature of the synthesised ligands.

Table (2.2); Structure and nomenclature of the ligands

L^{1}		bis(N-carboxylatomethyl) 4,4`-dipyridinium) \end{tabular} \\ \hline \(\mathrm{L}^{2}\) & & Bis(N-carboxylato)-4,4dipyridinium) \\ \hline \(\mathrm{L}^{3}\) & & Bis(N-carboxylatoethyl)-4,4dipyridinium) \\ \hline \(\mathrm{L}^{4}\) & & \begin{tabular}{l} bis(N- carboxylatopropyl)- \\ 4,4`-dipyridinium)
L^{5}		1,3-bis(N-carboxymethyl-4pyridino)propane

(2.4) Synthesis

Two types of ligands; one with spacer and others without were synthesised in this work. Ligands were prepared using two methods procedures reported by Mao et $a l^{(162 a)}$ and Phillips et al ${ }^{(162 \mathrm{~b})}$. Using the quantities or recrystallisation mixture reported in Mao et al ${ }^{(162)}$ procedure, pure ligands of L^{1} and L^{5} could not be obtained, as checked by NMR. However, modifications were implemented to obtain the pure ligands.

(2.4.1) Synthesis of the ligands without spacer

(2.4.1.1) Synthesis of the ligands using first method

(2.4.1.1.1) Synthesis of the ligand L^{1}

An excess of ethyl chloroacetate (up to 5 equivalents) was added slowly to a mixture of 4,4`-bipyridine ($2 \mathrm{~g}, 12 \mathrm{mmol}$) dissolved in acetone (25 mL). The resulting solution was allowed to reflux for a three day. After the acetone was removed under reduced pressure a green residue was left, and then a mixture of $\mathrm{HCl} /$ water ($50 \mathrm{~mL}, 5 \% \mathrm{w} / \mathrm{v}$) was added. The resulting mixture was heated under reflux for 24 h to give a yellow solution. Removal of solvent afforded a yellow powdery product; yield ($2.13 \mathrm{~g}, 61 \%$). The product was then dissolved in (50 mL) of water, and silver(I) oxide ($1.5 \mathrm{~g}, 0.0065 \mathrm{mmol}$) was added, with stirring, to remove the chloride ions. The white precipitate was filtered off, and the filtrate was then dried to yield a brownish solid, which was recrystallised from water/acetone (1:5, v / v) to give L^{1} ligand as a brownish solid; yield ($1.61 \mathrm{~g}, 46 \%$).

(2.4.1.1.2) Synthesis of the ligand L^{2}

The method used to prepare L^{2} was analogous to the procedure given for the L^{1}, but ethyl chloroformate was used in place of ethyl chloroacetate. The quantities of other reagents used were adjusted accordingly, and an identical work-up procedure
was used to give a yellow solid (2.24g, 72\%), and after treating with silver(I) oxide a pale yellow powder was collected; yield (1.62 g, 52\%).

(2.4.1.1.3) Synthesis of the ligand L^{3}

The method used to prepare L^{3} was analogous to the procedure given for the L^{1}, but ethyl-3-chloropropionate was used in place of ethyl chloroacetate. The quantities of other reagents used were adjusted accordingly, and an identical work-up was used to give a yellow solid (2.24g, 58\%). After addition of silver (I) oxide a pale yellow powder was collected; yield (1.7 g, 44\%).

(2.4.1.1.4) Synthesis of the ligand L^{4}

The method used to prepare L^{4} was analogous to the procedure given for L^{1}, but ethyl-4-chlorobutyrate was used in place of ethyl- chloroacetate. The quantities of other reagents used were adjusted accordingly, and an identical work up method was used to give a yellow powder ($2.19 \mathrm{~g}, 52 \%$). After treating with silver(I) oxide, a dark yellow powder was collected; yield (1.75 g, 41\%).

(2.4.1.2) Synthesis of the ligands with spacer

(2. 4.1.2.1) Synthesis of the ligand L^{5}

An excess of ethyl chloroacetate (up to 5 equivalents) was added slowly to a mixture of $4,4^{`}$-trimethylenebipyridine ($2.0 \mathrm{~g}, 1.01 \mathrm{mmol}$) dissolved in acetone (25 mL). The resulting solution was heated at reflux for 72 h . After the removal of acetone under reduced pressure a green residue was left, and then a mixture of $\mathrm{HCl} /$ water ($50 \mathrm{~mL}, 5 \% \mathrm{w} / \mathrm{v}$) was added. The resulting mixture was heated under reflux for 24 h to give a yellow solution. Removal of solvent under reduced pressure afforded yellow solids ($2.12 \mathrm{~g}, 66 \%$). The product was then dissolved in water (50 mL), and silver(I) oxide ($1.5 \mathrm{~g}, 0.0065 \mathrm{mmol}$) was added, with stirring, to remove chloride ions. The white precipitate was filtered off, and the filtrate was then allowed to dryness to yield a brownish solid, which was recrystallised from water/acetone (1:5, v/v) to give L^{5} ligand as a brownish solid; yield (1.81g, 57\%).

(2.4.1.3) Synthesis of the ligands using second method

(2.4.1.3.1) Preparation of L^{3}

The ligand was prepared adopting a conventional method reported in [162b] and as follows:

(2.4.1.3.1.1) Synthesis of $\mathrm{NC}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \cdot \mathbf{3} \mathrm{H}_{2} \mathrm{O}$ (1)

3-Bromopropanoic acid ($1.40 \mathrm{~g}, 0.91 \mathrm{mmol}$) was stirred with 4,4`-bipyridine ($1.42 \mathrm{~g}, 0.91 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ for 2 days. The resulting precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, and dried in vacuo. The precipitate was recharged in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and stirred with triethylamine (5 mL) for 10 h . The precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$, and dried in vacuo to yield a yellow powder, which was redissolved in water (5 mL) and allowed to slow evaporation at RT to give the title compound. Yield: 57\%.

(2.4.1.3.1.2) Synthesis of $\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N} \mathrm{CH} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2} \mathrm{H}\right] \mathrm{Br} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2)

3-Bromopropanoic acid ($0.18 \mathrm{~g}, 0.11 \mathrm{mmol}$) was added to a mixture of $\mathbf{1}(0.25$ $\mathrm{g}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was allowed to stir at $30^{\circ} \mathrm{C}$ for 5 days. The resulting precipitate was filtered, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and dried in vacuo to yield a white powder. The powder was dissolved in water (5 mL) and evaporated at RT to give the title compound. Yield: $0.24 \mathrm{~g}(73 \%), \mathrm{m} . \mathrm{p} .=242-244^{\circ} \mathrm{C}$.

(2.4.1.3.3) Preparation of L^{4}

The method used was analogous to that procedure given for L^{1}, but with 4bromobutanoic acid ($2.14 \mathrm{~g}, 2 \mathrm{mmol}$) in place of 3-bromopropanoic acid. The
quantities of the other reagents were adjusted accordingly, and an identical work-up gave L^{2} as a dark yellow solid. Yield: 1.43 g (68\%), m.p 266-268 ${ }^{\circ} \mathrm{C}$.
(2.5) Synthesis complexes

(2.5.1) Synthesis of L^{1} complexes

(2.5.1.1) Synthesis of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathbf{1}}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathbf{H}_{2} \mathrm{O}$

A mixture of $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(0.14 \mathrm{~g}, 0.55 \mathrm{mmol}), \mathrm{L}^{1}(0.15 \mathrm{~g}, 0.55 \mathrm{mmol})$, and $\mathrm{NaN}_{3}(0.071 \mathrm{~g}, 1.00 \mathrm{mmol})$ in water/ethanol ($50 \mathrm{~mL}, 4: 6 \mathrm{v} / \mathrm{v}$) was stirred for 30 min at room temperature, and then the mixture was refluxed for 30 min . Slow evaporation of the solution at room temperature yielded green crystals of $\mathrm{Cr}(\mathrm{III})$ complex within two weeks, Yield: (0.253 g, 73\%).
(2.5.1.2) Synthesis of $\quad\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes

A similar method to that mentioned in preparation of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, complex was used to prepare other L^{1} complexes with (Mn (II), Fe (II), $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$, $\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I}))$ ions. Table (2.3) shows some physical properties of the prepared complexes.

Table (2.3); colours, yields, melting points and metal salts quantities of L^{1} complexes

Ion	Weight of metal salt g	Weight of complex (g)	Yield (\%)	Colour	m.p. ${ }^{\text {o }}$

$\mathrm{Ni}^{\text {II }}$	0.13	0.231	73	Green	Dec 340
Continued Table (2-3)					
$\mathrm{Cu}^{\text {II }}$	0.09	0.224	70	Green	Dec 313
$\mathrm{Zn}^{\text {II }}$	0.07	0.214	66	Yellow	Dec 317
$\mathrm{Cd}^{\text {II }}$	0.12	0.266	71	white	Dec 302
$\mathrm{Ag}^{\text {I }}$	0.09	0.203	51	white	182

Dec=decomposed

(2.5.2) Synthesis of $L^{2}-L^{5}$ complexes

(2.5.2.1) Synthesis of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathbf{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathbf{H}_{2} \mathrm{O}$

A mixture of $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(0.16 \mathrm{~g}, 0.61 \mathrm{mmol}), \mathrm{L}^{2}(0.15 \mathrm{~g}, 0.61 \mathrm{mmol})$, and $\mathrm{NaN}_{3}(0.07 \mathrm{~g}, 1.2 \mathrm{mmol})$ in water/ethanol ($50 \mathrm{~mL}, 4: 6 \mathrm{v} / \mathrm{v}$) was stirred for 30 min at room temperature, then he mixture was refluxed for 30 min . Slow evaporation of the solution at room temperature yielded green crystals of Cr (III) complex within two weeks, washed with washed with (10 mL) mixture of water/ethanol, (5 mL) of diethyl ether, and then dried under vaccu. Yield: (0.211g, 57\%)
(2.5.2.2) Synthesis of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$, $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$, $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes

A similar method to that mentioned in preparation of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex was used to prepare other L^{2} complexes with (Mn (II), Fe (II), Co (II), Ni (II), $\mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I}))$ ions. Table (2.4) shows some physical properties of the prepared complexes.

Table (2.4); colours, yields, melting points and metal salts quantities of \mathbf{L}^{2} complexes

Ion	Weight of metal salt (g)	Weight of complex (g)	Yield (\%)	Colour	m.p. ${ }^{\mathbf{o}} \mathbf{C}$
$\mathrm{Cr}^{\text {III }}$	0.16	0.211	57	Green	Dec 343

$\mathrm{Mn}^{\text {II }}$	0.12	0.229	69	Pale yellow	Dec 327
Continued Table (2-4)					
$\mathrm{Fe}^{\text {II }}$	0.12	0.237	74	Yellow	Dec 304
$\mathrm{Co}^{\text {II }}$	0.14	0.254	76	Blue	Dec 326
$\mathrm{Ni}^{\text {II }}$	0.14	0.265	80	Green	Dec 322
$\mathrm{Cu}^{\text {II }}$	0.10	0.204	60	Green	Dec 315
$\mathrm{Zn}^{\text {II }}$	0.08	0.206	60	Pale yellow	Dec 293
$\mathrm{Cd}^{\text {II }}$	0.13	0.237	61	White	Dec 283
Ag^{I}	0.10	0.219	52	White	189

Table (2.5); colours, yields, melting points and metal salts quantities of L^{3} complexes

Ion	Weight of metal salt (g)	Weight of complex(g)	Yield (\%)	Colour	m.p. ${ }^{\text {o }}$
$\mathrm{Cr}^{\text {III }}$	0.13	0.217	66	Green	Dec 346
$\mathrm{Mn}^{\text {II }}$	0.09	0.213	70	Pale brown	Dec 327
$\mathrm{Fe}^{\text {II }}$	0.09	0.241	81	brown	Dec 206
$\mathrm{Co}^{\text {II }}$	0.11	0.201	67	Gray	Dec 329
$\mathrm{Ni}^{\text {II }}$	0.11	0.213	71	Green	Dec 322
$\mathrm{Cu}^{\text {II }}$	0.08	0.223	75	Green	Dec 325
$\mathrm{Zn}^{\text {II }}$	0.06	0.249	81	Pale yellow	Dec 303
$\mathrm{Cd}^{\text {II }}$	0.11	0.257	73	White	Dec 319
$\mathrm{Ag}^{\text {II }}$	0.08	0.275	74	White	183

Table (2.6); Colours, yields, melting points and metal salts quantities of L^{4} complexes

Ion	Weight of metal salt (g)	Weight of complex(g)	Yield (\%)	Colour	m.p. ${ }^{\circ} \mathbf{C}$
$\mathrm{Cr}^{\text {III }}$	0.12	0.217	69	Green	Dec 267
$\mathrm{Mn}^{\text {II }}$	0.09	0.213	75	Pale yellow	Dec 244
$\mathrm{Fe}^{\text {II }}$	0.09	0.207	74	Brown	Dec 233
$\mathrm{Co}^{\text {II }}$	0.10	0.241	83	Blue	Dec 330
$\mathrm{Ni}^{\text {II }}$	0.10	0.229	79	Green	Dec 293
$\mathrm{Cu}^{\text {II }}$	0.07	0.212	72	Green	Dec 229
$\mathrm{Zn}^{\text {II }}$	0.06	0.210	73	White	253
$\mathrm{Cd}^{\text {II }}$	0.10	0.228	69	White	Dec 309
Ag^{I}	0.07	0.216	61	White	197

Table (2.7); Colours, yields, melting points and metal salts quantities of \mathbf{L}^{5} complexes

Ion	Weight of metal salt (g)	Weight of complex (g)	Yield $\mathbf{(\%)}$	Colour	m.p. ${ }^{\circ} \mathbf{C}$
$\mathrm{Cr}^{\text {III }}$	0.12	0.211	65	Green	Dec 316
$\mathrm{Mn}^{\text {II }}$	0.09	0.217	74	Yellow	Dec 326
$\mathrm{Fe}^{\text {II }}$	0.09	0.232	79	Brown	Dec 315
$\mathrm{Co}^{\text {II }}$	0.11	0.211	71	Blue	Dec 308
$\mathrm{Ni}^{\text {II }}$	0.11	0.217	74	Green	Dec 330

Chapter Two
Experimental

$\mathrm{Cu}^{\text {II }}$	0.08	0.218	73	Green	Dec 328
Continued Table (2-7)					
$\mathrm{Zn}^{\text {II }}$	0.06	0.202	67	Pale yellow	193
$\mathrm{Cd}^{\text {II }}$	0.11	0.216	62	White	223
$\mathrm{Ag}^{\text {I }}$	0.08	0.219	60	White	183

(3) Results and discussion

(3.1) Recent development in metal-organic polymers with azidocarboxylato bridges

In 2010 while this work was in progress, a paper was published by Gao and coworkers ${ }^{(163)}$ which showed that a similar type of dicarboxylatopyrdinium ligands, namely 1,2-bis(N-carboxymethyl-4-pyridinio)ethane was prepared in analogous fashion, and could be effectively used with the azido moiety at the preparation of $\mathrm{Mn}(\mathrm{II}), \mathrm{Co}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ complexes, Figure (3. 1). However, it made no mention of the synthesis of complexes of other metal ions or the synthesis of ligands $L^{2}-L^{4}$. Moreover, Mao et al ${ }^{(162)}$ and Gao et al. papers were based on X-ray crystal structures, IR, CHN and variable temperature magnetic moment measurements. There is no reported data in these two references or references reported within regarding the full characterisation of L^{1} and L^{5} ligands, or complexes, such as; NMR, thermal analysis, UV-Vis and theoretical studies to predict coordination mode of COO^{-}moiety using magnetic measurements and IR data.

Figure (3. 1) X-ray crystallography of $\left[\mathrm{Mn}_{2}(\mathbf{b c p e})\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathbf{H}_{2} \mathrm{O}$

(3.2) Synthesis and characterisation of the ligands

Ligands with spacer and others without were synthesised in this projet. Ligands were prepared using two procedures that reported by Mao et al ${ }^{(162)}$ and Phillips et al ${ }^{(162 b)}$. In the latter method, ligands were prepared in two steps. Similar analytical and spectroscopic data were obtained by using Mao et ${ }^{(162)}$ al or Phillips et $a l^{(162)}$ procedures. In Mao et al approach ${ }^{(162)}$, the reaction of one equivalent of 4,4`-
dipyridine with five equivalents of the appropriate ethyl chlorocarboxylate precursor (Scheme (3. 1)) afforded the ligands in moderate yield. The ligands were characterised by elemental analysis (Table (3.1)), IR, UV-Vis, mass spectroscopy, and ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and DEPT-NMR spectroscopy. Table (3. 2) represents the solubility of ligands in different solvents.

Where:
$\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=0 ; \mathrm{L}^{1}$; bis(N-carboxylatomethyl)-4,4`-dipyridinium) \(\mathrm{X}=0 ; \mathrm{Y}=0 ; \mathrm{L}^{2} ; \quad\) bis(N-carboxylato)-4,4`-dipyridinium)
$\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{Y}=0 ; \mathrm{L}^{3} ;$ Bis(N-carboxylatoethyl)-4,4`-dipyridinium) \(\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{Y}=0 ; \mathrm{L}^{4} ;\) bis(N- carboxylatopropyl)-4,4`-dipyridinium)
$\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{L}^{5} ; 1,3$-bis(N-carboxymethyl-4
pyridino)propane

Scheme (3. 1): Synthesis route of ligands.

Table (3. 1): Microelemental analysis data and some physical properties for the ligands.

Compound	Empirical	M.W	Yield(\%)	Colour		Microanalysis found (calc)\%	
	Formula				C	\mathbf{H}	\mathbf{N}
L^{1}	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$	272.26	46	Brown	61.63	4.43	10.27
					(61.76)	(4.44)	(10.29)
L^{2}	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$	244.20	52	Pale	58.92	3.23	11.33
				yellow	(59.02)	(3.30)	(11.47)
L^{3}	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	300.31	44	Pale	63.97	5.26	9.38
				yellow	(63.99)	(5.37)	(9.33)
L^{4}	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$	328.36	41	Dark	65.23	5.93	8.27
				yellow	(65.84)	(6.14)	(8.53)
L^{5}	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$	314.34	57	Brown	64.78	5.57	8.73
					(64.96)	(5.77)	(8.91)

(calc) = calculated

Table (3. 2): The solubility of the ligands in different solvents.

Compound	$\mathbf{H}_{2} \mathbf{O}$	$\mathbf{M e O H}$	EtOH	DMF	DMSO	$\mathbf{C C l}_{4}$
\mathbf{L}^{1}	+	-	-	+	+	-
\mathbf{L}^{2}	+	-	-	+	+	-
\mathbf{L}^{3}	+	-	-	+	+	-
\mathbf{L}^{4}	+	-	-	+	+	-
\mathbf{L}^{5}	+	-	-	+	+	-

Soluble (+), Insoluble (-)

(3.3) IR Spectral data for the ligands without spacer

(3.3.1) IR Spectrum of bis(N-carboxylatomethyl)-4,4-dipyridinium) \mathbf{L}^{1}

The IR spectrum of bis(N-carboxylatomethyl)-4,4`-dipyridinium) \(\mathrm{L}^{1}\), Figure (3.4) is compared with the IR spectra of the starting materials 4,4`-dipyridine Figure (3. 3) and ethyl chloroacetate Figure (3. 2), respectively. The spectrum of L^{1} shows no band around $1759 \mathrm{~cm}^{-1}$ which attribute to $\mathbf{v}(\mathrm{C}=\mathrm{O})$ stretching in comparison with the ethyl chloroacetate spectrum. The new bands at 1634 and $1468 \mathrm{~cm}^{-1}$ can be attributed to $\mathbf{v a s}\left(\mathrm{COO}^{-}\right)$and $\mathbf{v}_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$stretching, respectively of carboxylato moiety ${ }^{(164,165)}$. The IR spectrum reveals the two carboxylato moieties are equivalent in the solid state. However, in solution of L^{1} these groups appear nonequivalent. The band at $1611 \mathrm{~cm}^{-1}$ is attributed to $\mathbf{v}(\mathrm{C}=\mathrm{N})$ of pyridine in $4,4{ }^{-}$-dipyridyl ${ }^{(166)}$. The band at $1593 \mathrm{~cm}^{-1}$ can be assigned to $\mathbf{v}(\mathrm{C}=\mathrm{C})$ of aromatic ring ${ }^{(167)}$. IR spectrum shows bands at 1373 and $1231 \mathrm{~cm}^{-1}$ may be due to $\delta\left(\mathrm{CH}_{2}\right)$ and $\mathbf{v}(\mathrm{C}-\mathrm{N})$, respectively ${ }^{(168)}$.

(3.3.2) IR Spectra of ligands $L^{2}-L^{4}$

The IR spectra for ligands $\mathrm{L}^{2}-\mathrm{L}^{4}$ are shown in Figures (3.6, 3.8, and 3.10). The spectra show bands similar to that of L^{1} and similar reasoning could be used to interpret the spectra. The assignment of the bands are summarised in Table (3-3).

Table (3-3): Infrared spectral data (wave number) $\mathbf{c m}^{\mathbf{- 1}}$ of the ligands.

Compound	$\mathbf{v}_{\text {ar }} \mathrm{C}-\mathrm{H}$	$\mathbf{v}_{\text {ali }} \mathrm{C}-\mathrm{H}$	$\mathbf{v a s}_{\mathrm{as}} \mathrm{COO}$	$\mathbf{v C}=\mathrm{N}$	$\mathbf{v C}=\mathrm{C}$	$\mathbf{v}_{\mathbf{s}} \mathrm{COO}$	$\delta \mathrm{CH}_{2}$	$\mathbf{v C}-\mathrm{N}$	$\Delta\left(\mathbf{v a s}_{\mathrm{as}} \mathbf{v}_{\mathbf{s}}\right.$
L^{1}	3038	2913	1634	1611	1593	1468	1373	1231	166
$\mathrm{~L}^{2}$	3046	2903	1630	1620	1595	1458		1223	172
$\mathrm{~L}^{3}$	3048	2851	1632	1597	1578	1458	1359	1218	174
$\mathrm{~L}^{4}$	3055								
3009	2913	1614	1603	1568	1416	1343	1223	198	

Figure (3. 2) IR spectrum of ethyl chloroacetate

Figure (3. 3) IR spectrum of 4,4`-dipyridyl

Figure (3.4) IR spectrum of $\mathrm{L}^{\mathbf{1}}$

Figure (3. 5) IR spectrum of ethyl chloroformate

Figure (3. 3) IR spectrum of 4,4`-dipyridyl

Figure (3. 6) IR spectrum of \mathbf{L}^{2}

Figure (3.7)IR spectrum of ethyl chloropropionate.

Figure (3.3) IR spectrum of 4,4`-dipyridyl

Figure (3. 8) IR spectrum of L^{3}

Figure (3.9) IR spectrum of ethyl chlorobutyrate

Figure (3. 3) IR spectrum of 4,4`-dipyridyl

Figure 1(3.10) IR spectrum of L^{4}

(3.4) IR Spectral data for the ligands with spacer

(3.4.1) IR spectrum of 1,3-bis(N-carboxymethyl-4-pyridino)propane \mathbf{L}^{5}

The IR spectrum of 1,3-bis(N-carboxymethyl-4-pyridino)propane L ${ }^{5}$ Figure (3. 12) is compared with IR spectra of starting materials trimethylen-4,4-dipyridine Figure (3.11) and ethyl chloroacetate Figure (3-2), respectively. The spectrum of L^{5} shows no band around $1759 \mathrm{~cm}^{-1}$ could attribute to $\mathrm{v}_{\mathrm{as}}(\mathrm{C}=\mathrm{O})$ stretching in comparison with ethyl chloroacetate spectrum. The new band at 1643 can be attributed to $\mathbf{v}_{\mathrm{as}}(\mathrm{COO})$ stretching of carboxylate ${ }^{(164,169)}$. The band at $1618 \mathrm{~cm}^{-1}$ attributed to stretching of $\mathbf{v}(\mathrm{C}=\mathrm{N})$ stretching ${ }^{(166)}$, which shifted to higher frequency compared with trimethylen-4,4-dipyridyl. The band at $1572 \mathrm{~cm}^{-1}$ can be attributed to $\mathbf{v}(\mathrm{C}=\mathrm{C})$ stretching of aromatic ring ${ }^{(167)}$, this band was shifted to higher frequency. The band at 1429 can be attributed to $\mathrm{v}_{\mathrm{s}}(\mathrm{COO})$ stretching ${ }^{(164)}$. The band at (1472 and $1387 \mathrm{~cm}^{-1}$) can be attributed to $\delta\left(\mathrm{CH}_{2}\right)$ stretching ${ }^{(168)}$. The band at $1194 \mathrm{~cm}^{-1}$ attributed to $\mathbf{v}(\mathrm{C}-\mathrm{N})$ stretching ${ }^{(168)}$. The above result are syummarisd in Table (3. 4).

Table (3.4): Infrared spectral data (wave number) cm^{-1} of the ligand L^{5}.

compound	$\mathbf{v}_{\mathrm{ar}} \mathrm{C}-$ H	$\mathbf{v}_{\text {ali }} \mathrm{C}-$ H	$\mathbf{v}_{\mathrm{as}} \mathrm{COO}$	$\mathbf{v C}=\mathrm{N}$	$\mathbf{v C}=\mathrm{C}$	$\mathbf{v}_{\mathrm{s}} \mathrm{COO}$	δ CH_{2}	$\mathbf{v}-$ N	$\Delta\left(\mathbf{v}_{\mathrm{as}} \mathbf{v}\right)$
L^{5}	3049	2936	1643	1618	1572	1429	1472	1194	214
							1387		

Figure (3. 11) IR spectrum of trimethylen-4,4`-dipyridine

Figure (3. 2) IR spectrum of ethyl chloroacetate

Figure (3.12) IR spectrum of L^{5}

(3.5) UV-Vis Spectra of the ligands

(3.5.1) UV-Vis spectra of the ligands with and with out spacer

(3.5.1.1) UV-Vis spectrum of L^{1}

The UV-Vis spectrum of L^{1}, Figure (3.13) shows one absorption peak at (268 $\mathrm{nm})\left(37313 \mathrm{~cm}^{-1}\right)\left(\varepsilon_{\max }=1130\right.$ molar $\left.^{-1} \mathrm{~cm}^{-1}\right)$ assigned to $\left(\pi \rightarrow \pi^{*}\right)$ transition, Table (3-5).

(3.5.1.2) UV-Vis spectrum of L^{2}

The UV-Vis spectrum of L^{2}, Figure (3.14) shows one absorption peak at (261 $\mathrm{nm})\left(38314 \mathrm{~cm}^{-1}\right)\left(\varepsilon_{\max }=2119\right.$ molar $\left.^{-1} \mathrm{~cm}^{-1}\right)$ assigned to $\left(\pi \rightarrow \pi^{*}\right)$ transition, Table (3-5).

(3.5.1.3) UV-Vis spectrum of L^{3}

The UV-Vis spectrum of L^{3}, Figure (3.15) shows one absorption peak at (279 $\mathrm{nm})\left(35842 \mathrm{~cm}^{-1}\right)\left(\varepsilon_{\max }=2046\right.$ molar $\left.^{-1} \mathrm{~cm}^{-1}\right)$ assigned to $\left(\pi \rightarrow \pi^{*}\right)$ transition, Table (3-5).

(3.5.1.4) UV-Vis spectrum of L^{4}

The UV-Vis spectrum of L^{4}, Figure (3.16) shows one absorption peak at (267 $\mathrm{nm})\left(37453 \mathrm{~cm}^{-1}\right)\left(\varepsilon_{\max }=1531 \mathrm{molar}^{-1} \mathrm{~cm}^{-1}\right)$ assigned to $\left(\pi \rightarrow \pi^{*}\right)$ transition, Table (3. 5).

(3.5.2) UV-Vis spectrum of L^{5}

The UV-Vis spectrum of L^{5}, Figure (3.17) shows one absorption peak at (261 $\mathrm{nm})\left(38314 \mathrm{~cm}^{-1}\right)\left(\varepsilon_{\max }=1680\right.$ molar $\left.^{-1} \mathrm{~cm}^{-1}\right)$ assigned to the overlap of $\left(\pi \rightarrow \pi^{*}\right)$
transition, while the peak at $(357 \mathrm{~nm})\left(28011 \mathrm{~cm}^{-1}\right)\left(\varepsilon_{\max }=36 \mathrm{molar}^{-1} \mathrm{~cm}^{-1}\right)$ can be assigned to ($\mathrm{n} \rightarrow \pi^{*}$) Table (3.5).

Table (3. 5) Electronic spectral data for the ligands

Compound	Band Position λ_{nm}	Wave number $\left(\mathrm{cm}^{-1}\right)$	Extinction coefficient $\varepsilon_{\text {max }}$ $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
L^{1}	268	37313	1130	$\pi \rightarrow \pi^{*}$
$\mathrm{~L}^{2}$	261	38314	2119	$\pi \rightarrow \pi^{*}$
$\mathrm{~L}^{3}$	279	35842	2046	$\pi \rightarrow \pi^{*}$
$\mathrm{~L}^{4}$	267	37453	1531	$\pi \rightarrow \pi^{*}$
$\mathrm{~L}^{5}$	261	38314	1680	$\pi \rightarrow \pi^{*}$
	357	28011	36	$\mathrm{n} \rightarrow \pi^{*}$

Figure (3.13) Electronic spectrum of \mathbf{L}^{1}

Figure(3.14) Electronic spectrum of \mathbf{L}^{2}

Figure (3-15) Electronic spectrum of \mathbf{L}^{3}

Figure (3. 16) Electronic spectrum of L^{4}

Figure(3.17) Electronic spectrum of \mathbf{L}^{5}

(3.6) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT NMR spectra for the ligands without spacer

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT NMR analysis was used to characterise the structure of ligands. The samples were recorded in DMSO-d6 solutions.

(3.6.1) ${ }^{1} H^{13} C$ NMR spectra for the ligand L^{1}

(3.6.1.1) ${ }^{1} H$ NMR spectrum for the ligand L^{1}

Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum for L^{1} in DMSO- d_{6}, shows two conformational isomers Figure (3.18). Isomer A shows chemical shift at $\delta=5.72$ ppm equivalent to 4 protons which assigned to ($\mathrm{C}_{2,2^{-}-H \text {). This peak is shifted }}$ downfield, in comparison with that in the ethyl chloroacetate, due to its attachment to the nitrogen atom, electron withdrawing group, and therefore the $\left(\mathrm{CH}_{2}\right)$ group is deshielded and appeared at a higher chemical shift. The signals at ($\delta=8.71-8.73$ ppm, $4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz}$) attributed to $\left(\mathrm{C}_{\left.4,4^{-} ; 6,6^{-}-H\right)}\right.$. The chemical shifts of $\left(\mathrm{C}_{3,3^{-} ; 7,}\right.$ $7^{-}-H$) protons appear as a doublet at (9.23-9.25 ppm, $4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz}$). Isomer B displays chemical shift at 5.78 ppm equivalent to 4 H which assigned to $\left(\mathrm{C}_{2,2}-\mathrm{H}\right)$ protons. Peaks at $\delta=8.63-8.65 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz}\right)$, and $\delta=8.85-8.87 \mathrm{ppm}$ $\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz}\right)$ were assigned to $\left(\mathrm{C}_{\left.4,4 ; 6,6^{-}-H\right)}\right.$ protons. The signals at $\delta=8.78-$ $8.79 \mathrm{ppm}\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz}\right)$ and at $\delta=9.18-9.20 \mathrm{ppm}\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz}\right)$ assigned to $\left(\mathrm{C}_{3}, 3^{-} ; 7,7^{-}-H\right)$ protons. The appearance of two isomers is perhaps due to the ease of rotation of the chelating portion of the molecule and/or the ease of rotation of the two pyridyl molecules; slow rotation could give one or two conformations that are not symmetrical. The results are summarised in Table (3. 6).

Isomer B

Where:
$\mathrm{X}=\mathbf{0} ; \mathbf{Y}=\mathbf{0} ; \mathrm{L}^{2}$
$\mathrm{X}=\mathrm{CH}_{2} ; \mathbf{Y}=\mathbf{0} ; \mathrm{L}^{1}$
$\mathbf{X}=\mathbf{C H}_{2} \mathrm{CH}_{2} ; \mathbf{Y}=\mathbf{0} ; \mathbf{L}^{3}$
$\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathbf{Y}=\mathbf{0} ; \mathrm{L}^{4}$
$\mathbf{X}=\mathbf{C H}_{2} ; \mathbf{Y}=\mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{C H}_{2} ; \mathbf{L}^{\mathbf{5}}$

Scheme(3.2) Structure of carboxylate syn-syn and syn-anti

Figure (3. 18) ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of L^{1}

(3.6.1.2) ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{1}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{L}{ }^{1}$, Figure (3.19), shows the chemical shifts of $\left(\mathrm{C}_{2},{ }^{`}\right)$ are nonequivalent and appear at 60.01 and 60.92 ppm . This is due to the presence of two isomers in solution, A and B. The chemical shift at 126.59 and 126.80 ppm assigned to ($\mathrm{C}_{4}, 4 ; 6,6$). Signals related to $\left(\mathrm{C}_{3,} 3^{-} ; 7,7^{-}\right.$) were detected at 144.01 and 149.02. Chemical shifts at 152.73 and 152.76 ppm were attributed to ($\mathrm{C}_{5,5}{ }_{5}$) indicating the two signals are nonequivalent. The chemical shift of the $\mathrm{C}=\mathrm{O}$ of the carboxylate moiety appears as expected downfield at 174.35 and 169.09 ppm . The results are summarised in Table (3. 7).

Figure (3. 19) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of $\mathrm{L}^{\mathbf{1}}$

(3.6.1.3) DEPT ${ }^{13}$ C-NMR

DEPT (Distortionless Enhancement of Polarisation Transfer) is one of NMR technique which can be used to identify the number of attached proton. In a DEPT experiment, a sequence of pulses with various delay times are used to create the DEPT spectrum where $\left(-\mathrm{CH}_{3}\right)$ and $(-\mathrm{CH})$ peaks will enhance in the positive direction (up) and appear as normal. The $\left(-\mathrm{CH}_{2}\right)$ peaks enhance in the negative direction (down) and appear inverted. Quaternary carbon is not usually seen. This way the number of H attached to C can usually be deduced ${ }^{(170)}$.

DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{1}

DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for L^{1}, Figure (3. 20), reveals the $\left(\mathrm{C}_{2}, 2^{-}\right)$are nonequivalent and appear as two signals at 60.01 and 60.92 ppm . These peaks were enhanced in the negative direction (down), and therefore assigned to $\left(-\mathrm{CH}_{2}\right)$
group. Signals at chemical shifts 126.59; 126.80 and $144.0 ; 149.02 \mathrm{ppm}$ were assigned to $\left(\mathrm{C}_{4}, 4^{-} ; 6,66^{-}\right)$and $\left(\mathrm{C}_{\left.3,3^{-} ; 7,7^{-}\right) \text {, respectively. These signals enhance in the }}\right.$ positive direction (up), and therefore assigned to (-CH). No signals in the range 150 -170 ppm, may assign for $\left(\mathrm{C}_{5,5}{ }^{-}\right)$and $\left(\mathrm{C}_{1,1}{ }^{-}\right)$are detected ${ }^{(130)}$.

Figure (3. 20) DEPT ${ }^{13}$ C NMR spectrum in DMSO-d6 of L^{1}
(3.6.2) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{2}

(3.6.2.1) ${ }^{1} H$ NMR spectrum for the ligand L^{2}

Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum for L^{2}, Figure (3. 21) shows chemical shift at $\delta=9.05-9.06 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.0 \mathrm{~Hz}\right)$ attributed to $\left(\mathrm{C}_{3,3}{ }^{-} ; 5,5^{-}-H\right)$ protons. The signals of $\left(\mathrm{C}_{2,2}{ }^{-}, 6,6^{-}-H\right)$ protons appear as a doublet at $\delta=9.10-9.12 \mathrm{ppm}(4 \mathrm{H}, \mathrm{d}$, $J_{\mathrm{HH}}=6.0 \mathrm{~Hz}$) . The results are summarised in Table (3.6) ${ }^{(130)}$.

Figure (3. 21) ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 of L^{2}

(3.6.2.2) ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{2}

The ${ }^{13} \mathrm{C}$ NMR spectrum for L^{2}, Figure (3. 22), shows chemical shift at $\delta=$ 125.46 ppm assigned to $\left(\mathrm{C}_{3,3} 3^{-} ; 5,5^{-}\right)$. Signals related to $\left(\mathrm{C}_{2}, 2^{-} ; 6,6\right)$ were equivalent and detected at $\delta=150.90 \mathrm{ppm}$. Chemical shifts at $\delta=151.52$ and 151.56 ppm , were attributed to $\left(\mathrm{C}_{4}, 4{ }^{-}\right)$. The chemical shift of the $\mathrm{C}=\mathrm{O}$ of the
carboxylate moiety appears as expected downfield at $\delta=173.01 \mathrm{ppm}$. The results are summarised in Table (3. 7).

Figure (3. 22) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{2}

(3.6.2.3) DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{2}

DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for L^{2}, Figure (3. 23), shows that all signals enhance in the positive direction (up), and therefore assigned to (-CH). No signals in the range 150-175 ppm, may be assigned for ($\mathrm{C}_{5}, 5$) and $\left(\mathrm{C}_{1}, 1\right)$ are detected. These signals are related to a quaternary carbon which is not usually seen in the spectrum.

Figure(3. 23) DEPT ${ }^{13}$ C NMR spectrum in DMSO-d6 of \mathbf{L}^{2}

(3.6.3) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{3}

(3.6.3.1) ${ }^{1} H$ NMR spectrum for the ligand L^{3}

The ${ }^{1} \mathrm{H}$ NMR spectrum for L^{3} is shown in Figure (3. 24). The spectrum shows chemical shift at $\delta=2.31-2.33\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=8 \mathrm{~Hz}\right)$ equivalent to 4 protons which assigned to $\left(\mathrm{C}_{2,2}-\mathrm{H}\right)$ protons. This signal is shifted to upfield due the attachment to electron withdrawing group, and therefore the $\left(-\mathrm{CH}_{2}\right)$ group is shielded and appeared at lower chemical shift. The signal at $\delta=4.71-4.72 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right)$ equivalent to 4 protons assigned to $\left(\mathrm{C}_{3}, 3^{-}-H\right)$ protons. This peak is shifted to downfield due to its attachment to the nitrogen atom, electron withdrawing group, and therefore the $\left(-\mathrm{CH}_{2}\right)$ group is deshielded and appeared at higher chemical shift. The chemical shift of $\left(\mathrm{C}_{5,5} 5^{-} ; 7,7^{-}-H\right)$ protons appeared as a doublet at $\delta=8.60-8.62$ $\operatorname{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz}\right)$. The signal at $\delta=9.13-9.134 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz}\right)$ attributed to $\left(\mathrm{C}_{4}\right.$,
$\left.4^{-} ; 8,8^{-}-H\right)$ protons. The results are summarised in Table (3. 6).

Figure (3. 24) ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum in DMSO-d6 of $\mathrm{L}^{\mathbf{3}}$

(3.6.3.2) ${ }^{13} C$ NMR spectrum for the ligand L^{3}

The ${ }^{13} \mathrm{C}$ NMR spectrum for L^{3}, Figure (3.25) shows chemical shift at $\delta=29.99$ ppm assigned to $\left(\mathrm{C}_{2,2}{ }^{-}\right)$. The signal related to $\left(\mathrm{C}_{3}, 3\right)$ was detected at $\delta=58.69 \mathrm{ppm}$. Chemical shifts at $\delta=124.93 ; 125.24$ and 145.70 ppm , were attributed to $\left(\mathrm{C}_{5,5} 5^{-} ; 7,7{ }^{-}\right.$ and $\left(\mathrm{C}_{4,4} 4^{-} ; 8,8^{-}\right)$. The signal at $\delta=153.60 \mathrm{ppm}$ assigned to $\left(\mathrm{C}_{6,6}{ }^{-}\right)$.The chemical shift of the $\mathrm{C}=\mathrm{O}$ of the carboxylate moiety appears, as expected, downfield at $\delta=177.00$ ppm. The results are summarised in Table (3. 7).

Figure (3.25) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{3}

(3.6.3.3) DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{3}

DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for L^{3}, Figure (3. 26), shows two signals at δ $=29.99$ and 58.69 ppm , attributed to $\left(\mathrm{C}_{2}, 2_{2}\right)$ and ($\left.\mathrm{C}_{3}, 3_{3}^{-}\right)$, respectively. These peaks were enhanced in the negative direction (down), and therefore assigned to $\left(-\mathrm{CH}_{2}\right)$ group. Signals at chemical shift $\delta=124.93$ and 145.70 ppm were assigned to ($\mathrm{C}_{5,5}{ }^{\circ}$; $7,7^{-}$) and ($\mathrm{C}_{4,4 ; 8,8}{ }^{-}$), respectively. These signals enhanced in the positive direction (up), and therefore assigned to (-CH). No signals in the range of 153-177 ppm may be assigned to $\left(\mathrm{C}_{6,6}\right)$ and $\left(\mathrm{C}_{1,1}\right)$ are detected. These signals are related to a quaternary carbon which is not usually seen in the spectrum..

Figure(3. 26) Dept ${ }^{13}$ C NMR spectrum in DMSO-d6 of L^{3}
(3.6.4) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligand L^{4}

(3.6.4.1) ${ }^{1} H$ NMR spectrum for the ligand L^{4}

The ${ }^{1} \mathrm{H}$ NMR spectrum for L^{4} is shown in Figure (3. 27). The spectrum displays chemical shift at $\delta=2.16-2.23 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz}\right)$ and $\delta=2.36-2.49$ ppm $\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz}\right)$ assigned to $\left(\mathrm{C}_{3,3}-\mathrm{H}\right)$ and $\left(\mathrm{C}_{2,2}-\mathrm{H}\right)$ protons, respectively, and each equivalent to 4 protons. These signals are shifted upfield due to the fact that, in each of the pyridinium portion the carboxylate group is almost co-planar with the CH_{2} group and the pyridinium molecue. This can lead to the increase of the electron density, shifting the electron charge density from the carboxylate group, on the $\left(\mathrm{CH}_{2}\right)$ group and appeared at upfield position. The signal at chemical shift 4.68-4.72 $\operatorname{ppm}\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right)$ equivalent to 4 protons assigned to $\left(\mathrm{C}_{4,4}-\mathrm{H}\right)$. This peak is
shifted to downfield and can be explain according to above explanation. Other chemical shifts are summarised in Table (3. 6).

Figure (3. 27) ${ }^{1} \mathbf{H}$ NMR spectrum in DMSO-d6 of L^{4}

(3.6.4.2) ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{4}

The ${ }^{13} \mathrm{C}$ NMR spectrum for L^{4}, Figure (3.28) shows chemical shift at $\delta=$ 26.08, $\delta=30.23$ and 59.77 ppm assigned to ($\left.\mathrm{C}_{3}, 3_{3}\right)$, ($\mathrm{C}_{2,2}$) and ($\left.\mathrm{C}_{4,4}\right)^{-}$), reapectively. The chemical shifts at $\delta=125.69,145.93$ and 152.17 ppm attributed to $\left(\mathrm{C}_{6,6} 6_{8}^{-}, 8^{-}\right)$. $\left(\mathrm{C}_{5,5} 5^{-} 9,9\right.$) and $\left(\mathrm{C}_{7,7} 7^{-}\right.$), respectively. The chemical shift of the $\mathrm{C}=\mathrm{O}$ of the carboxylate moiety appears as expected downfield at $\delta=173.38 \mathrm{ppm}$. The results are summarised in Table (3. 7).

Figure (3. 28) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of L^{4}

(3.6.4.3) DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{4}

DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for L^{4}, Figure (3.29) shows three signals at $\delta=$ 26.08, 30.23 and 59.77 ppm assigned to $\left.\left(\mathrm{C}_{3,3}\right)^{-}\right)$, ($\mathrm{C}_{2,2}{ }^{-}$) and ($\mathrm{C}_{4,4} 4^{-}$), respectively. These peaks were enhanced in the negative direction (down), and therefore assigned to $\left(-\mathrm{CH}_{2}\right)$ group. The other signals in the range $125-145 \mathrm{ppm}$, are assigned to $\left(\mathrm{C}_{6,6 ; 8,8^{-}}\right.$) and ($\mathrm{C}_{5,5^{-} ; 9,9}{ }^{-9}$), respectively. These signals enhanced in the positive direction (up), and therefore assigned to (-CH). No signals around chemical shifts 152.0 and 170.0 ppm may assign for $\left(\mathrm{C}_{7,7}\right)$ and $\left(\mathrm{C}_{1,1}\right)$ are detected. These signals are related to a quaternary carbon which is not shown in the spectrum.

Figure(3. 29) DEPT ${ }^{13}$ C NMR spectrum in DMSO-d \mathbf{d}_{6} of \mathbf{L}^{4}
(3-7) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for the ligands with spacer
(3.7.1) ${ }^{1} H,{ }^{13} C$ NMR spectra for the ligand L^{5}

(3.7.1.1) ${ }^{1} H$ NMR spectrum for the ligand L^{5}

The ${ }^{1} \mathrm{H}$ NMR spectrum for L^{5}, Figure (3. 30) shows chemical shift at $\delta=1.90$ $2.14 \mathrm{ppm}(2 \mathrm{H}, \mathrm{m})$ assigned to $\left(\mathrm{C}_{9}-H\right)$ protons. The signal at $\delta=2.70-2.73 \mathrm{ppm}(2 \mathrm{H}$, $\left.\mathrm{t}, J_{\mathrm{HH}}=12.8 \mathrm{~Hz}\right)$ and at $\delta=2.89-2.92 \mathrm{ppm}\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right)$ assigned to $\left(\mathrm{C}_{8,10}-H\right)$ proton. The appearance of two signals is perhaps due to the ease of rotation of the chelating portion of the molecule and/or the ease of rotation of the two pyridyl molecules. These signals are shifted to upfield due to not contact to electron withdrawing group, and therefore the $\left(-\mathrm{CH}_{2}\right)$ group is shielding and appeared at lower chemical shift. The chemical shift at $\delta=4.27-4.30 \mathrm{ppm}\left(4 \mathrm{H} \mathrm{d}, J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right)$ assigned to $\left(\mathrm{C}_{2,2}--H\right)$ protons. The
signal at $\delta=7.49-7.53 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=16 \mathrm{~Hz}\right)$ attributed to $\left(\mathrm{C}_{\left.4,4 ; 6,6^{-}-H\right)}^{-}\right.$protons. The chemical shifts of $\left(\mathrm{C}_{3,3}{ }^{-} ; 7,7^{-}-H\right)$ protons appear as a doublet at $\delta 8.61-8.62 \mathrm{ppm}$ $\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=4.4 \mathrm{~Hz}\right)$. The results are summarised in Table (3. 6).

Figure (3. 30) ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum in DMSO-d6 of $\mathrm{L}^{\mathbf{5}}$

(3.7.1.2) ${ }^{13}$ C NMR spectrum in DMSO-d6 for the ligand L^{5}

The ${ }^{13} \mathrm{C}$ NMR spectrum for L^{5}, Figure (3. 31), shows chemical shift at $\delta=$ 29.23 ppm assigned to $\left(\mathrm{C}_{9}\right)$. Signal related to $\left(\mathrm{C}_{8,10}\right)$ was detected at $\delta=33.83 \mathrm{ppm}$. The signal at $\delta=59.49 \mathrm{ppm}$ assigned to $\left(\mathrm{C}_{2,2}{ }^{-}\right)$. Chemical shifts could be attributed to $\left(\mathrm{C}_{4}, 4 ; 6,6^{-}\right)$appear at $\delta=125.72$ and 127.85 ppm ,. The appearance of two signals indicating that the two $\left(\mathrm{CH}_{2}\right)$ groups $\left(\mathrm{C}_{8,10}\right)$ are non-equivalent. The signal related to $\left(\mathrm{C}_{3,3 ; 7,7^{-}}\right)$and $\left(\mathrm{C}_{5,5}{ }^{-}\right)$) were detected at $\delta=146.73 \mathrm{ppm}$. Other chemical shifts are summarised in Table (3. 7).

Figure (3. 31) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO- d_{6} of L^{5}

(3.7.1.3) DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for the ligand L^{5}

DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for L^{5}, Figure (3. 32), shows signals enhanced in the negative direction (down), and therefore assigned to $\left(-\mathrm{CH}_{2}\right)$ group. The signals that were enhanced in the positive direction (up), were assigned to (-CH). No signals around chemical shifts 150 and 170 ppm may assign for $\left(\mathrm{C}_{(5,5)}{ }^{-}\right.$and $\left.\mathrm{C}_{\left.(1,1)^{-}\right)}\right)$ are detected. These signals are related to a quaternary carbon which is not seen in the spectrum.

Figure (3. 32) DEPT ${ }^{13}$ C NMR spectrum in DMSO-d \mathbf{D}_{6} of \mathbf{L}^{5}

Table (3. 6) ${ }^{1} \mathrm{H}$ NMR data for the ligands measured in DMSO-d6 and chemical shift in p.p.m ($\boldsymbol{\delta}$)

Compound	Func. group	δ (P.P.M)
L^{1} isomer A Isomer B		$\begin{gathered} 5.72,4 \mathrm{H} \\ 8.71-8.73, \mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}_{\mathrm{HH}}=6.87 \\ \mathrm{~Hz} \\ 9.23-9.25, \mathrm{~d}, 4 \mathrm{H}, \mathrm{~J}_{\mathrm{HH}}=7.33 \mathrm{~Hz} \\ 5.78,4 \mathrm{H} \\ \\ \\ 8.63-8.65,1 \mathrm{H}, \mathrm{~d}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz} \\ 8.78-8.79, \mathrm{~d}, 3 \mathrm{H}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz} \\ 8.85-8.87, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz} \\ 9.18-9.20, \mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz} \end{gathered}$
L^{2}	$\begin{aligned} & \mathrm{C}_{(3,3 ; 5,5)^{\circ}-\mathrm{H}} \\ & \mathrm{C}_{\left(2,2^{\prime} ; 6, \dot{\prime}\right)^{-}-\mathrm{H}} \end{aligned}$	$\begin{gathered} 9.05-9.06, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=5.95 \mathrm{~Hz} \\ 9.10-9.12, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.87 \\ \mathrm{~Hz} \end{gathered}$
\mathbf{L}^{3}	$\begin{gathered} \mathbf{C}_{(2,2)}-\mathbf{H} \\ \left.\mathbf{C}_{(3,3}\right)^{-}-\mathbf{H} \\ \mathbf{C}_{(5,5 ; 7,7)-\mathbf{H}} \\ \mathbf{C}_{(4,4 ; 8,8)}-\mathbf{H} \end{gathered}$	$\begin{gathered} 2.31-2.33, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=8 \mathrm{~Hz} \\ 4.71-4.72, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz} \\ 8.60-8.62, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz} \\ 9.12-9.13, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.87 \mathrm{~Hz} \end{gathered}$
\mathbf{L}^{4}	$\begin{gathered} \mathrm{C}_{(3,3)-\mathrm{H}} \\ \mathrm{C}_{(2,2)^{-}-\mathrm{H}} \\ \mathrm{C}_{(4,4)^{-}-\mathrm{H}} \\ \mathrm{C}_{(6,6 ; 8,8)-\mathrm{H}} \\ \mathrm{C}_{\left(5,5^{-} ; 9,9\right)^{-}-\mathrm{H}} \end{gathered}$	$\begin{gathered} 2.16-2.23, \mathrm{~m}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz} \\ 2.36-2.49, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.33 \mathrm{~Hz} \\ 4.68-4.72, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=14.4 \mathrm{~Hz} \\ 8.65-8.67, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.41 \\ \mathrm{~Hz} \\ 9.28-9.30, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.87 \\ \mathrm{~Hz} \end{gathered}$

Chapter Three
Results and Discussion

	$\mathrm{C}_{(9)}-\mathrm{H}$	$1.90-2.14, \mathrm{~m}, 4 \mathrm{H}, J_{\mathrm{HH}}=94 \mathrm{~Hz}$
	$\mathrm{C}_{(8)}-\mathrm{H}$	$2.70-2.73, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=12.8 \mathrm{~Hz}$
	$\mathrm{C}_{(10)^{-}-\mathrm{H}}^{5}$	$2.89-2.920, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=9.6 \mathrm{~Hz}$
	$\mathrm{C}_{(2,2)^{-}-\mathrm{H}}$	$4.27-4.30, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=11.2 \mathrm{~Hz}$
	$\mathrm{C}_{(4,4 ; 6,6)^{-}-\mathrm{H}}$	$7.49-7.53, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=16 \mathrm{~Hz}$
	$\mathrm{C}_{\left(3,3^{-} ; 7,7\right)^{-}-\mathrm{H}}$	$8.61-8.62, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=4.4 \mathrm{~Hz}$

Table (3. 7) ${ }^{13}$ C NMR data for the ligands measured in DMSO-d6 and chemical shift in p.p.m (δ)

Compound	Func. Group	$\boldsymbol{\delta}$ (P.P.M)
L^{1} isomer 1	$\mathrm{C}_{(2,2)}{ }^{-}$	60.01
	$\mathrm{C}_{(4,4 ; 6,6)}{ }^{-}$	126.59
	$\mathrm{C}_{(3,3 ; 7,7)}{ }^{-}$	144.01
	$\mathrm{C}_{(5,5)}{ }^{-}$	152.76
	$\mathrm{C}_{(1,1)}$	169.09
Isomer 2	$\mathrm{C}_{(2,2)}$	60.92
	$\mathbf{C}_{(4,4 ; 6,6)}{ }^{-}$	126.80
	$\mathrm{C}_{(3,3 ; 7,7)}{ }^{-}$	149.02
	$\mathrm{C}_{(5,5)}{ }^{\text {) }}$	152.73
	$\mathrm{C}_{(1,1)}$	174.35
\mathbf{L}^{2}	$\mathrm{C}_{(3,3 ; 5,5)}$	125.46
	$\mathrm{C}_{(2,2 ; 6,6)}{ }^{-}$	150.90
	$\mathrm{C}_{(4)}$	151.52
		151.56
	$\mathrm{C}_{(1)}$	173.01

\mathbf{L}^{3}	$\begin{gathered} \mathbf{C}_{(2,2)^{\prime}} \\ \mathbf{C}_{(3,3)} \\ \mathbf{C}_{\left(5,5^{-} ; 7,7^{\prime}\right)} \\ \mathbf{C}_{\left(5,5^{-} ; 7,7\right)} \\ \mathbf{C}_{(4,4 ; 8,8)} \\ \mathbf{C}_{(6,6)} \\ \mathbf{C}_{(1, \bar{\prime})} \end{gathered}$	$\begin{gathered} \hline 29.99 \\ 58.69 \\ 124.93 \\ 125.24 \\ 145.70 \\ 153.60 \\ 177.00 \end{gathered}$
L^{4}	$\begin{gathered} \mathbf{C}_{\left(3,3^{\prime}\right)} \\ \mathbf{C}_{\left(2,2^{\prime}\right)} \\ \mathbf{C}_{(4,4)} \\ \mathbf{C}_{\left(6,6^{-9} ; 8,8^{\prime}\right)} \\ \mathbf{C}_{(5,5 ; 9,9)} \\ \mathbf{C}_{(7,7)} \\ \mathbf{C}_{(1,1)} \end{gathered}$	$\begin{gathered} \hline 26.08 \\ 30.23 \\ 59.77 \\ 125.69 \\ 145.93 \\ 152.17 \\ 173.38 \end{gathered}$
\mathbf{L}^{5}	$\begin{gathered} \mathbf{C}_{(9)} \\ \mathbf{C}_{(8,10)} \\ \mathbf{C}_{(2,2)} \\ \mathbf{C}_{(4,4 ; 6, \overline{6})} \\ \mathbf{C}_{(3, \overline{3} ; 7,7)} \\ \mathbf{C}_{(5, \overline{5})} \\ \mathbf{C}_{(1, \overline{1})} \end{gathered}$	29.23 33.83 59.49 125.72 127.85 146.73 147.22 174.11

(3.8) Mass Spectra for the ligands

(3.8.1) Mass spectrum of L^{1}

The high resolution electrospray (+) mass spectrum of L^{1} is presented in Figure (3. 33). The molecular ion peak for the ligand is observed at $\mathrm{m} / \mathrm{z}=273.0871(\mathrm{M})^{+}($ 24%) for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$, requires $=273.0870$. The other peaks detected at $\mathrm{m} / \mathrm{z}=243(42$ \%), 215 (100 \%), 185 (5 \%) and 157 (50 \%) correspond to [$\left.\mathrm{M}-\mathrm{CH}_{2} \mathrm{O}\right]^{+}$, [M$\left.\left(\mathrm{CH}_{2} \mathrm{O}+\mathrm{CO}\right)\right]^{+}, \quad\left[\mathrm{M}-\left(\mathrm{CH}_{2} \mathrm{O}+\mathrm{CO}+\mathrm{CH}_{2} \mathrm{O}\right)\right]^{+} \quad$ and $\quad\left[\mathrm{M}-\left(\mathrm{CH}_{2} \mathrm{O}+\mathrm{CO}+\mathrm{CH}_{2} \mathrm{O}+\mathrm{CO}\right)\right]^{+}$, respectively. The peak at $\mathrm{m} / \mathrm{z}=429(10 \%)$ corresponds to $\left[\mathrm{M}-\left(\mathrm{CH}_{2} \mathrm{O}+\mathrm{CO}\right)_{2}\right]^{+}$. The accurate electrospray mass of the ligand, observed and theoretical, is presented in Figure (3.34). The fragmentation pattern of the molecular ion of L^{1} is shown in Scheme (3. 3).

Figure (3. 33) ES (+) mass spectrum of \mathbf{L}^{1}

Figure (3. 34)The accurate ES (+) mass spectrum of L 1

Scheme (3. 3) The fragmentation pattern of \mathbf{L}^{1}

(3.8.2) The mass spectrum of L^{2}

The EI (+) mass spectrum of L^{2} is presented in Figure (3. 35). The molecular ion peak for the ligand is observed at $m / z=244.8\left(\mathrm{M}^{+}(25 \%)\right.$ for $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $=244.20)$. The peak detected at $\mathrm{m} / \mathrm{z}=156.0(100 \%)$ correspond to $\left[\mathrm{M}-2 \mathrm{CO}_{2}\right]^{+}$. Peaks detected at $128(10 \%)$ and $42(8 \%)$ are assigned to $\left[\mathrm{M}-\left(2 \mathrm{CO}_{2}+\mathrm{N}_{2}\right)\right]^{+}$. The fragmentation pattern of the molecular structure is shown in Scheme (3. 4).

Figure (3. 35) EI (+) mass spectrum of L^{2}

Scheme (3.4) The fragmentation pattern of L^{2}

(3.8.3) The mass spectrum of L^{3}

The high resolution electrospray (+) mass spectrum of L^{3} is presented in Figure (3. 36). The molecular ion peak for the ligand is observed at $\mathrm{m} / \mathrm{z}=301.1184$ $(M)^{+}(5 \%)$ for $\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$, requires $=301.1183$. The other peaks detected at $\mathrm{m} / \mathrm{z}=257$ (32\%), 229 (68\%), and 157 (100\%) correspond to $\left[\mathrm{M}-\mathrm{CO}_{2}\right]^{+}$, $\left[\mathrm{M}-\left(\mathrm{CO}_{2}+\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right]^{+}$, and ($\left.\mathrm{M}-\left(\mathrm{CO}_{2}+\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)\right]^{+}$, respectively. The accurate electrospray mass of the ligand, observed and calculated data, is presented in Figure (3.37). The fragmentation pattern of the molecular ion is shown in Scheme (3. 5).

Figure (3. 36) ES (+) mass spectrum of \mathbf{L}^{3}

Figure (3. 37)The accurate ES (+) mass spectrum of L^{3}

Scheme (3. 5) The fragmentation pattern of L^{3}

(3.8.4) The mass spectrum of L^{4}

The EI (+) mass spectrum of L^{4} is presented in Figure (3. 38). The molecular ion peak for the ligand is observed at $\mathrm{m} / \mathrm{z}=328.7(\mathrm{M})^{+}(13 \%)$. The other peaks detected at $\mathrm{m} / \mathrm{z}=284.5$ (5\%), 242.4 (3\%), 198.2 (5\%), 156 (100\%) and 128 (8\%) correspond to $\left[\mathrm{M}-\mathrm{CO}_{2}\right]^{+}, \quad\left[\mathrm{M}-\left(\mathrm{CO}_{2}+\left(\mathrm{CH}_{2}\right)_{3}\right)\right]^{+}, \quad\left[\mathrm{M}-\left(\mathrm{CO}_{2}+\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{CO}_{2}\right)\right]^{+}, \quad[\mathrm{M}-$ $\left(\mathrm{CO}_{2}+\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{CO}_{2}+\left(\mathrm{CH}_{2}\right)_{3}\right]^{+}$, and $\left[\mathrm{M}-\quad\left(\mathrm{CO}_{2}+\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{CO}_{2}+\left(\mathrm{CH}_{2}\right)_{3}+\mathrm{N}_{2}\right)\right]^{+}$, respectively. The fragmentation pattern of the molecular ion is shown in Scheme (3. $6)$.

Figure (3. 38) ES (+) mass spectrum of L^{4}

Scheme (3. 6) The fragmentation pattern of L^{4}

(3.8.5) The mass spectrum of L^{5}

The high resolution electrospray (+) mass spectrum of L^{5} is presented in Figure (3. 39). The molecular ion peak for the ligand is observed at $\mathrm{m} / \mathrm{z}==315.1(\mathrm{M}+1)^{+}$ (5\%) for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right)^{+}$, requires $\left.=315.13\right)$. The other peaks detected at $\mathrm{m} / \mathrm{z}=271$ (10\%), 213 (7\%) and $198(47 \%)$ correspond to $\left[\mathrm{M}-\mathrm{CO}_{2}\right]^{+},\left[\mathrm{M}-\left(\mathrm{CO}_{2}+\mathrm{CH}_{2} \mathrm{CO}_{2}\right)\right]^{+}$, [M$\left.\left(\mathrm{CO}_{2}+\mathrm{CH}_{2} \mathrm{CO}_{2}+\mathrm{CH}_{3}\right)\right]^{+}$, respectively. The fragmentation pattern of the molecular ion is shown in Scheme (3. 7).

Figure (3. 39) ES (+) mass spectrum of \mathbf{L}^{5}

Scheme (3. 7) The fragmentation pattern of L^{5}

(3.9) Synthesis and characterisation of the complexes

Complexes of the ligands with selected metal ions, $\mathrm{Cr}^{\mathrm{III}}, \mathrm{Mn}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$, $\mathrm{Cu}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}, \mathrm{Cd}^{\mathrm{II}}$ and $\mathrm{Ag}^{\text {I }}$, were synthesised by a similar method, Scheme (3. 8). The complexes were prepared by heating 1 mmol of each ligand with 1 mmol of metal chloride and 1 mmol of sodium azide using a mixture of water/ethanol ($4: 6 \mathrm{v} / \mathrm{v}$). Polymeric complexes of the general formula $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}$, $\left[\mathrm{M}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$, where $\mathrm{M}=\mathrm{Mn}(\mathrm{II})$, $\mathrm{Fe}(\mathrm{II}) \mathrm{Co}(\mathrm{II})$, $\mathrm{Ni}(\mathrm{II}) \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II}), \mathrm{L}^{\mathrm{n}}=\mathrm{L}^{1}-\mathrm{L}^{5}$, are reported.

Where:
$\mathrm{X}=0 ; \mathrm{Y}=0 ; \mathrm{L}^{2}$
$\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=0 ; \mathrm{L}^{1}$
$\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{Y}=0 ; \mathrm{L}^{3}$
$\mathrm{X}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{Y}=0 ; \mathrm{L}^{4}$
$\mathrm{X}=\mathrm{CH}_{2} ; \mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} ; \mathrm{L}^{5}$
$\mathrm{M}=\mathrm{Mn}(\mathrm{II}), \mathrm{Fe}(\mathrm{II}) \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}) \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$

Scheme (3-8) Proposed structures of complexes

These complexes were characterised by elemental microanalysis (C.H.N), A.A, thermal analysis, chloride content, conductance, melting point, IR, UV-Vis, magnetic susceptibility, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ - and DEPT ${ }^{13} \mathrm{C}$ - NMR and mass spectroscopy. Microanalysis (CHN), metal and chloride analyses are in good agreement with the calculated values, Tables (3. 9, 3.11, 3.13, 3.15, 3.17).

The solubility of complexes in different solvents are shown in Tables (3. 8, 3. 10, 3. 12, 3. 14, 3.16).

Table (3. 8) The solubility of L^{1} complexes in different solvents

Complex	$\mathrm{H}_{2} \mathrm{O}$	MeOH	EtOH	$\mathbf{C C l}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	DMF	DMSO
Cr (III)	+	-	-	-	-	\div	+
Mn (II)	\div	-	-	-	-	\div	+
$\mathrm{Fe}(\mathrm{II})$	+	-	-	-	-	\div	+
Co(II)	-	-	-	-	-	\div	+
Ni(II)	\div	-	-	-	-	+	+
$\mathrm{Cu}(\mathrm{II})$	-	-	-	-	-	\div	+
Zn(II)	-	-	-	-	-	\div	+
Cd(II)	-	-	-	-	-	+	+
Ag(I)	+	-	-	-	-	\div	+

[^0]114

Table (3.10) The solubility of L^{2} complexes in different solvents

Complex	$\mathrm{H}_{2} \mathrm{O}$	MeOH	EtOH	CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{6}$	DMF	DMSO
Cr(III)	+	-	-	-	-	+	+
Mn (II)	-	-	-	-	-	\div	+
Fe(II)	+	-	-	-	-	+	+
Co(II)	-	-	-	-	-	\div	+
Ni(II)	\div	-	-	-	-	\div	+
Cu(II)	-	-	-	-	-	\div	+
Zn(II)	\div	-	-	-	-	\div	+
Cd(II)	-	-	-	-	-	\div	+
Ag(I)	-	\div	\div	-	-	\div	+

(\div) sparingly, $\quad(+)$ soluble, $(-)$ insoluble
Table (3.11) Microanalysis results and some physical properties of \mathbf{L}^{2} complexes

Formula	Colour	M.P C	M. W	Yield\%	Micro analysis found (calc)\%				
					C	H	N	Metal	Cl
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{Cr}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 343	605.20	57	$\begin{gathered} 22.63 \\ (23.82) \end{gathered}$	$\begin{gathered} 1.47 \\ (1.67) \end{gathered}$	$\begin{gathered} \hline 33.98 \\ (32.40) \end{gathered}$	$\begin{gathered} 18.65 \\ (17.18) \end{gathered}$	$\begin{gathered} 12.14 \\ (11.72) \end{gathered}$
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Mn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Pale yellow	Dec 327	540.18	69	$\begin{gathered} 25.12 \\ (26.68) \end{gathered}$	$\begin{gathered} 1.72 \\ (1.87) \end{gathered}$	$\begin{gathered} 37.55 \\ (\mathbf{3 6 . 3 0}) \end{gathered}$	$\begin{gathered} 20.77 \\ (20.34) \end{gathered}$	0.67
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$	Yellow	Dec 304	523.99	74	$\begin{gathered} \hline 26.64 \\ (27.51) \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ (1.54) \\ \hline \end{gathered}$	$\begin{gathered} \hline 37.42 \\ (37.42) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21.19 \\ (21.32) \\ \hline \end{gathered}$	0.72
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Co}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Blue	Dec 326	548.17	76				$\begin{gathered} 21.58 \\ (21.50) \\ \hline \end{gathered}$	0.81
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Ni}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 322	547.69	80	$\begin{gathered} \hline 25.21 \\ (26.32) \\ \hline \end{gathered}$	$\begin{gathered} 1.75 \\ (1.84) \end{gathered}$	$\begin{gathered} \hline 34.02 \\ (35.80) \\ \hline \end{gathered}$	$\begin{gathered} 21.81 \\ (21.43) \\ \hline \end{gathered}$	0.13
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Cu}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 315	557.39	60	$\begin{gathered} 24.17 \\ (25.86) \\ \hline \end{gathered}$	$\begin{gathered} 1.89 \\ (1.81) \\ \hline \end{gathered}$	$\begin{gathered} 36.36 \\ (35.18) \\ \hline \end{gathered}$	$\begin{gathered} 23.23 \\ (22.80) \\ \hline \end{gathered}$	0.55
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Zn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	pale yellow	Dec 293	561.08	60				$\begin{gathered} 22.17 \\ (23.31) \end{gathered}$	0.47
$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$	White	Dec 283	637.12	61				$\begin{gathered} 31.32 \\ (33.83) \\ \hline \end{gathered}$	1.02
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Na}_{2} \mathrm{Ag}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	White	189	692.02	52				$\begin{gathered} 31.98 \\ (31.18) \end{gathered}$	0.28

(Calculated)

Table (3.12) The solubility of L^{3} complexes in different solvents

Complex	$\mathrm{H}_{2} \mathrm{O}$	MeOH	EtOH	CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{6}$	DMF	DMSO
Cr(III)	-	-	-	-	-	\div	+
Mn (II)	-	-	-	-	-	\div	+
Fe(II)	-	-	-	-	-	\div	+
Co(II)	-	-	-	-	-	\div	+
Ni(II)	-	-	-	-	-	\div	+
Cu(II)	-	-	-	-	-	\div	+
Zn(II)	-	-	-	-	-	\div	+
Cd(II)	-	-	-	-	-	\div	+
Ag(I)	-	-	-	-	-	\div	+

(\div) sparingly, $\quad(+)$ soluble, (-) insoluble
Table (3. 13) Microanalysis results and some physical properties of \mathbf{L}^{3} complexes

Formula	Colour	M.P C	M.W	Yield\%	Micro analysis found (calc)\%				
					C	H	N	Metal	Cl
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{Cr}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 346	661.30	68	$\begin{gathered} \hline 27.88 \\ (29.06) \\ \hline \end{gathered}$	$\begin{gathered} 2.81 \\ (2.74) \end{gathered}$	$\begin{gathered} 28.26 \\ (29.65) \\ \hline \end{gathered}$	$\begin{gathered} 14.63 \\ (15.73) \end{gathered}$	$\begin{gathered} 10.05 \\ (10.72) \end{gathered}$
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Mn}_{2} \mathrm{~N}_{14} \mathrm{O}_{6}$	Pale brown	Dec 327	614.30	69	$\begin{gathered} 31.17 \\ (31.28) \end{gathered}$	$\begin{gathered} 3.19 \\ (3.28) \end{gathered}$	$\begin{gathered} 33.91 \\ (31.92) \end{gathered}$	$\begin{gathered} 18.91 \\ (17.89) \end{gathered}$	0.61
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Fe}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	brown	Dec 206	598.10	88	$\begin{gathered} \hline 31.36 \\ (32.13) \\ \hline \end{gathered}$	$\begin{gathered} 2.84 \\ (3.03) \end{gathered}$	$\begin{gathered} \hline 33.80 \\ (32.79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 18.98 \\ (18.67) \\ \hline \end{gathered}$	1.40
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Blue	Dec 329	604.27	68				$\begin{gathered} \hline 18.73 \\ (19.51) \\ \hline \end{gathered}$	0.70
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Ni}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 322	603.79	76	$\begin{gathered} \hline 30.81 \\ (\mathbf{3 1 . 8 3)} \\ \hline \end{gathered}$	$\begin{gathered} 2.95 \\ (3.00) \end{gathered}$	$\begin{array}{c\|} \hline 33.48 \\ (32.48) \\ \hline \end{array}$	$\begin{gathered} 19.54 \\ (19.44) \\ \hline \end{gathered}$	1.02
$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$	Green	Dec 325	595.48	74	$\begin{gathered} 32.65 \\ (32.27) \\ \hline \end{gathered}$	$\begin{gathered} 2.56 \\ (2.71) \\ \hline \end{gathered}$	$\begin{gathered} 32.93 \\ (32.93) \\ \hline \end{gathered}$	$\begin{gathered} 21.03 \\ (21.34) \\ \hline \end{gathered}$	1.15
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Zn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	pale yellow	Dec 303	617.19	78				$\begin{gathered} 21.17 \\ (21.19) \end{gathered}$	0.32
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	White	Dec 319	711.23	68				$\begin{gathered} \hline 30.76 \\ (\mathbf{3 1 . 6 1)} \\ \hline \end{gathered}$	0.42
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Na}_{2} \mathrm{Ag}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	White	183	748.12	61				$\begin{array}{r} 27.82 \\ (28.84) \\ \hline \end{array}$	0.43

(Calculated)
118

Table (3.14) The solubility of L^{4} complexes in different solvents

Complex	$\mathrm{H}_{2} \mathrm{O}$	MeOH	EtOH	CCl_{4}	$\mathrm{C}_{6} \mathrm{H}_{6}$	DMF	DMSO
Cr(III)	\div	-	-	-	-	\div	+
Mn (II)	-	-	-	-	-	\div	+
$\mathrm{Fe}(\mathrm{II})$	-	\div	\div	-	-	\div	+
Co(II)	-	-	-	-	-	\div	+
Ni(II)	-	-	-	-	-	\div	+
$\mathrm{Cu}(\mathrm{II})$	\div	-	-	-	-	+	+
Zn(II)	-	-	-	-	-	\div	+
Cd(II)	\div	-	-	-	-	\div	+
Ag(I)	-	\div	\div	-	-	+	+

(\div) sparingly, (+) soluble, (-) insoluble
Table (3. 15) Microanalysis results and some physical properties of \mathbf{L}^{4} complexes

Formula	Colour	M.P C	M.W	Yield\%	Micro analysis found (calc)\%				
					C	H	N	Metal	Cl
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{Cr}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 267	689.36	69	$\begin{gathered} 30.94 \\ (31.36) \end{gathered}$	$\begin{gathered} 3.15 \\ (3.22) \end{gathered}$	$\begin{gathered} 27.66 \\ (28.45) \end{gathered}$	$\begin{gathered} 14.16 \\ (15.09) \end{gathered}$	$\begin{gathered} 11.42 \\ (10.29) \end{gathered}$
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Mn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Pale yellow	Dec 244	624.33	75	$\begin{gathered} 33.67 \\ (\mathbf{3 4 . 6 3)} \end{gathered}$	$\begin{gathered} 3.31 \\ (3.55) \end{gathered}$	$\begin{gathered} 32.34 \\ (31.41) \end{gathered}$	$\begin{gathered} 17.94 \\ (17.60) \end{gathered}$	0.52
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Fe}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$	Brown	Dec 233	608.13	74	$\begin{gathered} \hline 33.57 \\ (35.55) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.18 \\ (3.31) \\ \hline \end{gathered}$	$\begin{gathered} \hline 32.12 \\ (32.25) \\ \hline \end{gathered}$	$\begin{gathered} \hline 17.61 \\ (18.37) \\ \hline \end{gathered}$	1.61
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Co}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Blue	Dec 330	632.33	83				$\begin{gathered} 17.96 \\ (18.64) \\ \hline \end{gathered}$	0.72
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Ni}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 293	631.85	79	$\begin{array}{r} \hline 33.06 \\ (34.22) \\ \hline \end{array}$	$\begin{gathered} 3.32 \\ (3.51) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31.95 \\ (31.04) \\ \hline \end{gathered}$	$\begin{gathered} 18.92 \\ (18.58) \end{gathered}$	0.52
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Cu}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 229	641.55	72	$\begin{gathered} 32.43 \\ (33.70) \\ \hline \end{gathered}$	$\begin{gathered} 3.26 \\ (3.46) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31.45 \\ (\mathbf{3 0 . 5 7}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 20.03 \\ (19.81) \\ \hline \end{gathered}$	0.37
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Zn}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$	White	253	627.22	73				$\begin{gathered} 21.38 \\ (20.85) \\ \hline \end{gathered}$	1.19
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$	White	Dec 309	721.27	62				$\begin{gathered} 29.96 \\ (31.17) \\ \hline \end{gathered}$	0.14
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Na}_{2} \mathrm{Ag}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	White	197	776.17	61				$\begin{gathered} 27.49 \\ (27.79) \\ \hline \end{gathered}$	0.93

[^1]Table (3. 16) The solubility of \mathbf{L}^{5} complexes in different solvents

Complex	$\mathrm{H}_{2} \mathrm{O}$	MeOH	EtOH	CCl4	C6H6	DMF	DMSO
Cr (III)	+	-	-	-	-	\div	+
Mn (II)	\div	-	-	-	-	\div	+
$\mathrm{Fe}(\mathrm{II})$	\div	-	-	-	-	\div	+
Co(II)	-	-	-	-	-	\div	+
Ni(II)	-	-	-	-	-	\div	+
$\mathrm{Cu}(\mathrm{II})$	\div	-	-	-	-	+	+
Zn(II)	\div	-	-	-	-	\div	+
Cd(II)	\div	-	-	-	-	+	+
Ag(I)	+	-	-	-	-	\div	+

(\div) sparingly, $\quad(+)$ soluble, (-) insoluble
Table (3.17) Microanalysis results and some physical properties of \mathbf{L}^{5} complexes

Formula	Colour	M.P C	M. W	Yield\%	Micro analysis found (calc)\%				
					C	H	N	Metal	Cl
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Cr}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 316	675.33	65	$\begin{gathered} \hline 31.68 \\ (30.23) \\ \hline \end{gathered}$	$\begin{gathered} 2.76 \\ (2.99) \\ \hline \end{gathered}$	$\begin{gathered} 28.46 \\ (29.04) \\ \hline \end{gathered}$	$\begin{gathered} 14.02 \\ (15.40) \\ \hline \end{gathered}$	$\begin{gathered} 10.24 \\ (10.50) \end{gathered}$
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Mn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	yellow	Dec 326	610.31	74	$\begin{array}{r} 31.96 \\ (33.46) \\ \hline \end{array}$	$\begin{gathered} 3.15 \\ (3.30) \\ \hline \end{gathered}$	$\begin{gathered} 30.12 \\ (32.13) \\ \hline \end{gathered}$	$\begin{gathered} 18.16 \\ (18.00) \\ \hline \end{gathered}$	0.72
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Fe}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Brown	Dec 315	612.12	79	$\begin{gathered} 31.85 \\ (33.36) \\ \hline \end{gathered}$	$\begin{gathered} 3.03 \\ (3.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31.01 \\ (32.04) \\ \hline \end{gathered}$	$\begin{gathered} 18.33 \\ (18.25) \\ \hline \end{gathered}$	0.83
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Co}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Blue	Dec 308	618.30	71				$\begin{gathered} 18.77 \\ (19.06) \\ \hline \end{gathered}$	0.64
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Ni}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 330	617.82	74	$\begin{gathered} \hline 33.99 \\ (33.05) \\ \hline \end{gathered}$	$\begin{gathered} 3.14 \\ (3.26) \\ \hline \end{gathered}$	$\begin{gathered} \hline 30.69 \\ (31.74) \\ \hline \end{gathered}$	$\begin{gathered} 19.12 \\ (19.00) \\ \hline \end{gathered}$	0.51
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Cu}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	Green	Dec 328	627.52	73	$\begin{gathered} 31.12 \\ (32.54) \\ \hline \end{gathered}$	$\begin{gathered} 3.07 \\ (3.21) \\ \hline \end{gathered}$	$\begin{gathered} 29.17 \\ (31.25) \\ \hline \end{gathered}$	$\begin{gathered} 19.57 \\ (20.25) \\ \hline \end{gathered}$	0.07
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Zn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	pale yellow	193	631.21	67				$\begin{gathered} 18.76 \\ (20.72) \end{gathered}$	0.81
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	White	223	725.25	62				$\begin{array}{r} 28.32 \\ 31.00) \\ \hline \end{array}$	0.89
$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Na}_{2} \mathrm{Ag}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$	White	183	762.15	60				$\begin{gathered} 27.64 \\ (28.31) \\ \hline \end{gathered}$	0.68

(Calculated)
122

(3.10) IR Spectral data for the complexes

(3.10.1) IR spectral data for L^{1} complexes

The structurally important IR absorption frequencies of the prepared complexes with L^{1} are presented in Table (3.18). The IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, Figure (3.40), exhibits bands related to the carboxylato moiety at 1620 and $1406 \mathrm{~cm}^{-1}$, which are assigned to anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, respectively ${ }^{(170)}$. The shift of these bands to lower wave numbers by 14 and $62 \mathrm{~cm}^{-1}$, for the anti- and symmetric modes, respectively compared with that in the free L^{1} ligand can be attributed to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π-system of the ligand, and indicating the involvement of the carboxylato group in coordination with the $\mathrm{Cr}(\mathrm{III})$ ion. The stretching vibration anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{s}\left(\mathrm{COO}^{-}\right)$modes, should be helping in elucidating the structure of the complexes. The $\Delta\left(v_{a s}-v_{s}\right)$ value of $\left(216 \mathrm{~cm}^{-1}\right)$ is consistent with carboxylato bridge coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. The spectrum shows bands at 1603 and $1584 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{C}=\mathrm{N})$ and $v(\mathrm{C}=\mathrm{C})$ stretching, respectively ${ }^{(172)}$. These bands are shifted to lower frequency in comparison with that in the free ligand, due to complex formation. The band at 2868 and $3065 \mathrm{~cm}^{-1}$ are assigned to $v(\mathrm{C}-\mathrm{H})_{\text {aro }}$ and $v\left(\mathrm{CH}_{2}\right)$ stretches ${ }^{(172)}$, respectively. The spectrum exhibited new bands which are not observed in the spectrum of the ligand. These bands are located at 2037 and $1368 \mathrm{~cm}^{-1}$, which are attributed to $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{s}\left(\mathrm{~N}_{3}\right)$ stretches, respectively ${ }^{(173)}$. These values suggest azido bridging mode with metal ion with $\mathrm{N}_{\left(\mu_{1,1)}\right.}$ fashion (see Figure 1. 5, page 12) ${ }^{(173)}$. Band at $1225 \mathrm{~cm}^{-1}$ attributed to $v(\mathrm{C}-\mathrm{N})$ stretching ${ }^{(168)}$. In the low-frequency region, spectrum of the $\mathrm{Cr}(\mathrm{III})$ complex showed new bands which are not present in the spectrum of the ligand. These bands are located at 550, 588 and 436, 499
cm^{-1}, which are attributed to $v(\mathrm{Cr}-\mathrm{O})$ and $v(\mathrm{Cr}-\mathrm{N})$, respectively ${ }^{(174)}$. Additional broad band observed around $3462 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(166)}$.

The IR spectrum of the $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 41), showed strong bands at 1602 and $1404 \mathrm{~cm}^{-1}$, which can be attributed to antisymmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, respectively of the carboxylato moiety ${ }^{(175)}$. These bands are shifted to lower wave numbers by 32 and 64 cm^{-1} compared with that in the free L^{1} ligand. This can be attributed to delocalisation of metal electron density ($t_{2} g$) to the π-system of the ligand, and confirming the involvement of the carboxylato group in coordination with the $\mathrm{Mn}(\mathrm{II})$ ion. The $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ value of $\left(198 \mathrm{~cm}^{-1}\right)$ is in a good agreement with previous studies of carboxylato bridge coordination fashion with metal atoms in the syn-syn mode ${ }^{(171)}$. The new bands at 2038 and $1338 \mathrm{~cm}^{-1}$ may be attributed to $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{s}\left(\mathrm{~N}_{3}\right)$ stretches, respectively ${ }^{(176)}$. These values suggest an EO azido bridge mode with metal ion, $\mathrm{N}\left(\mu_{1,1)}\right.$ fashion, (see Figure 1.5) ${ }^{(176)}$. The spectrum showed new bands at 548,579 and $442,467 \mathrm{~cm}^{-1}$ which are attributed to $v(\mathrm{Mn}-\mathrm{O})$ and $v(\mathrm{Mn}-\mathrm{N})^{(174)}$. Broad band observed around $3422 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(177)}$.

The IR spectra of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, Figures (3.42 to 3.48) exhibit similar trend to that of the $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex and same reasoning could be used to interpret the spectra. All complexes show syn-syn modes, except $\operatorname{Co}(\mathrm{II})$ - complex which shows the mode of syn-anti. The $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ value of $\left(165 \mathrm{~cm}^{-1}\right)$ confirming carboxylato bridge coordination fashion
with $\mathrm{Co}(\mathrm{II})$ ion in the syn-anti mode. This is in a good agreement with previous studies of syn-anti carboxylato bridge coordination mode ${ }^{(177)}$.

The appearance of $v(\mathrm{M}-\mathrm{O})$ at frequency higher than that of $v(\mathrm{M}-\mathrm{N})$ due to the larger dipole moment change for the M-O bond compared to the $\mathrm{M}-\mathrm{N}$ bond ${ }^{(178,179)}$. Furthermore, the appearance of more than one value for M-O and M-N may indicate the formation of more than one dimension structure upon coordination, and indicating the polymer structure of the complexes.

Figure (3.4) IR spectrum of L^{1}

Figure (3.40) IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.41) IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$

Figure (3.42) IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\left(\mathrm{~N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}\right.$

Figure (3.43) IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.44) IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 45) IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{\mathbf{1}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.46) IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.47) IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.48) IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Table (3.18) Infrared spectral data (wave number) cm^{-1} of L^{1} complexes

Complex	vO-H	$\mathrm{var}_{\mathrm{ar}} \mathrm{C}-\mathrm{H}$	$\mathbf{v C H}_{2}$	$\mathrm{vas}_{\text {a }} \mathrm{N}_{3}$	$\mathrm{vas}^{\text {COO }}$	vC=N	vC=C	$\mathrm{v}_{\mathrm{s}} \mathrm{COO}$	סO-H	$\mathbf{v}_{\text {s }} \mathbf{N}_{3}$	vC-N	$\delta_{\text {o.o.P }}$	vM-O	vM-N	$\Delta\left(\mathbf{v a s}_{\text {as }} \mathbf{v}\right)$
L^{1}	-	3038	2913	-	1634	1611	1593	1468	-	-	1231		-	-	166
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	3462	3065	2868	2037	1620	1603	$\begin{aligned} & 1584 \\ & 1436 \end{aligned}$	1406	1558	1368	1225	$\begin{aligned} & 816 \\ & 689 \end{aligned}$	$\begin{aligned} & 550 \\ & 588 \end{aligned}$	$\begin{aligned} & 436 \\ & 499 \end{aligned}$	206
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4} \mathbf{H}_{2} \mathrm{O}\right.$	3422	3030	2872	2038	1603	1560	1560	1404	1518	1338	1179	$\begin{aligned} & 812 \\ & 646 \end{aligned}$	$\begin{aligned} & 548 \\ & 579 \end{aligned}$	$\begin{aligned} & 442 \\ & 467 \end{aligned}$	199
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3414	3044	2859	2102	1629	1553	$\begin{aligned} & 1528 \\ & 1456 \end{aligned}$	1412	1501	1298	1229	818	525	$\begin{aligned} & 428 \\ & 455 \end{aligned}$	217
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3422	3046	2830	2045	1623	1593	1580	1458		1362	1223	$\begin{aligned} & 841 \\ & 652 \end{aligned}$	$\begin{aligned} & 541 \\ & 600 \end{aligned}$	$\begin{gathered} 413 \\ 27 \\ 476 \end{gathered}$	165
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3395	$\begin{aligned} & 3084 \\ & 3055 \end{aligned}$		2078	1603	1613	1533	1416	1491	1317	1221	$\begin{aligned} & 856 \\ & 731 \end{aligned}$	$\begin{aligned} & 563 \\ & 498 \end{aligned}$	$\begin{aligned} & 467 \\ & 498 \end{aligned}$	187
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3449	3053	2849	2112	1612	1643	1546	1418	1528	Overlap	1223	$\begin{aligned} & 918 \\ & 655 \end{aligned}$	$\begin{aligned} & 505 \\ & 586 \end{aligned}$	$\begin{aligned} & 419 \\ & 453 \end{aligned}$	194
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3408	3012	2849	2056	1618	1580	$\begin{aligned} & 1549 \\ & 1468 \\ & \hline \end{aligned}$	1425	1531	1367	1227	$\begin{aligned} & 920 \\ & 671 \end{aligned}$	569	444	193
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4} \mathbf{H}_{2} \mathrm{O}\right.$	3424	3090	2864	2099	1612	1628	1540	1406	1506	1354	1223	$\begin{aligned} & 934 \\ & 673 \end{aligned}$	$\begin{aligned} & 505 \\ & 532 \\ & 565 \end{aligned}$	$\begin{aligned} & 401 \\ & 453 \end{aligned}$	206
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]_{\mathbf{2}} \mathrm{O}$	3406	3048	2941	2083	1612	1641	$\begin{aligned} & 1641 \\ & 1466 \end{aligned}$	1418	1551	1302	1225	$\begin{aligned} & 820 \\ & 644 \end{aligned}$	$\begin{aligned} & 503 \\ & 567 \end{aligned}$	$\begin{aligned} & 419 \\ & 453 \end{aligned}$	194

Where: ar = aromatic; s = symmetric; as = antisymmetric; o.o.p = out of plane.
129

(3.10.2) IR Spectral data for L^{2} complexes

The IR spectral data of L^{2} complexes are presented in Table (3.19). In general, the bands of $\left(\mathrm{COO}^{-}\right)$moiety in complexes were abruptly decreased, which proves the metal-carboxylate binding. The IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3.49), displays characteristic strong bands which may be responsible of the anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{s}\left(\mathrm{COO}^{-}\right)$modes, of the carboxylato moiety which located at 1626 and $1418 \mathrm{~cm}^{-1}$, respectively ${ }^{(180)}$. The shift of these bands to lower wave numbers by 4 and $40 \mathrm{~cm}^{-1}$ compared with that in the free L^{2} ligand can be due to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π-system of the ligand, and indicating the involvement of the $\left(\mathrm{COO}^{-}\right)$in coordination with the $\mathrm{Cr}($ III $)$ ion. The $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ value of (208 $\left.\mathrm{cm}^{-1}\right)$ is in a good agreement with carboxylato bridge coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. The spectrum shows bands of $v(\mathrm{C}=\mathrm{N})$ and $v(\mathrm{C}=\mathrm{C})$ stretching at 1616 and $1593 \mathrm{~cm}^{-1}$, respectively ${ }^{(166,167)}$. The shift of these bands to lower frequencies, compared with that in the free ligand, may be due to complex formation. The spectrum shows new bands at 2091 and $1339 \mathrm{~cm}^{-1}$, which are attributed to $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{s}\left(\mathrm{~N}_{3}\right)$ stretches, respectively ${ }^{(173,176)}$. These values is in agreement with the suggest azido bridge mode with metal ion with $\mathrm{N}_{\left(\mu_{-1,1)}\right.}$ fashion (see Figure 1. 5) ${ }^{(176)}$. The band at $1225 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{C}-\mathrm{N})$ stretching. In the low-frequency region, spectrum of the $\mathrm{Cr}($ III $)$ complex showed new bands which are not present in the spectrum of the ligand. These bands are located at $500,517,596$ and $419,436 \mathrm{~cm}^{-1}$ which are attributed to $v(\mathrm{Cr}-\mathrm{O})$ and $v(\mathrm{Cr}-\mathrm{N})$, respectively ${ }^{(174)}$. Additional broad band observed around $3385 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(177)}$.

The essential infrared data of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Table (3.19), Figure(3.50) displays bands of the carboxylato moiety at 1614 and 1416
cm^{-1}, which may be assigned to anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, respectively ${ }^{(181)}$. The shifting of these bands to lower wave numbers by 16 and $42 \mathrm{~cm}^{-1}$ compared with that in the free L^{2} ligand can be attributed to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π-system of the ligand, and indicating the involvement of the carboxylato group in coordination with the $\mathrm{Mn}(\mathrm{II})$ ion. The $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ value of $\left(198 \mathrm{~cm}^{-1}\right)$ is consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. The $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{s}\left(\mathrm{~N}_{3}\right)$ vibrations of the azide group appear as strong bands at 2081 and $1329 \mathrm{~cm}^{-1}$, respectively ${ }^{(176)}$. The appearance of these bands in this position indicated the azido bridging mode with metal ion with $\mathrm{N}_{\left(\mu_{-1,1)}\right.}$ fashion (see Figure 1.5) ${ }^{(176)}$. While the bands at 500,561 and $431,442 \mathrm{~cm}^{-1}$ are attributed to $v(\mathrm{Mn}-\mathrm{O})$ and $v(\mathrm{Mn}-\mathrm{N})$, respectively ${ }^{(178,179)}$.

The IR spectrum of the $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex, Figure (3.51) shows two absorption peaks at 1601 and $1410 \mathrm{~cm}^{-1}$, which can be assigned to the antisymmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, respectively ${ }^{(180)}$. The shift of these bands can be explained by the same method that used in the interpretation of Mn (II) complex. The $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ value of $\left(191 \mathrm{~cm}^{-1}\right)$ refers to the carboxylato bridge coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. Bands detected at 552,627 and $417,436,488 \mathrm{~cm}^{-1}$ are attributed to $v(\mathrm{Fe}-\mathrm{O})$ and $v(\mathrm{Fe}-\mathrm{N})$, respectively ${ }^{(174)}$. Additional broad band observed around $3381 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(177)}$. Other bands are summarised in Table (3.19).

The IR spectra of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, Figures (3.52 to 3.57), show similar pattern to that of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex and same reasoning could be used to interpret the spectra.

The prepared complexes showed both $v_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)$and $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$frequencies is changed in the same direction, indicating that the coordination of the carboxylate
moiety is bridging bidentate. This is because the bond orders of both C-O bonds would change by the same amount. This result is in accord with data reported by Hamed and co-workers ${ }^{(182)}$. All complexes show the coordination fashion of the carboxylato group with the metal atoms in the syn-syn mode.

The appearance of $v\left(\mathrm{M}^{-} \mathrm{O}\right)$ at frequency higher than that of $v(\mathrm{M}-\mathrm{N})$ due to the larger dipole moment change for the M-O bond compared to the M-N bond ${ }^{(178,179)}$. Furthermore, the appearance of more than one value for M-O and M-N may indicate the formation of more than one dimension structure upon coordination, and indicating the polymer structure of the complexes.

Figure (3.6) IR spectrum of \mathbf{L}^{2}

Figure (3.49) IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.50) IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.51) IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Figure (3.52) IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.53) IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$

Figure (3.54) IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 55) IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.56) IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathbf{N}_{3}\right)_{4}\right]$

Figure (3. 57) IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathbf{H}_{2} \mathrm{O}$
Where: ar = aromatic; s = symmetric; as = antisymmetric; o.o.p = out of plane.

Complex	vO-H	$\mathrm{var}_{\text {ar }} \mathrm{C}$ H	vCH2	$\mathrm{vas}_{\text {a }} \mathrm{N}_{3}$	$\mathrm{vas}_{\text {a }} \mathrm{COO}$	vC=N	vC=C	$\mathrm{v}_{\mathrm{s}} \mathbf{C O O}$	8O-H	$\mathrm{v}_{\mathrm{s}} \mathrm{N}_{3}$	vC-N	$\delta_{\text {0.0.P }}$	vM-O	vM-N	$\Delta\left(v_{\text {as }}-\boldsymbol{v}\right)$
\mathbf{L}^{2}		3046	2903	-	1630	1620	1595	1458	-	-	1223		-	-	172
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	3385	$\begin{array}{r} 3084 \\ 3058 \\ \hline \end{array}$	2943	2091	1626	1616	$\begin{array}{r} 1593 \\ 1474 \\ \hline \end{array}$	1418	1558	1339	1225	799	$\begin{array}{r} 517 \\ 576 \\ \hline \end{array}$	$\begin{aligned} & 419 \\ & 436 \\ & \hline \end{aligned}$	208
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3388	$\begin{aligned} & 3055 \\ & 3038 \end{aligned}$	2837	2081	1614	1603	$\begin{aligned} & 1568 \\ & 1474 \end{aligned}$	1416	1533	1329	1223	$\begin{aligned} & 856 \\ & 731 \end{aligned}$	$\begin{aligned} & 500 \\ & 561 \end{aligned}$	$\begin{aligned} & 431 \\ & 442 \end{aligned}$	198
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3381	3098	2872	2048	1601	1634	$\begin{aligned} & 1551 \\ & 1487 \end{aligned}$	1410	1516	1342	1229	$\begin{aligned} & 831 \\ & 687 \end{aligned}$	$\begin{aligned} & 552 \\ & 627 \end{aligned}$	$\begin{aligned} & 417 \\ & 436 \\ & 488 \end{aligned}$	191
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3422	3061	2889	2079	1607	1624	1624	1416	1533	1319	1221	$\begin{aligned} & 859 \\ & 635 \end{aligned}$	$\begin{aligned} & 498 \\ & 559 \end{aligned}$	$\begin{aligned} & 426 \\ & 459 \end{aligned}$	191
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3404	3063	2914	2077	1609	1632	1632	1414	1537	1342	1224	$\begin{aligned} & 856 \\ & 637 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 498 \\ & 565 \\ & \hline \end{aligned}$	405	195
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]^{4} \mathrm{H}_{2} \mathrm{O}$	3437	$\begin{aligned} & 3092 \\ & 3038 \end{aligned}$	2864	2089	1605	1558	1558	1418	1506	1354	1223	$\begin{aligned} & 851 \\ & 646 \end{aligned}$	$\begin{aligned} & 505 \\ & 530 \\ & 567 \end{aligned}$	$\begin{aligned} & 441 \\ & 452 \\ & 484 \end{aligned}$	187
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3422	$\begin{aligned} & 3096 \\ & 3065 \\ & 3015 \end{aligned}$	2911	2087	1605	1535	1535	1416	1491	1321	1217	$\begin{aligned} & 854 \\ & 640 \end{aligned}$	$\begin{aligned} & 567 \\ & 496 \end{aligned}$	$\begin{aligned} & 426 \\ & 484 \end{aligned}$	189
[$\left.\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3453	$\begin{aligned} & 3078 \\ & 3051 \end{aligned}$	2835	2060	1601	1563	1552	1418	1539	1329	1218	$\begin{aligned} & 858 \\ & 675 \end{aligned}$	$\begin{aligned} & \hline 500 \\ & 563 \\ & \hline \end{aligned}$	$\begin{aligned} & 406 \\ & 444 \\ & \hline \end{aligned}$	183
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3443	$\begin{aligned} & 3075 \\ & 3026 \\ & \hline \end{aligned}$	2895	2046	1591	1531	1531	1406	1489	1326	1219	$\begin{aligned} & 880 \\ & 673 \end{aligned}$	$\begin{aligned} & 498 \\ & 571 \end{aligned}$	$\begin{aligned} & 420 \\ & 476 \end{aligned}$	185

136

(3.10.3) IR Spectral data for L^{3} complexes

The IR spectral data of L^{3} complexes are presented in Table (3. 20). The IR spectrum of the $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$. $\mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 58), shows the characteristic carboxylato stretching frequency anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{s}\left(\mathrm{COO}^{-}\right)$modes at 1620 and $1420 \mathrm{~cm}^{-1}$, respectively ${ }^{(170)}$. The shift of these bands to lower wave numbers by 12 and $38 \mathrm{~cm}^{-1}$ compared with that in the free L^{3} ligand can be attributed to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π system of the ligand, and indicating the involvement of the carboxylato moiety in coordination with the $\mathrm{Cr}(\mathrm{III})$ ion. The vibration stretching modes $v_{a s}\left(\mathrm{COO}^{-}\right)$and v_{s} $\left(\mathrm{COO}^{-}\right)$should help in elucidating the structure of the complex. The $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ value of $\left(200 \mathrm{~cm}^{-1}\right)$ is consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode ${ }^{\left(171,{ }^{183)}\right.}$. Bands assigned to $v(\mathrm{C}=\mathrm{N})$ and $v(\mathrm{C}=\mathrm{C})$ stretching, were appeared at 1616 and $1595 \mathrm{~cm}^{-1}$, respectively ${ }^{(172)}$. These bands are shifted to higher frequency in comparison with that in the free ligand, due to complex formation. The band at 3062,3044 and $2862 \mathrm{~cm}^{-1}$ are assigned to $v(\mathrm{C}-$ $\mathrm{H})_{\text {aromatic }}$ and $v\left(\mathrm{CH}_{2}\right)$ stretches, respectively ${ }^{(168)}$. The spectrum exhibited new band which are not present in the spectrum of the ligand. This band is located at $2068 \mathrm{~cm}^{-1}$ and may be assigned to asymmetric stretching mode of the azide $v_{\mathrm{as}}\left(\mathrm{N}_{3}\right)$. The appearance of a shoulder at $2114 \mathrm{~cm}^{-1}$ may imply to the involvement of the azido group ${ }^{(184)}$ to interact through different layers in the polymeric complex. This could be occurred with the assistance of the hydrated water molecule by forming a hydrogen bond between the azido moiety and $\mathrm{H}_{2} \mathrm{O}$ via $\mathrm{N}(\mu-3)$ fashion. Therefore the azido group adopts $\mathrm{N}(\mu-1,1,3)$ fashion (see Figure 1-5) ${ }^{(185)}$. The multiple bands are indicative of multiple bridging modes of the azido ligand, while the band at $1335 \mathrm{~cm}^{-}$ ${ }^{1}$ can be assigned to symmetric vibration $v_{s}\left(\mathrm{~N}_{3}\right)$ stretching. (see Figure 1.5) ${ }^{(176)}$. The band at $1223 \mathrm{~cm}^{-1}$ attributed to $v(\mathrm{C}-\mathrm{N})$ stretching ${ }^{(168)}$. In the low-frequency
region, spectrum of the Cr (III) complex showed new bands which are not present in the spectrum of the ligand. These bands are located at 536,562 and $424,440 \mathrm{~cm}^{-1}$, which are attributed to $v(\mathrm{Cr}-\mathrm{O})$ and $v(\mathrm{Cr}-\mathrm{N})$, respectively ${ }^{(174)}$. Additional broad band observed around 3414 is assigned to hydrated water molecule in the complex ${ }^{(166)}$. The appearance of $v(\mathrm{Cr}-\mathrm{O})$ at frequency higher than that of $v(\mathrm{Cr}-\mathrm{N})$ is due to the larger dipole moment change for the $\mathrm{M}-\mathrm{O}$ bond compared to the $\mathrm{M}-\mathrm{N}$ bond ${ }^{(178,179)}$. Furthermore, the appearance of more than one value for M-O and M-N may reflect the impact of stacking of complex molecules in the polymeric structure.

The FTIR data of the $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, complex is summarised in Table (3. 20) and is shown in Figure (3.60). The spectrum shows bands related to the carboxylato moiety. These bands are detected at 1617 and $1400 \mathrm{~cm}^{-1}$, which assigned to anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{s}\left(\mathrm{COO}^{-}\right)$modes, respectively ${ }^{(181)}$. These bands are shifted to lower wave numbers by 15 and $58 \mathrm{~cm}^{-1}$ in comparison with that in the free L^{3} ligand, The shift of these bands can be explained by using same reasoning used in the interpretation of $\mathrm{Cr}(\mathrm{lll})$ complex. The difference between $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$is currently employed to determine the corresponding mode of the caboxylate group. The $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ value of $\left(217 \mathrm{~cm}^{-1}\right)$ is in agreement with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. The stretching of $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{\mathrm{s}}\left(\mathrm{N}_{3}\right)$ azido group are observed at 2064 and $1346 \mathrm{~cm}^{-1}$, respectively ${ }^{(173)}$ suggesting the EO bridging mode with metal ion with $\mathrm{N}_{(} \mu_{-1,1)}$ fashion (see Figure 1.5) ${ }^{(176)}$. The bands at 536, 563 and $406,436 \mathrm{~cm}^{-1}$, are attributed to $v(\mathrm{Fe}-\mathrm{O})$ and $v(\mathrm{Fe}-\mathrm{N})$, respectively ${ }^{(174)}$. Additional broad band observed around $3439 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule present in the complex ${ }^{(177)}$. The appearance of $v(\mathrm{Fe}-\mathrm{O})$ at frequency higher than that of $v(\mathrm{Fe}-\mathrm{N})$ due to the larger dipole moment change for the $\mathrm{M}-\mathrm{O}$ bond compared to the $\mathrm{M}-\mathrm{N}$ bond ${ }^{(178,179)}$. Furthermore, the appearance of more than one value for M-O and M-N
may indicate the formation of more than one dimension structure upon coordination, and indicating the polymer structure of the complexes.

The IR spectrum of the $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex with L^{3} is shown in Figure (3. 62), Table (3. 20). The spectrum exhibits similar bands to that in the Fe (II) complex, except the azido group showed two bands, one is shoulder, of the $v_{a s}\left(\mathrm{~N}_{3}\right)$ one detected at $2060 \mathrm{~cm}^{-1}$. The appearance of a shoulder at $2091 \mathrm{~cm}^{-1}$ may imply to the involvement of the azido group ${ }^{(184)}$ to interact with other species through different layers in the polymeric complex. This could be occurred with the assistance of the hydrated water molecule by forming a hydrogen bond between the azido moiety and $\mathrm{H}_{2} \mathrm{O}$ via $\mathrm{N}(\mu-3)$ fashion. Therefore the azido group adopts $\mathrm{N}(\mu-1,1,3)$ fashion (see Figure 1.5$)^{(185)}$. The multiple peaks are indicative of multiple bridging modes of the azido ligand. The band at ($1344 \mathrm{~cm}^{-1}$) may be assigned to symmetric stretching mode of the azido $v_{s}\left(\mathrm{~N}_{3}\right){ }^{(173)}$.

The IR spectra of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$, $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, Figures (3. 59, 3. 61, 3. 63 to 3.66), exhibit similar trend to that of the $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex and same reasoning could be used to interpret the spectra.

The prepared complexes showed both $v_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)$and $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$frequencies is changed in the same direction, indicating that the coordination of the carboxylato moiety is bridging bidentate. This is because the bond orders of both C-O bonds would change by the same amount. This result is in accord with data reported by Hamed and co-workers ${ }^{(183)}$. In all complexes the coordination mode of the carboxylato group is syn-syn, except Ag^{I} complex which shows the syn-anti mode. The $\Delta\left(v_{a s^{-}}-v_{a s}\right)$ value of $\left(166 \mathrm{~cm}^{-1}\right)$ confirming the carboxylato bridge coordination fashion with $\operatorname{Ag}(\mathrm{I})$ ion in the syn-anti mode. This is in a good agreement with previous studies of syn-anti carboxylato bridge coordination mode ${ }^{(177)}$.

Figure (3. 8) IR spectrum of \mathbf{L}^{3}

Figure (3.58) IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 59) IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Figure (3.60) IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.61) IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.62) IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 63) IR spectrum of $\left[C u_{2}\left(L^{3}\right)\left(N_{3}\right)_{4}\right]$

Figure (3.64) IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 65) IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 66) IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Table (3. 20)Infrared spectral data (wave number) $\mathrm{cm}^{\mathbf{- 1}}$ of $\mathrm{L}^{\mathbf{3}}$ complexes

Complex	v O-H	$\mathrm{var}_{\text {a }} \mathrm{C}-\mathrm{H}$	vCH2	$\mathrm{vas} \mathrm{N}_{3}$	$\mathrm{vas}_{\text {a }} \mathrm{COO}$	$\mathrm{vC}^{\text {= }} \mathrm{N}$	vC=C	$\mathrm{v}_{\mathrm{s}} \mathbf{C O O}$	8O-H	$\mathbf{v}_{5} \mathbf{N}_{3}$	vC-N	δ	vM-O	vM-N	$\Delta\left(\mathbf{v}_{\text {as }} \mathbf{v}\right.$)
\mathbf{L}^{3}	-	3048	2851	-	1632	1597	1578	1458	-	-	1218		-	-	174
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]^{\text {Cl }}$ 2 $\cdot \mathrm{H}_{2} \mathrm{O}$	3414	$\begin{array}{r} 3062 \\ 3044 \\ \hline \end{array}$	2862	$\begin{aligned} & 2114 \\ & 2068 \\ & \hline \end{aligned}$	1620	1595	$\begin{aligned} & 1595 \\ & 1454 \end{aligned}$	1420	1555	1335	1223	$\begin{aligned} & 949 \\ & 675 \\ & \hline \end{aligned}$	$\begin{aligned} & 536 \\ & 562 \\ & \hline \end{aligned}$	$\begin{aligned} & 424 \\ & 440 \end{aligned}$	200
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$	3387	$\begin{aligned} & \hline 3088 \\ & 3048 \\ & \hline \end{aligned}$	2909	2066	1609	1572	$\begin{aligned} & \hline 1543 \\ & 1462 \\ & \hline \end{aligned}$	1418	1522	1333	1223	$\begin{aligned} & \hline 978 \\ & 694 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 505 \\ & 561 \\ & \hline \end{aligned}$	$\begin{aligned} & 419 \\ & 434 \end{aligned}$	191
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3439	3001	2841	2064	1617	1610	$\begin{aligned} & 1610 \\ & 1447 \end{aligned}$	1400	1560	1346	1213	$\begin{aligned} & 862 \\ & 669 \end{aligned}$	$\begin{aligned} & 536 \\ & 563 \end{aligned}$	$\begin{aligned} & 406 \\ & 436 \end{aligned}$	217
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3404	3061	2914	2079	1607	1570	1570	1416	1533	1342	1221	$\begin{aligned} & \hline 856 \\ & 635 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 546 \\ & 565 \end{aligned}$	$\begin{aligned} & 419 \\ & 457 \end{aligned}$	191
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3402	3009	2889	$\begin{aligned} & 2091 \\ & 2060 \end{aligned}$	1605	1636	1551	1416	1522	1344	1225	$\begin{aligned} & 814 \\ & 632 \end{aligned}$	$\begin{aligned} & 498 \\ & 563 \end{aligned}$	432	189
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3422	$\begin{aligned} & 3082 \\ & 3040 \end{aligned}$	2828	2041	1628	1593	$\begin{aligned} & 1582 \\ & 1458 \end{aligned}$	1412	1485	1369	1223	$\begin{aligned} & 937 \\ & 644 \end{aligned}$	$\begin{aligned} & \hline 501 \\ & 532 \\ & 574 \\ & \hline \end{aligned}$	$\begin{aligned} & 440 \\ & 474 \end{aligned}$	216
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3416	3013	2846	2085	1611	1533	1533	1416	1491	1344	1219	$\begin{aligned} & \hline 961 \\ & 642 \\ & \hline \end{aligned}$	$\begin{aligned} & 536 \\ & 567 \\ & \hline \end{aligned}$	$\begin{aligned} & 422 \\ & 486 \\ & \hline \end{aligned}$	195
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3418	3006	2833	2060	1601	1638	1560	1418	1537	1329	1221	$\begin{aligned} & \hline 968 \\ & 675 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 565 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 444 \\ & 463 \\ & \hline \end{aligned}$	183
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3449	3061	2824	2045	1628	1593	1593	1462	1482	1361	1227	$\begin{aligned} & \hline 957 \\ & 671 \\ & \hline \end{aligned}$	$\begin{aligned} & 501 \\ & 583 \\ & \hline \end{aligned}$	$\begin{aligned} & 478 \\ & 483 \\ & \hline \end{aligned}$	166

Where: ar = aromatic; $\mathrm{s}=$ symmetric; as = antisymmetric; o.o.p = out of plane.

(3.10.4) IR Spectral data for \mathbf{L}^{4} complexes

The structurally important IR absorption frequencies of the $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex with L^{4} is shown in Figure (3. 67), Table (3. 21). The IR spectrum shows the bands of anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, of the carboxylato moiety at 1593 and $1412 \mathrm{~cm}^{-1}$, respectively ${ }^{(167)}$. The shift of these bands compared with that in the free L^{4} ligand can be attributed to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π-system of the ligand, and indicating the involvement of the carboxylato in coordination with the $\operatorname{Cr}($ III $)$ ion. The $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ value of $\left(181 \mathrm{~cm}^{-1}\right)$ is consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. The spectrum shows bands at 1628 and $1582 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{C}=\mathrm{N})$ and $v(\mathrm{C}=\mathrm{C})$ stretching, respectively ${ }^{(172)}$. The shift of the former and the latter to higher frequency, compared with that in the free ligand, is due to complex formation. The band at 3082,3040 and $2828 \mathrm{~cm}^{-1}$ are assigned to $v(\mathrm{C}-\mathrm{H})_{\text {aromatic }}$ and $v\left(\mathrm{CH}_{2}\right)$ stretches, respectively ${ }^{(168)}$. The intense band located at $2047 \mathrm{~cm}^{-1}$ may attribute to asymmetric stretching mode of the azido $v_{a s}\left(\mathrm{~N}_{3}\right)$. The appearance of a shoulder at $2106 \mathrm{~cm}^{-1}$ may imply to the involvement of the azido group ${ }^{(184)}$ to connect different layers in the polymeric complex. This could be occurred with the assistance of the hydrated water molecule by forming a hydrogen bond between the azido moiety and $\mathrm{H}_{2} \mathrm{O}$ via $\mathrm{N}(\mu-3)$ fashion. Therefore the azido group adopts $\mathrm{N}(\mu-1,1,3)$ fashion (see Figure 1. 5) ${ }^{(185)}$. The multiple peaks are indicative of multiple bridging modes of the azido ligand. The band at $1369 \mathrm{~cm}^{-1}$ is assigned to symmetric vibration $v_{s}\left(\mathrm{~N}_{3}\right)$ stretch ${ }^{(176)}$. In the lowfrequency region, spectrum of the $\mathrm{Cr}(\mathrm{III})$ complex showed new bands which are not observed in the spectrum of the ligand.

These bands are located at 532 and 575 and $440,474 \mathrm{~cm}^{-1}$, which are attributed to $v(\mathrm{Cr}-\mathrm{O})$ and $v(\mathrm{Cr}-\mathrm{N})$, respectively ${ }^{(174)}$. Additional broad band observed around $3421 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(166)}$.

The IR spectra of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \quad\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ Figures (3. 68 to 3. 75) show a similar pattern to that of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex and same reasoning could be used to interpret the spectra.

The prepared complexes showed both $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{a s}\left(\mathrm{COO}^{-}\right)$frequencies is changed in the same direction, indicating that the coordination of the carboxylate moiety is bridging bidentate. This is because the bond orders of both C-O bonds would change by the same amount. This result is in a good agreement with the data reported by E-Hamed and co-workers ${ }^{(182)}$. All the complexes shows the syn-syn mode of the carboxylate group.

Figure (3.10) IR spectrum of L^{4}

Figure (3.67) IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 68) IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 69) IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Figure (3. 70) IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 71) IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 72) IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.73) IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Figure (3. 74) IR spectrum of $\left[C_{2}\left(L^{4}\right)\left(N_{3}\right)_{4}\right]$

Figure (3. 75) IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Table (3. 21)Infrared spectral data (wave number) cm^{-1} of L^{4} complexes

Complex	v O-H	$\mathrm{var}_{\mathrm{ar}} \mathrm{C}-\mathrm{H}$	vCH	$\mathrm{vas}_{\text {a }} \mathrm{N}_{3}$	$\mathrm{vas}^{\text {COO }}$	vC=N	$\mathrm{vC}=\mathrm{C}$	$\mathrm{v}_{\mathrm{s}} \mathrm{COO}$	8O-H	$\mathbf{v}_{\text {s }} \mathbf{N}_{3}$	vC-N	$\delta_{\text {o.0.P }}$	vM-O	vM-N	$\Delta\left(\mathbf{v a s}_{\text {as }} \mathbf{v}_{\mathrm{s}}\right)$
\mathbf{L}^{4}	-	$\begin{aligned} & \hline 3055 \\ & 3009 \\ & \hline \end{aligned}$	2913	-	1614	1603	1568	1416	-	-	1223		-	-	198
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]^{\text {Cl }}$ 2 $2 \mathrm{H}_{2} \mathrm{O}$	3421	$\begin{aligned} & 3082 \\ & 3040 \\ & \hline \end{aligned}$	2828	$\begin{aligned} & 2106 \\ & 2047 \end{aligned}$	1593	1628	$\begin{aligned} & 1582 \\ & 1454 \\ & \hline \end{aligned}$	1412	1485	1369	1223	$\begin{aligned} & 961 \\ & 652 \end{aligned}$	$\begin{aligned} & 532 \\ & 575 \end{aligned}$	$\begin{aligned} & 440 \\ & 474 \end{aligned}$	181
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3402	$\begin{aligned} & 3055 \\ & 3038 \\ & \hline \end{aligned}$	2930	2081	1610	1603	$\begin{aligned} & 1603 \\ & 1456 \\ & \hline \end{aligned}$	1416	1533	1329	1224	$\begin{aligned} & 856 \\ & 631 \end{aligned}$	565	$\begin{aligned} & 419 \\ & 453 \end{aligned}$	194
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3424	3040	2855	2077	1595	1632	$\begin{aligned} & 1632 \\ & 1456 \end{aligned}$	1412	1518	1339	1221	$\begin{aligned} & 812 \\ & 669 \end{aligned}$	$\begin{aligned} & 498 \\ & 562 \end{aligned}$	$\begin{aligned} & 419 \\ & 473 \end{aligned}$	183
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3422	$\begin{aligned} & \hline 3061 \\ & 3011 \end{aligned}$	2837	2079	1607	1568	$\begin{aligned} & 1568 \\ & 1456 \end{aligned}$	1416	1536	1342	1223	$\begin{aligned} & 810 \\ & 635 \end{aligned}$	$\begin{aligned} & 507 \\ & 564 \end{aligned}$	$\begin{aligned} & 432 \\ & 449 \end{aligned}$	191
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3414	3044	2862	2068	1620	1597	$\begin{aligned} & 1597 \\ & 1454 \end{aligned}$	1420	1555	1335	1221	$\begin{aligned} & 949 \\ & 675 \end{aligned}$	$\begin{aligned} & 536 \\ & 606 \end{aligned}$	$\begin{aligned} & 424 \\ & 440 \\ & \hline \end{aligned}$	200
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3410	$\begin{aligned} & 3061 \\ & 3038 \\ & 3017 \end{aligned}$	2833	2050	1609	1634	1535	1418	1490	1331	1221	$\begin{aligned} & 814 \\ & 646 \end{aligned}$	$\begin{aligned} & 507 \\ & 563 \end{aligned}$	$\begin{aligned} & 436 \\ & 469 \end{aligned}$	191
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3414	3046	2857	2093	1611	1638	1564	1416	1538	1329	1213	$\begin{aligned} & 981 \\ & 642 \end{aligned}$	$\begin{aligned} & 498 \\ & 567 \end{aligned}$	$\begin{aligned} & 420 \\ & 473 \end{aligned}$	195
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3427	3009	2835	2060	1601	1633	1566	1416	1539	1329	1221	$\begin{aligned} & 858 \\ & 631 \end{aligned}$	565	$\begin{aligned} & 415 \\ & 441 \end{aligned}$	185
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3380	$\begin{aligned} & 3053 \\ & 3028 \end{aligned}$	2860	$\begin{aligned} & 2095 \\ & 2060 \end{aligned}$	1609	1593	1593	1423	1493	1318	1221	$\begin{aligned} & 856 \\ & 669 \end{aligned}$	$\begin{aligned} & 511 \\ & 561 \end{aligned}$	426	186

Where: ar = aromatic; s = symmetric; as = antisymmetric; o.o.p = out of plane.

(3.10.5) IR Spectral data for \mathbf{L}^{5} complexes

The essential infrared data of complexes with L^{5} are presented in Table (3. 22). The IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, Figure (3. 76), shows the characteristic bands of the carboxylato moiety at 1601 and $1398 \mathrm{~cm}^{-1}$, which are assigned to antisymmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, respectively ${ }^{(181)}$. The shift of these bands to lower wave numbers by 42 and $31 \mathrm{~cm}^{-1}$ compared with that in the free L^{5} ligand can be attributed to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π system of the ligand, and confirming the involvement of the (-COO) in coordination with the $\operatorname{Cr}(\mathrm{III})$ ion. The $\Delta\left(v_{a s}-v_{s}\right)$ value of $\left(203 \mathrm{~cm}^{-1}\right)$ is consistent with carboxylato bridge coordination fashion with the metal atoms in the syn-syn mode ${ }^{(171)}$. The spectrum shows bands at 1582 and $1564 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{C}=\mathrm{N})$ and $v(\mathrm{C}=\mathrm{C})$ stretching, respectively ${ }^{(166,167)}$. These bands are shifted to lower and higher frequency for the former and the latter, respectively in comparison with that in the free ligand, due to complex formation. The intense new bands at 2043 and $1319 \mathrm{~cm}^{-1}$, are attributed to $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{s}\left(\mathrm{~N}_{3}\right)$ stretches, respectively ${ }^{(173)}$. These values suggest azido bridge mode with metal ion with $\mathrm{N}_{\left(\mu_{-1,1)}\right.}$ fashion (see Figure 1.5) ${ }^{(173)}$. The band at $1198 \mathrm{~cm}^{-1}$ attributed to $v(\mathrm{C}-\mathrm{N})$ stretching. The spectrum of the $\mathrm{Cr}(\mathrm{III})$ complex shows new bands located at 530,565 and $467,494 \mathrm{~cm}^{-1}$, which are attributed to $v(\mathrm{Cr}-\mathrm{O})$ and $v(\mathrm{Cr}-\mathrm{N})$, respectively ${ }^{(174,186)}$. Additional broad band observed around $3422 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(177)}$.

The IR spectra of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ and $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, Figures (3. 76 to 3. 81), show similar IR pattern to that of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}$ complex and same reasoning could be used to interpret the spectra.

Figure (3.12)IR spectrum of \mathbf{L}^{5}

Figure (3.76) IR spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 77) IR spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.78) IR spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.79) IR spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3.80) IR spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 81) IR spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 82) IR spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
The IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 83), shows characteristic frequencies of the ligand with the appropriate shift, indicating the coordination to metal atom. The spectrum shows bands of the antisymmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$modes, of $\left(-\mathrm{COO}^{-}\right)$moiety at 1614 and $1433 \mathrm{~cm}^{-1}$, respectively ${ }^{(167)}$. The shift of the former band to lower wave numbers by $29 \mathrm{~cm}^{-1}$ and the latter band to higher wave number by $4 \mathrm{~cm}^{-1}$ compared with that in the free L^{5} ligand can be attributed to delocalisation of metal electron density $\left(t_{2} g\right)$ to the π-system of the ligand, and indicating the involvement of the (COO^{-}) group in coordination with the $\mathrm{Cd}(\mathrm{II})$ ion. The stretching vibration modes $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$of the carboxylate group should help in elucidating the structure of the complex. The $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ value of $\left(181 \mathrm{~cm}^{-1}\right)$ is consistent with carboxylato
bridge coordination mode with the metal atoms in the syn-syn mode ${ }^{(171)}$. The spectrum shows band at 1641 and $1576 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{C}=\mathrm{N})$ and $v(\mathrm{C}=\mathrm{C})$ stretching, respectively ${ }^{(166,167)}$. These bands are shifted to higher frequency in comparison with that in the free ligand, due to complex formation. The intense bands located at 2064 and $1344 \mathrm{~cm}^{-1}$, are attributed to $v_{a s}\left(\mathrm{~N}_{3}\right)$ and $v_{\mathrm{s}}\left(\mathrm{N}_{3}\right)$ stretches, respectively ${ }^{(176)}$. The appearance of a shoulder at $2104 \mathrm{~cm}^{-1}$ may imply to the involvement of the azido ${ }^{(184)}$ to connect different layers in the polymeric complex. This could be occurred with the assistance of the hydrated water molecule by forming a hydrogen bond between the azido moiety and $\mathrm{H}_{2} \mathrm{O}$ via $\mathrm{N}(\mu-3)$ fashion. Therefore the azido group adopts $\mathrm{N}(\mu-1,1,3)$ fashion (see Figure 1. 5) ${ }^{(185)}$. The multiple peaks are indicative of multiple bridging modes of the azido ligand. Spectrum of the Cd (II) complex showed new bands which are not present in the spectrum of the ligand. These bands are located at 575, 430 and $455 \mathrm{~cm}^{-1}$, respectively, which are attributed to $v(\mathrm{Cd}-\mathrm{O})$ and $v(\mathrm{Cd}-\mathrm{N})^{(174,186)}$. Additional broad band observed around $3439 \mathrm{~cm}^{-1}$ is assigned to hydrated water molecule in the complex ${ }^{(177)}$.

The IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, Figure (3. 84) shows a similar IR pattern to that of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex which shows two bands for the azido group and same reasoning could be used to interpret the spectra.

The prepared complexes showed both $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$frequencies is changed in the same direction, indicating that the coordination of the carboxylate moiety is bridging bidentate. This is because the bond orders of both C-O bonds would change by the same amount. This result is in accord with data reported by EHamed and co-workers ${ }^{(183)}$.

The appearance of $v(\mathrm{M}-\mathrm{O})$ at frequency higher than that of $v(\mathrm{M}-\mathrm{N})$ due to the larger dipole moment change for the M-O bond compared to the $\mathrm{M}-\mathrm{N}$ bond ${ }^{(178,179)}$. Furthermore, the appearance of more than one value for M-O and M-N may indicate the formation of more than one dimension structure upon coordination, and indicating the polymer structure of the complexes.

Figure (3.12)IR spectrum of \mathbf{L}^{5}

Figure (3. 83) IR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Figure (3. 84) IR spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Table (3. 22)Infrared spectral data (wave number) cm^{-1} of \mathbf{L}^{5} complexes

Complex	-O-H	$\mathrm{var}_{\mathrm{ar}} \mathrm{C}-\mathrm{H}$	$\mathbf{v C H}_{2}$	$\mathrm{vas}_{\text {as }} \mathrm{N}_{3}$	$\mathrm{vas}^{\text {COO }}$	vC=N	vC=C	$\mathrm{v}_{s} \mathrm{COO}$	סO-H	$\mathbf{v}_{\text {s }} \mathrm{N}_{3}$	vC-N	$\delta_{\text {O.O.P }}$	vM-O	vM-N	$\Delta\left(\mathbf{v a s}_{\text {as }} \mathbf{v}\right)$
\mathbf{L}^{5}	-	3049	2936	-	1643	1618	1572	1429	-	-	1194		-	-	214
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	-	3049	2949	2043	1601	1582	$\begin{aligned} & 1564 \\ & 1485 \\ & \hline \end{aligned}$	1398	1517	1319	1198	$\begin{aligned} & 951 \\ & 704 \\ & \hline \end{aligned}$	$\begin{aligned} & 530 \\ & 565 \\ & \hline \end{aligned}$	$\begin{aligned} & 467 \\ & 494 \\ & \hline \end{aligned}$	203
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3387	3028	2862	2058	1609	1557	$\begin{array}{r} 1557 \\ 1446 \\ \hline \end{array}$	1423	1501	1339	1223	$\begin{aligned} & 841 \\ & 669 \end{aligned}$	$\begin{aligned} & 513 \\ & 571 \end{aligned}$	417	186
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3422	3044	2866	2037	1612	1638	1576	1400	1516	1317	1188	$\begin{aligned} & 924 \\ & 668 \end{aligned}$	$\begin{aligned} & 540 \\ & 604 \end{aligned}$	$\begin{aligned} & 428 \\ & 467 \end{aligned}$	212
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3404	3050	2934	2066	1616	1631	$\begin{aligned} & \hline 1631 \\ & 1470 \\ & \hline \end{aligned}$	1394	1514	1302	1192	$\begin{aligned} & 928 \\ & 696 \\ & \hline \end{aligned}$	$\begin{array}{r} 517 \\ 581 \\ \hline \end{array}$	$\begin{aligned} & 409 \\ & 476 \\ & \hline \end{aligned}$	222
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3418	$\begin{aligned} & 3040 \\ & 3017 \\ & \hline \end{aligned}$	2832	2048	1609	1562	$\begin{array}{r} 1562 \\ 1458 \\ \hline \end{array}$	1416	1535	1354	1219	$\begin{aligned} & 930 \\ & 644 \end{aligned}$	$\begin{aligned} & 529 \\ & 559 \end{aligned}$	$\begin{aligned} & 440 \\ & 455 \end{aligned}$	193
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3424	3049	2936	2081	1618	1572	$\begin{aligned} & 1572 \\ & 1472 \end{aligned}$	1429	1517	1294	1194	$\begin{aligned} & 984 \\ & 669 \end{aligned}$	$\begin{aligned} & 527 \\ & 559 \\ & 571 \end{aligned}$	$\begin{aligned} & 419 \\ & 469 \end{aligned}$	189
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3385	3030	2862	2037	1616	1558	1558	1425	1504	1334	1221	$\begin{aligned} & 982 \\ & 665 \end{aligned}$	$\begin{aligned} & 515 \\ & 557 \\ & 580 \end{aligned}$	$\begin{aligned} & 417 \\ & 457 \end{aligned}$	191
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3439	3058	2879	$\begin{aligned} & 2104 \\ & 2064 \end{aligned}$	1614	1641	$\begin{aligned} & \hline 1576 \\ & 1468 \\ & \hline \end{aligned}$	1433	1512	1344	1179	$\begin{aligned} & 916 \\ & 662 \end{aligned}$	$\begin{aligned} & 505 \\ & 575 \end{aligned}$	$\begin{aligned} & 430 \\ & 455 \end{aligned}$	181
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	3410	3040	2909	$\begin{aligned} & 2083 \\ & 2045 \end{aligned}$	1609	1588	$\begin{aligned} & 1588 \\ & 1466 \end{aligned}$	1400	1528	1315	1221	$\begin{aligned} & 984 \\ & 656 \end{aligned}$	$\begin{aligned} & 513 \\ & 571 \end{aligned}$	$\begin{aligned} & 419 \\ & 455 \end{aligned}$	209

Where: $\mathrm{ar}=$ aromatic; $\mathrm{s}=$ symmetric; as = antisymmetric; o.o.p = out of plane.

(3.11) UV-Vis Spectral data for complexes

(3.11.1) UV-Vis Spectral data for L^{1} complexes

The electronic spectra of the complexes of L^{1} exhibited various extents of bathochromic shift of the bands related to the ligand field $\pi \rightarrow \pi^{\star}$ transition, except for that of the $\mathrm{Cu}(\mathrm{II}), \mathrm{Cd}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$ complexes which showed a hypsochromic shift (see Table 3. 23). Bands in the range of 373-379 nm related to the charge transfer transitions(CT) were observed in the spectra of the $\mathrm{Mn}(\mathrm{II}), \mathrm{Fe}(\mathrm{II}), \mathrm{Co}(\mathrm{II})$ complexes.

The electronic spectrum of the $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3.85) displayed two additional bands at 405 and 604 nm , due to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(v_{2}\right)$ and ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}\left(v_{1}\right)$ transitions, respectively. These bands attributed to the spin allowed d-d transitions ${ }^{(187)}$, indicating octahedral geometry around the $\mathrm{Cr}(\mathrm{III})$ atom ${ }^{(188)}$. The spectrum of the $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3.86) showed the intraligand $\pi \rightarrow \pi^{*}$ transition and the charge transfer transition at 379 nm . The additional bands in the d-d region assignable to ${ }^{6} \mathrm{~A}_{1} \mathrm{~g}{ }^{(\mathrm{s})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{G}}$ were attributed to spin forbidden transitions in an octahedral geometry ${ }^{(189,190)}$.

Figure(3. 85) Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$ complex

Figure (3. 86) Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

The spectrum of the $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3-87) showed the intra-ligand $\pi \rightarrow \pi^{\star}$ transition and the charge transfer transition at 273 and 379 nm , respectively. The two additional bands in the visible region at 500 nm assignable ${ }^{5} \mathrm{~T}_{2} \mathrm{~g}$ $\rightarrow{ }^{5} \mathrm{Eg}$, was attributed to spin forbidden in an octahedral geometry ${ }^{(191-193)}$.

Figure (3. 87) Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex
The electronic spectra of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes, Figures (3.88 to 3.90$)$ showed the
intraligand $\pi \rightarrow \pi^{*}$ and charge transfer transitions (see Table 3.23). The Co-complex displays additional bands in the d-d region due to ${ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})}$, characteristic for octahedral geometry around Co atom ${ }^{(192,193)}$. The d-d band in the Ni-complex at 639 assigned to ${ }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}$, while band at 737 nm is assignable to the combination of ${ }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{2} \mathrm{~g}{ }^{(\mathrm{F})}$,, indicating an octahedral geometry about Ni atom ${ }^{(189,194)}$. Band in the Cu spectrum at 674 nm attributed to d-d transition type ${ }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} \mathrm{~g}$, confirming octahedral geometries about Cu atom. ${ }^{(189,190,192)}$.

案

Figure (3. 88) Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3. 89) Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.90) Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of the $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes, Figures (3.91 to 3.93) exhibited bands at 272; 386, 264; 362 and 267; 307 nm , respectively which were assigned to the ligand field $\pi \rightarrow \pi^{\star}$ and $n \rightarrow \pi^{\star}$ charge transfer transitions, respectively ${ }^{(192,195)}$.

Figure (3.91) Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathbf{H}_{2} \mathbf{O}$ complex

Figure (3.92) Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.93) Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Table (3. 23)UV-Vis spectral data of L^{1} complexes in DMSO solutions

Compound	Band Position λ_{nm}	Wave number (cm ${ }^{-1}$)	Extinction coefficient $\varepsilon_{\text {max }}$ $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
L^{1}	268	37313	1130	$\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]^{\text {Cl }}$ 2 $\cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 271 \\ & 405 \\ & 604 \end{aligned}$	$\begin{aligned} & \hline 36900 \\ & 24691 \\ & 16556 \end{aligned}$	$\begin{gathered} 639 \\ 32 \\ \\ 15 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} g^{(\mathrm{F})} \\ { }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})}\left(\mathrm{v}_{2}\right) \\ \rightarrow{ }^{4} \mathrm{~T}_{2} g^{(\mathrm{F})} \\ \left(v_{1}\right) \end{gathered}$
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 277 \\ & 379 \\ & 576 \end{aligned}$	$\begin{gathered} 36101 \\ 26385 \\ 1736 \end{gathered}$	$\begin{gathered} 850 \\ 259 \\ 62 \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{*}$ C.T ${ }^{6} \mathrm{~A}_{1} \mathrm{~g}^{(\mathrm{S})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{G})}$
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 273 \\ & 379 \\ & 500 \end{aligned}$	$\begin{aligned} & 36630 \\ & 26385 \\ & 20000 \end{aligned}$	$\begin{gathered} 1460 \\ 467 \\ 545 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ \text { C.T } \\ { }^{5} \mathrm{~T}_{2} \mathrm{~g} \rightarrow{ }^{5} \mathrm{Eg} \end{gathered}$
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 263 \\ & 373 \\ & 652 \end{aligned}$	$\begin{aligned} & 38023 \\ & 26810 \\ & 15337 \end{aligned}$	$\begin{gathered} 1931 \\ 222 \\ 39 \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{\star}$ C.T ${ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})}$
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 278 \\ & 639 \\ & 737 \end{aligned}$	$\begin{aligned} & 35971 \\ & 15640 \\ & 13569 \end{aligned}$	$\begin{gathered} 2257 \\ 4 \\ 8 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{1} \mathrm{~g}^{\mathrm{F})} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})} \\ \hline \end{gathered}$
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 268 \\ & 674 \end{aligned}$	$\begin{aligned} & 37313 \\ & 14837 \end{aligned}$	$\begin{gathered} 450 \\ 20 \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{*}$ ${ }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} g$
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 272 \\ & 386 \end{aligned}$	$\begin{aligned} & \hline 36764 \\ & 25907 \end{aligned}$	$\begin{gathered} 1579 \\ 57 \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{*}$ $n \rightarrow \pi^{*}$
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 264 \\ & 362 \end{aligned}$	$\begin{aligned} & \hline 37879 \\ & 27624 \end{aligned}$	$\begin{gathered} 1547 \\ 11 \end{gathered}$	$\begin{aligned} & \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ & \mathrm{n} \rightarrow \pi^{*} \end{aligned}$
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 267 \\ & 307 \end{aligned}$	$\begin{aligned} & \hline 37453 \\ & 32573 \end{aligned}$	$\begin{gathered} \hline 981 \\ 12 \end{gathered}$	$\text { Intra-ligand } \pi \rightarrow \pi^{*}$ $\mathrm{n} \rightarrow \pi^{*}$

(3.11.2) UV-Vis Spectral data for \mathbf{L}^{2} complexes

The electronic spectra of the complexes of L^{2} exhibited various extents of bathochromic shift of the bands related to the intra-ligand $\pi \rightarrow \pi^{*}$ transition, except for that of the $\mathrm{Co}(\mathrm{II})$ complex which showed a hypsochromic shift (see Table 3.24). Band in the range of 372 nm related to the charge transfer transitions(CT) were observed in the spectra of the $\mathrm{Ag}(\mathrm{I})$ complex.

The electronic spectrum of the green $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3.94) displayed two additional bands centered at 611 and 674 nm due to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})}$ $\rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}\left(v_{1}\right),{ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(v_{2}\right)$ transitions, which could be attributed to the spin allowed d-d transitions ${ }^{(187,189)}$. These data indicate a distorted octahedral geometry around the $\mathrm{Cr}(\mathrm{III})$ atom ${ }^{(187,189)}$. The spectrum of the pale yellow $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3.95) showed the intraligand $\pi \rightarrow \pi^{*}$ transition 268 nm . The additional bands in the d-d region at 658 nm is assignable to spin forbidden transition type ${ }^{6} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}{ }^{(\mathrm{G})}$, indicating a distorted octahedral geometry around Mn atom ${ }^{(189,190)}$.

Figure (3.94) Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.95) Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$. $\mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, Figures (3.96 to 3.99) show bands similar to that mentioned in the L^{1} complexes. The absorption data of the complexes are summarised in Table (3.24). These data confirm octahedral configuration for all the complexes ${ }^{(191-194)}$.

Figure (3.96) Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

Figure (3.97) Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3. 98) Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.99) Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of the pale yellow $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, white $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes, Figures (3. 100 to 3. 102), exhibited bands at 263, 262 and 265 nm , respectively which assigned to the intraligand $\pi \rightarrow \pi^{\star}$ transition. The $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex displays a charge transfer band centred at 372 nm . All these characteristic bands observed in the UV region confirm the octahedral geometry about metal centre ${ }^{(192,195)}$.

Figure (3.100) Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.101) Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

Figure (3. 102) Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex
Table (3.24) UV-Vis spectral data of \mathbf{L}^{2} complexes in DMSO solutions

Compound	Band Position $\lambda_{n m}$	Wave number (cm ${ }^{-1}$)	Extinction coefficient $\varepsilon_{\text {max }}$ $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
L^{2}	261	38314	2119	$\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 264 \\ & 611 \\ & 674 \end{aligned}$	$\begin{aligned} & 37879 \\ & 16367 \\ & \\ & 14837 \end{aligned}$	$\begin{gathered} 1163 \\ 52 \\ 75 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{1} g^{(\mathrm{F})} \\ { }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})}\left(\mathrm{v}_{1}\right) \\ \left({ }^{4} \mathrm{~T}_{2} g^{(\mathrm{F})}\right. \\ \left(v_{2}\right) \end{gathered}$
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 268 \\ & 658 \end{aligned}$	$\begin{aligned} & \hline 37313 \\ & 15198 \end{aligned}$	$\begin{gathered} 2333 \\ 23 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{6} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g} \text { (G) } \end{gathered}$
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	$\begin{aligned} & 269 \\ & 340 \\ & 657 \end{aligned}$	$\begin{aligned} & 37175 \\ & 29412 \\ & 15221 \end{aligned}$	$\begin{gathered} 1371 \\ 148 \\ 31 \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{*}$ C.T ${ }^{5} \mathrm{~T}_{2} \mathrm{~g} \rightarrow{ }^{5} \mathrm{Eg}$
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 259 \\ & 263 \\ & 674 \end{aligned}$	$\begin{aligned} & 38616 \\ & 38023 \\ & 14837 \end{aligned}$	$\begin{gathered} 1941 \\ 1808 \\ 91 \end{gathered}$	L.F Intra-ligand $\pi \rightarrow \pi^{*}$ ${ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})}$
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 268 \\ & 626 \end{aligned}$	$\begin{aligned} & 37313 \\ & 15974 \end{aligned}$	$\begin{gathered} 1821 \\ 4 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }_{3} \mathrm{~T}_{1} \mathrm{~g} \mathrm{~F}^{\mathrm{F}} \end{gathered}$
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 265 \\ & 611 \end{aligned}$	$\begin{aligned} & 37736 \\ & 16367 \end{aligned}$	$\begin{gathered} 837 \\ 42 \end{gathered}$	$\begin{aligned} & \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ & { }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} \mathrm{~g} \end{aligned}$
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$	263	38023	1370	Intra-ligand $\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	262	38168	1006	Intra-ligand $\pi \rightarrow \pi^{*}$
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 265 \\ & 277 \end{aligned}$	$\begin{aligned} & 37736 \\ & 26882 \end{aligned}$	$\begin{gathered} 2449 \\ 392 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ \text { C.T } \end{gathered}$

(3.11.3) UV-Vis Spectral data for $\mathbf{L}^{\mathbf{3}}$ complexes

The electronic spectra of the complexes of L^{3} exhibited various extents of hypsochromic shift (see Table 3. 25). Bands in the range of 303-362 nm related to the charge transfer transitions (CT) were observed in the spectra of the $\mathrm{Mn}(\mathrm{II})$, $\mathrm{Fe}(\mathrm{II}), \mathrm{Co}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ complexes.

The electronic spectrum of the green $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 103) showed two additional bands at 467 and 756 nm due to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}{ }^{(\mathrm{F})}\left(v_{1}\right)$ and ${ }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(\mathrm{v}_{2}\right)$ transitions, respectively. These bands attributed to the spin allowed d-d transitions ${ }^{(187,188)}$. These data are in a good agreement with a distorted octahedral geometry about $\operatorname{Cr}($ III $)$ atom ${ }^{(187,188)}$. The spectrum of the brown $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 104) showed band in the d-d region at 643 nm assigned to spin forbidden type ${ }^{6} \mathrm{~A}_{1} \mathrm{~g} \rightarrow \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{G})}$. This band confirms a distorted octahedral geometry around Mn centre ${ }^{(189,190)}$.

Figure (3.103) Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.104) Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$, Figures (3. 105 to 3.108), show bands similar to that mentioned in the UV-Vis spectra of L^{1} complexes. The absorption data are summarised in Table (3. 25). These data confirm distorted octahedral geometries about metal centres ${ }^{(191-194)}$.

Figure (3.105) Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3. 106) Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

妥

Figure (3.107) Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.108) Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

The electronic spectra of the $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes, Figures (3. 109 to 3.111), exhibited bands at 266, 265 and 264 nm , respectively which assigned to the intra-ligand Intra-ligand $\pi \rightarrow \pi^{*}$. The spectra show no bands in the visible region, indicating a d^{10} configuration about metal atom ${ }^{(192,195)}$.

Figure (3.109) Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.110) Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure(3.111) Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Table (3.25) UV-Vis spectral data of L^{3} complexes in DMSO solutions

Compound	Band Position $\lambda_{n m}$	Wave number (cm^{-1})	Extinction coefficient $\varepsilon_{\max }$ $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
L^{3}	279	35842	2046	$\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 263 \\ & 467 \\ & 756 \end{aligned}$	$\begin{aligned} & \hline 38023 \\ & 21413 \\ & 13228 \end{aligned}$	$\begin{gathered} 1785 \\ 4 \\ 1 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{4} \mathrm{~A}_{2} g \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}\left(v_{1}\right) \\ { }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{FI})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(v_{2}\right) \\ \hline \end{gathered}$
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 268 \\ & 362 \\ & 643 \end{aligned}$	$\begin{aligned} & 37313 \\ & 27624 \\ & 15552 \end{aligned}$	$\begin{gathered} 2150 \\ 21 \\ 1 \end{gathered}$	$\begin{gathered} \hline \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ \mathrm{n} \rightarrow \pi^{*} \\ { }^{6} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{G})} \end{gathered}$
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 272 \\ & 362 \\ & 586 \end{aligned}$	$\begin{aligned} & \hline 36764 \\ & 27624 \\ & 17065 \end{aligned}$	$\begin{gathered} 2144 \\ 206 \\ 21 \end{gathered}$	L.F C.T ${ }^{5} \mathrm{~T}_{2} \mathrm{~g} \rightarrow{ }^{5} \mathrm{Eg}$
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 270 \\ & 346 \\ & 633 \end{aligned}$	$\begin{aligned} & 37037 \\ & 28901 \\ & 15798 \end{aligned}$	$\begin{gathered} 2036 \\ 129 \\ 61 \end{gathered}$	$\begin{gathered} \text { L.F } \\ { }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})} \xrightarrow{\text { C. }}{ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \end{gathered}$
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 266 \\ & 303 \\ & 633 \end{aligned}$	$\begin{aligned} & \hline 37594 \\ & 33003 \\ & 15798 \end{aligned}$	$\begin{gathered} \hline 758 \\ 124 \\ 53 \end{gathered}$	$\begin{gathered} \text { L.F } \\ \text { C.T } \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \xrightarrow{3} \mathrm{~T}_{1} \mathrm{~g}{ }^{(\mathrm{F})} \end{gathered}$
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	$\begin{aligned} & \hline 268 \\ & 611 \end{aligned}$	$\begin{aligned} & \hline 37313 \\ & 16367 \end{aligned}$	$\begin{gathered} 1350 \\ 50 \end{gathered}$	$\begin{aligned} & \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ & { }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} \mathrm{~g} \end{aligned}$
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	266	37594	1443	Intra-ligand $\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	265	37736	723	Intra-ligand $\pi \rightarrow \pi^{*}$
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	264	37879	9350	Intra-ligand $\pi \rightarrow \pi^{*}$

(3.11.4) UV-Vis Spectral data for \mathbf{L}^{4} complexes

The electronic spectra of the complexes of L^{4} exhibited various extents of bathochromic shift of the bands related to the intra-ligand $\pi \rightarrow \pi^{*}$ transition, except for that of the $\mathrm{Mn}(\mathrm{II}), \mathrm{Co}(\mathrm{II})$ and $\mathrm{Ag}(\mathrm{I})$ complexes which showed a hypsochromic shift (see Table 3. 26). The spectrum of the $\left[\operatorname{Mn}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex displays band centred at 376 nm related to the charge transfer transition (CT).

The electronic spectrum of the green $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 112) exhibit two additional bands at 462 and 670 nm due to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}\left(v_{1}\right)$ and ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(v_{2}\right)$ transitions, respectively. These bands attributed to the spin allowed d-d transitions ${ }^{(187,188)}$. These data indicate a distorted octahedral geometry around the $\mathrm{Cr}(\mathrm{III})$ atom ${ }^{(187,188)}$. The spectrum of the $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3.113) showed two bands in the d-d region centred at 459 and 552 nm , which are assignable to ${ }^{6} \mathrm{~A}_{1} g^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} g^{(\mathrm{G})}$ and ${ }^{6} \mathrm{~A}_{1} \mathrm{~g}^{(\mathrm{S})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{G})}$ in a distorted octahedral configuration ${ }^{(189,190)}$.

Figure (3.112) Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.113) Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, Figures (3. 114 to 3. 117), show bands similar to that mentioned in the electronic spectra of the L^{1} complexes. The absorption bands of the complexes are summarised in Table (3. 26). These data confirm octahedral geometries about metal centres ${ }^{(191-194)}$.

Figure (3.114) Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

Figure (3.115) Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

要

Figure (3.116) Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

安

Figure (3.117) Electronic spectrum of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of the $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \quad\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes, Figures (3. 118 to 3.120), display bands at 268, 267 , and 266 nm assigned to the intraligand $\pi \rightarrow \pi^{\star}$ transitions. The electronic spectra exhibit no bands in the visible region confirming the d^{10} configuration about metal atom ${ }^{(192, ~ 195)}$.

Figure(3. 118) Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

Figure (3.119) Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

Figure (3.120) Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \mathbf{H}_{2} \mathrm{O}$ complex
Table (3. 26) UV-Vis spectral data of L^{4} complexes in DMSO solutions

Compound	Band Position $\lambda_{\text {nm }}$	Wave number (cm^{-1})	Extinction coefficient $\varepsilon_{\text {max }}$ $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
L ${ }^{4}$	267	37453	1531	$\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 287 \\ & 462 \\ & 670 \end{aligned}$	$\begin{gathered} \hline 34843 \\ 21645 \\ 149258 \end{gathered}$	$\begin{gathered} 2062 \\ 15 \\ 13 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{4} \mathrm{~A}_{2} g \rightarrow{ }^{4} \mathrm{~T}_{1} g^{(\mathrm{F}}\left(v_{1}\right) \\ { }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(v_{2}\right) \\ \hline \end{gathered}$
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 264 \\ & 376 \\ & 459 \\ & 552 \end{aligned}$	$\begin{aligned} & 37879 \\ & 26596 \\ & 21786 \\ & 18116 \end{aligned}$	$\begin{gathered} 1455 \\ 64 \\ 48 \\ 13 \end{gathered}$	$\begin{gathered} \hline \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ \text { C.T } \\ { }^{6} \mathrm{~A}_{1} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{G})} \\ { }^{6} \mathrm{~A}_{1} \mathrm{~g}^{(\mathrm{S})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{G})} \\ \hline \end{gathered}$
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	$\begin{aligned} & 269 \\ & 450 \\ & 675 \end{aligned}$	$\begin{aligned} & 37175 \\ & 22222 \\ & 14815 \end{aligned}$	$\begin{gathered} 970 \\ 91 \\ 45 \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{*}$ C.T ${ }^{5} \mathrm{~T}_{2} \mathrm{~g} \rightarrow{ }^{5} \mathrm{Eg}$
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 263 \\ & 607 \end{aligned}$	$\begin{aligned} & \hline 38023 \\ & 16474 \end{aligned}$	$\begin{gathered} 663 \\ 50 \end{gathered}$	$\begin{aligned} & \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ & { }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \end{aligned}$
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 276 \\ & 662 \\ & 734 \end{aligned}$	$\begin{aligned} & 36232 \\ & 15106 \\ & 13624 \end{aligned}$	$\begin{gathered} 1053 \\ 9 \\ 7 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{3} \mathrm{~A}_{2} g \rightarrow{ }^{3} \mathrm{~T}_{1} g^{(\mathrm{F})} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{2} g^{(\mathrm{F})} \end{gathered}$
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 270 \\ & 622 \end{aligned}$	$\begin{aligned} & 37037 \\ & 16077 \end{aligned}$	$\begin{gathered} 2087 \\ 150 \end{gathered}$	$\begin{aligned} & \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ & { }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} g \end{aligned}$
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	268	37313	1744	Intra-ligand $\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	269	37175	1603	Intra-ligand $\pi \rightarrow \pi^{*}$
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	266	37594	1172	Intra-ligand $\pi \rightarrow \pi^{*}$

(3.11.5) UV-Vis Spectral data for \mathbf{L}^{5} complexes

The electronic spectra of the complexes of L^{5} exhibited various extents of bathochromic shift of the bands related to the intraligand $\pi \rightarrow \pi^{*}$ transition, except for that of the $\mathrm{Co}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ complexes which showed a hypsochromic shift (see Table 3. 27). Bands in the range of $315-436 \mathrm{~nm}$ related to the charge transfer transitions (CT) were observed in the spectra of the Mn (II) and $\mathrm{Fe}(\mathrm{II})$ complexes.

The electronic spectrum of the green $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 121) displayed band in the visible region at 637 nm , attributed to the spin allowed dd transition ${ }^{(187,188)}$. This band is assignable to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}$ transition, indicating a distorted octahedral geometry around the $\operatorname{Cr}\left(\right.$ III) atom ${ }^{(187,188)}$. The spectrum of the $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex, Figure (3. 122) showed the intra-ligand $\pi \rightarrow \pi^{*}$ transition and the charge transfer transition at 339 nm . The additional bands in the d-d region at 401, 437 and 637 nm are attributed to ${ }^{6} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~A}_{1}$ g, ${ }^{4} \mathrm{Eg},{ }^{6} \mathrm{~A}_{1} \mathrm{~g}$ $\rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{G})}$ and ${ }^{6} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}{ }^{(\mathrm{G})}$ transitions, respectively. These spin forbidden transitions confirm the distorted octahedral geometry about metal centre ${ }^{(189,190)}$.

名

Figure (3.121) Electronic spectrum of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex

콜

Figure (3. 122) Electronic spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{\mathbf{2}} \mathbf{O}$ complex

The electronic spectra of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, Figures (3. 123 to 3. 126), show bands similar to that mentioned in the electronic spectra of the L^{1} complexes. The absorption bands of the complexes are summarised in Table (3. 27). These data confirm octahedral geometries about metal centres ${ }^{(191-194)}$.

采

Figure (3.123) Electronic spectrum of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3. 124) Electronic spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3. 125) Electronic spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.126) Electronic spectrum of $\left.\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

The electronic spectra of the $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes, Figures (3. 127. to 3. 129), exhibited bands centred at 263, 261 and 266 nm assigned to the intra-ligand $\pi \rightarrow \pi^{\star}$. The electronic spectra display no bands in the d-d region, indicating a d ${ }^{10}$ configuration about the metal atom ${ }^{(192, ~ 195)}$.

Figure (3.127) Electronic spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Figure (3.128) Electronic spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

S4 8

Figure (3.129) Electronic spectrum of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex

Table (3.27) UV-Vis spectral data of \mathbf{L}^{5} complexes in DMSO solutions

Compound	Band Position $\lambda_{\text {nm }}$	Wave number $\left(\mathrm{cm}^{-1}\right)$	Extinction coefficient $\varepsilon_{\max }$ $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$	Assignment
L^{5}	$\begin{aligned} & 261 \\ & 357 \\ & \hline \end{aligned}$	$\begin{aligned} & 38314 \\ & 28011 \end{aligned}$	$\begin{gathered} 1680 \\ 36 \end{gathered}$	$\pi \rightarrow \mathrm{J}^{*}$
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 269 \\ & 356 \\ & 637 \end{aligned}$	$\begin{aligned} & 37175 \\ & 28090 \\ & \\ & 15699 \end{aligned}$	$\begin{gathered} 1201 \\ 159 \\ 21 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{4} \mathrm{~A}_{2} \mathrm{~g}^{\mathrm{F})}\left({ }_{(\mathrm{v} 1)} \mathrm{T}_{1} \mathrm{~g}^{\mathrm{F})}\right. \\ { }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})} \\ \hline \end{gathered}$
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 269 \\ & 339 \\ & 401 \\ & 437 \\ & 637 \\ & \hline \end{aligned}$	$\begin{aligned} & 37175 \\ & 29499 \\ & 24938 \\ & 22883 \\ & 15699 \end{aligned}$	$\begin{gathered} 1310 \\ 339 \\ 478 \\ 479 \\ 31 \\ \hline \end{gathered}$	Intra-ligand $\pi \rightarrow \pi^{*}$ C.T $\begin{gathered} { }^{6} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~A}_{1} \mathrm{~g},{ }^{4} \mathrm{Eg} \\ { }^{6} \mathrm{~A}_{1} \mathrm{G}{ }^{4} \mathrm{~T}_{2} \mathrm{~g} \\ { }^{6} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g} \end{gathered}$
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 270 \\ & 315 \\ & 436 \\ & 626 \end{aligned}$	$\begin{aligned} & 37037 \\ & 31746 \\ & 22936 \\ & 15974 \end{aligned}$	$\begin{gathered} 983 \\ 381 \\ 283 \\ 21 \end{gathered}$	Intraligand C.T C.T ${ }^{5} \mathrm{~T}_{2} \mathrm{~g} \rightarrow{ }^{5} \mathrm{Eg}$
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 257 \\ & 474 \\ & 649 \end{aligned}$	$\begin{aligned} & 38911 \\ & 21097 \\ & 15408 \end{aligned}$	$\begin{gathered} 1339 \\ 57 \\ 18 \end{gathered}$	$\begin{aligned} & \text { Intra-liigand } \pi \rightarrow \pi^{*} \\ & \begin{array}{l} 4 \\ \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{FF})} \rightarrow{ }^{(\mathrm{F}} \mathrm{A}_{2} \mathrm{~g}^{\mathrm{FF})} \\ { }^{4} \mathrm{~T}_{1} \mathrm{~g}^{\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})} \end{array} \end{aligned}$
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 266 \\ & 450 \\ & 632 \end{aligned}$	$\begin{aligned} & 37594 \\ & 22222 \\ & 15823 \end{aligned}$	$\begin{gathered} 880 \\ 165 \\ 47 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{*} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~T}_{1} g^{(\mathrm{P})} \\ { }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{1} g^{(\mathrm{F})} \end{gathered}$
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 259 \\ & 627 \end{aligned}$	$\begin{aligned} & 38616 \\ & 15949 \end{aligned}$	$\begin{gathered} 1739 \\ 21 \end{gathered}$	$\begin{gathered} \text { Intra-ligand } \pi \rightarrow \pi^{\star} \\ { }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} g \end{gathered}$
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	263	38023	1127	Intra-ligand $\pi \rightarrow \pi^{*}$
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	259	38616	1659	Intra-ligand $\pi \rightarrow \pi^{*}$
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	266	37594	1423	Intra-ligand $\pi \rightarrow \pi^{*}$

(3.12) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and DEPT ${ }^{13} \mathrm{C}$ NMR spectra for the complexes

(3.12.1) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

In solution, the complex exhibits two conformation forms: the A form and the B form. In the NMR we observed the presence of double signals related to the two forms.

(3.12.1.1) ${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The ${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO-d6 is shown in Figure (3.130). The complex exhibits two conformational isomers A and B in a ratio about 2:1, respectively. This is based on the integration of the detected signals in the spectrum. Isomer A shows chemical shift at $\delta=5.00 \mathrm{ppm}$ equivalent to 4 protons which assigned to $\left(\mathrm{C}_{2,2}-\mathrm{r}\right)$). This peak is shifted to upfield position compared with that observed in the free ligand. This may be due to the fact that, upon complexation, in each of the pyridinium portion the carboxylato moiety is almost co-planar with the CH_{2} group and the pyridinium molecue. This can lead to the increase of the electron density, shifting the electron charge density from the carboxylato moiety, on the $\left(\mathrm{CH}_{2}\right)$ group allowing it to appear at upfield position. The signal at ($\delta=8.54-8.56$
 $-H$) protons appear as a doublet at ($9.00-9.02 \mathrm{ppm}, 4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}$). These signals are shifted to upfield. This may due to the co-planar alignment occurred between the carboxylato, CH_{2} and the aromatic groups. On other hand, isomer B displays chemical shift at 5.08 ppm equivalent to 4 H which assigned to ($\mathrm{C}_{2,2}-\mathrm{H}$) protons. Peaks at $\delta=8.62-8.64 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=8.00 \mathrm{~Hz}\right)$ assigned to $\left(\mathrm{C}_{4,4 ;}{ }^{-} ; 6,6^{-}-\mathrm{H}\right)$ protons. The signals at $\delta=9.17-9.19 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=8.00 \mathrm{~Hz}\right)$ attributed to $\left(\mathrm{C}_{3,3 ; 7}{ }^{-}\right.$, $7^{-}-H$) protons. The above
reasoning can be used to explain shifts occurred in isomer B. The appearance of two isomers is perhaps due to the ease of rotation of the chelating portion of the molecule and/or the ease of rotation of the two pyridinium molecules; slow rotation could give one or two conformations that are not symmetrical. The results are summarised in Table (3.28).

Figure (3.130) ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum in DMSO-d6 of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{\mathbf{1}}\right)\left(\mathbf{N}_{3}\right)_{\mathbf{4}}\right] \cdot \mathrm{H}_{\mathbf{2}} \mathrm{O}$

(3.12.1.2) ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO-d6, Figure (3.131) shows the chemical shifts of $\left(\mathrm{C}_{2},{ }^{`}\right)$ are nonequivalent and appear at 64.30 and 69.43 ppm. This is due to the presence of two isomers in solution, A and B. The chemical shift at 138.25 and 141.35 ppm assigned to $\left(\mathrm{C}_{4,4} 4^{-} ; 6,6\right.$). Signals related to $\left(\mathrm{C}_{3,3}{ }^{-} ; 7,7^{-}\right)$ were detected at 151.48 and 151.53. Chemical shifts at 164.93 and 165.64 ppm were attributed to $\left(\mathrm{C}_{5}, 55^{-}\right)$indicating the two signals are nonequivalent. The chemical shift of the $\mathrm{C}=\mathrm{O}$ of the carboxylate moiety appears as expected downfield at 177.86 and 183.82 ppm . The shift of these signals to downfield is due to the electron deshielding of the carboxylato group upon complex formation. The results are summarised in Table (3. 29).

Figure (3.131) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3.12.1.3) DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The DEPT ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$, Figure (3. 132) reveals the $\left(\mathrm{C}_{2}, 2^{-}\right)$are nonequivalent and appear as two signals at 64.30 and 69.43 ppm , indicating the present of two isomers A and B . These peaks were enhanced, as expected, in the negative direction (down), and therefore assigned to $\left(-\mathrm{CH}_{2}\right)$ group. Signals at chemical shifts $138.25 ; 141.35$ and $151.48 ; 151.53 \mathrm{ppm}$ were assigned to $\left(\mathrm{C}_{4,4 ; 6,6}^{-}\right)$and $\left(\mathrm{C}_{3,3 ; 7,7^{-}}^{-)^{-}}\right.$, respectively. These signals enhance in the positive direction (up), and therefore assigned to (-CH). No signals in the range 177-183 ppm, may assign for $\left(\mathrm{C}_{5,5}^{-}\right)$and $\left(\mathrm{C}_{1,1}^{-}\right)$are detected, quaternary carbons.

Figure (3.132) DEPT ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO-d6
(3-12.2) ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ Complex
(3.12.2.1) ${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The ${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO-d6 is shown in Figure (3. 133). The spectrum displays one set of signals indicatating the present of one isomer in solution. The spectrum shows chemical shift at $\delta=9.13-9.15 \mathrm{ppm}$ $\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right)$ attributed to $\left(\mathrm{C}_{3,3} 3^{-} ; 5,5^{-}-\mathrm{H}\right)$ protons. The signals of $\left(\mathrm{C}_{2,2} 2^{-}, 6,6^{-}-\mathrm{H}\right)$ protons appear as a doublet at $\delta=9.21-9.22 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=4.8 \mathrm{~Hz}\right)$. These signals are shifted to downfield compared to that detected in the free ligand. This may be due to the redistribution of the negative charge of the carboxylato moiety, upon complexation, to the nitrogen atom resulting in the shielding of the aromatic group. The results are summarised in Table (3.28).

Figure (3.133) ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum in DMSO-d6 for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{\mathbf{2}}\right)\left(\mathrm{N}_{3}\right)_{\mathbf{4}}\right] \cdot \mathrm{H}_{\mathbf{2}} \mathrm{O}$

(3.12.2.2) ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

As in the ${ }^{1} \mathrm{H}$ NMR, the ${ }^{13} \mathrm{C}$ NMR for the complex shows one set of signals. The ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ in DMSO-d6 , Figure (3. 134) shows chemical shift at $\delta=130.02 \mathrm{ppm}$ assigned to $\left(\mathrm{C}_{3,3 ;}{ }^{-} ; 5,5\right)$. Signals related to $\left(\mathrm{C}_{2,2} 2^{-} ; 6,6^{-}\right)$ are equivalent and detected at $\delta=157.99 \mathrm{ppm}$. Chemical shift at $\delta=162.02 \mathrm{ppm}$, attributed to $\left(\mathrm{C}_{4,4}{ }^{-}\right)$. The chemical shift of the $\mathrm{C}=\mathrm{O}$ of the carboxylato moiety appears as expected downfield at $\delta=181.99 \mathrm{ppm}$. These signals are shifted to downfield due to complex formation. The results are summarised in Table (3. 29).

Figure (3.134) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3-12.3) ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}$ NMR spectra for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3.12.3.1) ${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The ${ }^{1} \mathrm{H}$ NMR spectrum for $\left[\mathrm{Cd}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, Figure $(3-135)$ displays chemical shifts at $\delta=2.15-2.22 \mathrm{ppm}(4 \mathrm{H})$ and $\delta=2.35-2.38 \mathrm{ppm}\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=14.4\right.$ $\mathrm{Hz})$ assigned to $\left(\mathrm{C}_{3,3}-\mathrm{H}\right)$ and $\left(\mathrm{C}_{2,2}-\mathrm{H}\right)$ protons, respectively, and each is equivalent to 4 protons. The latter signal is shifted to upfield due to the fact that, upon complexation, in each of the pyridinium portion the carboxylato group is almost coplanar with the CH_{2} group and the pyridinium molecue. This can lead to the increase of the electron density, shifting the electron charge density from the carboxylato group, on the $\left(\mathrm{CH}_{2}\right)$ group and appeared at upfield position. Therefore the $\left(-\mathrm{CH}_{2}\right)$ group is shielded and appeared at lower chemical shift. These signals show a slight change in the chemical shifts values compared with that in the free ligand. This may be related to a weak interaction, upon complexation, between the ligand and metal
ion. The signal at chemical shift 4.65-4.68 ppm ($4 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=14.4 \mathrm{~Hz}$) equivalent to 4 protons assigned to $\left(\mathrm{C}_{4,4}-H\right)$. This peak is shifted to downfield and can be explained using similar explanation as above. The signal at chemical shift 8.72-8.75 ppm ($4 \mathrm{H}, \mathrm{t}$, $J_{\mathrm{HH}}=12.0 \mathrm{~Hz}$) equivalent to 4 protons assigned to $\left(\mathrm{C}_{6,6^{-}, 8,8^{-}-H}\right)$. The signal at chemical shift 9.22-9.24 ppm ($4 \mathrm{H}, \mathrm{d}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}$) equivalent to 4 protons assigned to $\left(\mathrm{C}_{5,5} 5^{-}, 9,9^{-}-H\right.$). These signals are shifted to downfield compared with that in the free ligand. This may be due to the co-planar between the pyridinium and the carboxylato anion groups and lead to increase of the electron density over the pyridinium group. Chemical shifts are summarised in Table (3. 28).

Figure (3. 135) ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3.12.3.2) ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The ${ }^{13} \mathrm{C}$ NMR spectrum for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathbf{H}_{2} \mathbf{O}$, Figure (3. 136) shows chemical shifts at $\delta=29.34, \delta=33.99$ and 65.52 ppm , assigned to $\left(\mathrm{C}_{3}, 3_{3}^{-}\right),\left(\mathrm{C}_{2}, 2_{2}^{-}\right)$and ($\mathrm{C}_{4}, 4{ }^{-}$), respectively. Signals at 129.99 , 150.57 and 156.05 ppm , were attributed to $\left(\mathrm{C}_{6,6} 6^{-} ; 8,8^{-}\right),\left(\mathrm{C}_{5,5^{-} ; 9,9}{ }^{-}\right)$and $\left(\mathrm{C}_{7,7^{-}}\right)$, respectively. The chemical shift of $\mathrm{C}=\mathrm{O}$ group of the carboxylato moiety appears as expected downfield at $\delta=178.11 \mathrm{ppm}$. The results are summarised in Table (3. 29).

Figure (3.136) ${ }^{13} \mathrm{C}$ NMR spectrum in DMSO-d6 for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-28) ${ }^{1} \mathrm{H}$ NMR data for the complexes measured in DMSO-d6 and chemical shift in p.p.m (δ)

Compound	Func. Group	δ (P.P.M)
CdL ${ }^{1}$ isomer A Isomer B		$\begin{gathered} 5.00,4 \mathrm{H} \\ 8.54-8.56, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz} \\ 9.00-9.02, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz} \\ 5.08,4 \mathrm{H} \\ 8.62-8.64,1 \mathrm{H}, \mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz} \\ 9.17-9.19, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz} \end{gathered}$
$\mathbf{Z n L}{ }^{\mathbf{2}}$	$\begin{aligned} & \mathrm{C}_{(3,3 ; 5,5)^{-}-\mathrm{H}} \\ & \mathrm{C}_{\left(2,2^{-} ; 6,6\right)^{-}-\mathrm{H}} \end{aligned}$	$\begin{aligned} & 9.13-9.15, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz} \\ & 9.21-9.23, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz} \end{aligned}$
CdL^{4}	$\begin{gathered} \mathrm{C}_{(3,3)-\mathrm{H}} \\ \mathrm{C}_{(2,2)}-\mathrm{H} \\ \mathrm{C}_{(4,4)^{-}-\mathrm{H}} \\ \mathrm{C}_{\left.(6,6 ; 8,)^{-}\right)-\mathrm{H}} \\ \mathrm{C}_{\left(5,5^{-} ; 9,9\right)^{-}-\mathrm{H}} \end{gathered}$	$\begin{aligned} & 2.15-2.22, \mathrm{~m}, 4 \mathrm{H}, J_{\mathrm{HH}}=27.2 \mathrm{~Hz} \\ & 2.35-2.38, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=14.4 \mathrm{~Hz} \\ & 4.65-4.68, \mathrm{t}, 4 \mathrm{H}, J_{\mathrm{HH}}=14.4 \mathrm{~Hz} \\ & 8.72-8.75, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=12.0 \mathrm{~Hz} \\ & 9.22-9.24, \mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz} \end{aligned}$

Table (3-29) ${ }^{13} \mathrm{C}$ NMR data for the complexes measured in DMSO-d6 and chemical shift in p.p.m (δ)

Compound	Func. Group	δ (P.P.M)
CdL ${ }^{1}$ isomer 1	$\mathrm{C}_{(2,2)}{ }^{-}$	64.30
	$\mathrm{C}_{(4,4 ; 6,6)}{ }^{-}$	138.25
	$\mathrm{C}_{(3,3 ; 7,7)}$	151.48
	$\mathrm{C}_{(5,5)}$	164.93
	$\mathrm{C}_{(1,1)}$	177.86
Isomer 2	$\mathrm{C}_{(2,2)}$	69.43
	$\mathrm{C}_{(4,4 ; 6,6)}$	141.35
	$\mathrm{C}_{(3,3 ; 7,7)}$	151.53
	$\mathrm{C}_{(5,5)}$	165.64
	$\mathrm{C}_{(1,1)}$	183.82
$\mathbf{Z n L}{ }^{2}$	$\mathrm{C}_{(3,3 ; 5,5)}$	130.02
	$\mathrm{C}_{(2,2 ;}{ }^{-} ; 6{ }^{-}$	157.99
	$\mathrm{C}_{(4)}$	162.02
	$\mathrm{C}_{(1)}$	181.99
CdL ${ }^{4}$	$\mathrm{C}_{(3,3)}$	29.34
	$\mathrm{C}_{(2,2)}$	33.99
	$\mathrm{C}_{(4,4)}$	65.52
	$\mathrm{C}_{(6,6 ; 8,8)}{ }^{-}$	129.99
	$\mathrm{C}_{(5,5 ; 9,9)}$	150.57
	$\mathrm{C}_{(7,7)}$	156.05
	$\mathrm{C}_{(1,1)}$	178.11

(3.13) Mass spectra of the complexes

(3.13.1) Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The high resolution electrospray (+) mass spectrum of CdL^{1} is presented in Figure (3. 137). The molecular ion peak for the complex is observed at $\mathrm{m} / \mathrm{z}=641.42$ $\left(\mathrm{M}-\mathrm{N}_{3}\right)^{+}(63 \%)$ for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$, requires $=683.17$. The other peaks detected at $\mathrm{m} / \mathrm{z}=613.14$ (40%), 579.13 (22%), 581.10(19 \%) , 598.13 (16%) and 571.10 The fragmentation pattern of the molecular ion of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Scheme (3. 9).

Figure (3.137) ES (+) mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Scheme (3.9) The fragmentation pattern of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3.13.2) Mass spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The high resolution electrospray (${ }^{+}$) mass spectrum of NiL^{1} is presented in Figure (3. 138). The exact molecular ion peak for the complex is observed at $\mathrm{m} / \mathrm{z}=$ $574.11(\mathrm{M})^{+}(9 \%)$ for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Ni}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$, requires $=574.0$. The other peaks detected at m/z =485.94 (9 \%), 410.22 (16 \%), 324.18(8 \%), 270.15 (3 \%), 243.14 (100 \%), 215.13 (9%), $185.13(13 \%)$ and $145.08(51 \%)$. The fragmentation pattern of the molecular ion of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Scheme (3.10).

Figure (3.138) ES (+) mass spectrum of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Scheme(3.10) The fragmentation pattern of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3.13.3) Mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

The high resolution electrospray (+) mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ is presented in Figure (3.139). The exact molecular ion peak for the complex is observed at $\mathrm{m} / \mathrm{z}=638.43(\mathrm{M}+1)^{+}(16 \%)$ for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$, requires $=637.12$. The other peaks detected at $\mathrm{m} / \mathrm{z}=537.39$ (73 \%), 413.26 (94 \%), 301.14 (76 \%) and $172.09(100 \%)$. The fragmentation pattern of the molecular ion of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ is shown in Scheme (3.11).

Figure (3.139) ES (+) mass spectrum of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$
$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{O}_{4}$
638.43
$\quad \downarrow \quad-\mathrm{N}_{4}+\mathrm{CO}+\mathrm{NH}_{3}$
$\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{Cd}_{2} \mathrm{~N}_{9} \mathrm{O}_{3}$
537.39
$\downarrow \quad-2 \mathrm{CN}+\mathrm{N}_{2}+\mathrm{N}_{2} \mathrm{O}$
$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cd}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$
413.26
-Cd
$\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{CdN}_{3} \mathrm{O}_{2}$
301.14
$-\mathrm{N}_{2}+\mathrm{HCN}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{C}_{5} \mathrm{Cd}$
172.09
Scheme(3.11) The fragmentation pattern of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

(3.13.4) Mass spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The high resolution electrospray (+) mass spectrum of CoL^{3} is presented in Figure (3. 140). The exact molecular ion peak for the complex is observed at m / z $=604.86(\mathrm{M})^{+}(7 \%)$ for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Co}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$, requires $=604.27$. The other peaks detected at $\mathrm{m} / \mathrm{z}=444.73$ (5 \%), 418.72 (10 \%), 352.64(56 \%) , 336.65 (100 \%),
284.60 (6 \%) and 202.56 (4 \%). The fragmentation pattern of the molecular ion of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Scheme (3.12).

Figure (3.140) ES (+) mass spectrum of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Scheme(3.12) The fragmentation pattern of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

(3.13.5) Mass spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The high resolution electrospray (+) mass spectrum of ZnL^{3} is presented in Figure (3. 141). The exact molecular ion peak for the complex is observed at $\mathrm{m} / \mathrm{z}=$ $617.53(\mathrm{M})^{+}$(7%) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{Zn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$, requires $=617.19$. The other peaks detected at $\mathrm{m} / \mathrm{z}=545.42$ (3 \%), 405.00 (6 \%), 332.98 (8 \%) , 229.09 (24 \%), 187.99 (44 \%) and 157.07 (100 \%). The fragmentation pattern of the molecular ion of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ is shown in Scheme (3.13).

Figure (3.141) ES (+) mass spectrum of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Scheme(3.13) The fragmentation pattern of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathbf{H}_{2} \mathrm{O}$

(3.13.6) Mass spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

The high resolution electrospray (+) mass spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is presented in Figure (3.142). The exact molecular ion peak for the complex is observed at $\mathrm{m} / \mathrm{z}=624.23(\mathrm{M})^{+}(4 \%)$ for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Mn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$, requires $=624.33$. The other peaks detected at $\mathrm{m} / \mathrm{z}=594.23$ (7 \%), 532.20 (13 \%), 515.17(3 \%) , 445.12 (28 \%), 371.09 (40 \%), 302.02 (100 \%) and 198.92 (16 \%). The fragmentation pattern of the molecular ion of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is shown in Scheme (3.14).

Figure (3.142) ES (+) mass spectrum of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Mn}_{2} \mathrm{~N}_{14} \mathrm{O}_{5}$
624.23
-NO
$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Mn}_{2} \mathrm{~N}_{13} \mathrm{O}_{4}$
594.23

$$
-\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{NO}
$$

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Mn}_{2} \mathrm{~N}_{10} \mathrm{O}_{3}$
532.20
$\square \quad-\mathrm{NH}_{3}$
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Mn}_{2} \mathrm{~N}_{9} \mathrm{O}_{3}$
515.17
$-2 \mathrm{~N}_{2}+\mathrm{CH}_{2}$
$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{Mn}_{2} \mathrm{~N}_{5} \mathrm{O}_{3}$
445.12

$$
-\mathrm{CO}_{2}+\mathrm{N}_{2} \mathrm{H}_{2}
$$

$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Mn}_{2} \mathrm{~N}_{3} \mathrm{O}$
371.09
$\downarrow \quad-\mathrm{CO}+\mathrm{C}_{3} \mathrm{H}_{5}$
$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{Mn}_{2} \mathrm{~N}_{3}$
302.02
$\downarrow \quad-\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CN}$
$\mathrm{C}_{5} \mathrm{Mn}_{2} \mathrm{~N}_{2}$
198.92

Scheme(3.14) The fragmentation pattern of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathbf{H}_{2} \mathrm{O}$

(3.14) Thermal decomposition study

Thermal decomposition data for selected ligands and some of their metal complexes are summarised in Table (3. 26). Analysis curves (TG/DTG, DTA and DSC) of compounds are studied and interpreted as follows.

(3.14.1) Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The TGA thermal analysis curve for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3. 143). The sample decomposes at the $74-406^{\circ} \mathrm{C}$ range with temperature of maximum rate of weight loss. The associated endothermic peaks over the temperature $74{ }^{\circ} \mathrm{C}$ and $191{ }^{\circ} \mathrm{C}$ indicate the loss of $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}\right)$ corresponds to hydrated water and adsorped oxygen molecule (the adsorption of O_{2} is possible since the complex represents MOF molecule) and nitrogen with ammonia molecules $\left(\mathrm{N}_{2}+\mathrm{NH}_{3}\right)$, respectively. These correspond well with weight loss data of $\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ (obs. $=0.50000$ mg; calc. $=0.4841 \mathrm{mg}, 8.80 \%$) and $\mathrm{N}_{2}+\mathrm{NH}_{3}$ (obs. $=0.4676 \mathrm{mg}$; calc. $=0.4359 \mathrm{mg}$, 7.92%) molecules. The third step occurs from $339^{\circ} \mathrm{C}$ corresponding to the loss of $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ molecules representing weight loss (obs. = 0.3335 ; calc. $=0.3101 \mathrm{mg}$, $5.63 \%)$. The fourth steps from $369^{\circ} \mathrm{C}$ corresponding to the loss of $\left(3 \mathrm{~N}_{2}\right)$ representing weight loss (obs. $=0.8223 \mathrm{mg} ;$ calc. $=0.8133 \mathrm{mg}, 14.78 \%)^{(196)}$. The fifth step occurs over the temperature $393{ }^{\circ} \mathrm{C}$ corresponding to the loss of $\left(\mathrm{CO}_{2}\right)$ molecules representing weight loss (obs. $=0.4109 \mathrm{mg}$ and calc. $=0.4259 \mathrm{mg}, 7.74 \%)^{(197)}$. The sixth steps at $435^{\circ} \mathrm{C}$ corresponding to the loss $\left(\mathrm{N}_{3} \mathrm{H}_{5}\right)$ representing weight loss (obs. $=0.4667 \mathrm{mg}$; calc. $=0.4554 \mathrm{mg}, 8.27 \%$). The final weight (obs. $=1.6665 \mathrm{mg}$; calc. $=$ $2.5845 \mathrm{mg}, 42.72 \%$) represents metallic and carbon residue are the final product. is much less than the expected weight related to $\left(\mathrm{Mn}_{2} \mathrm{C}_{13} \mathrm{H}\right)$ indicating the partial sublimation.

The decomposition of the complex in $74-113^{\circ} \mathrm{C}$ is indicated by an endothermic process at $85^{\circ} \mathrm{C}$, while the decomposition in the $191-213^{\circ} \mathrm{C}$ range is indicated by
an endothermic peak at $210^{\circ} \mathrm{C}$. The DSC analysis Figure (3.144) show peaks at the $185{ }^{\circ} \mathrm{C}, 280^{\circ} \mathrm{C}$ and $393^{\circ} \mathrm{C}$ refer to exothermic decomposition process. The peak at the $91{ }^{\circ} \mathrm{C}$ range refers to endothermic decomposition process. The endothermic may signify the metal-ligand bond breaking and the exothermic may indicate oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.143) TGA, DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.144) DSC thermogram of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathbf{~ m i n}^{-1}$

(3.14.2) Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The TGA thermal analysis curve for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3. 145). The complex found to be stable up to $50^{\circ} \mathrm{C}$ as shown by the TG curve. It decomposes in two endothermic steps, from 50 to $200{ }^{\circ} \mathrm{C}$. The complex undergoes rapid decomposition and weight loss initially at rate of (obs. $=0.1502 \mathrm{mg}$ and calc. $=0.1444 \mathrm{mg}, 5.55 \%)\left(\right.$ DTG peak centred at 57 and $81^{\circ} \mathrm{C}$) related to losing (NO) molecule. The second decomposition refer to the loss of $\left(6 \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}+\right.$ NO) molecules representing weight loss (obs. $=1.2954 \mathrm{mg}$ and calc. $=1.3097 \mathrm{mg}$, 50.37%), (DTG 104 and $181^{\circ} \mathrm{C}$). The final weight of the compound observed with 1.0546 mg (calc. $=1.1453 \mathrm{mg}, 44.05 \%$) related to $\left(\mathrm{Mn}_{2}+\mathrm{C}_{10} \mathrm{H}_{8}\right)^{(196)}$. The decomposition of the complex in the $50-59$ range ${ }^{\circ} \mathrm{C}$ is indicated by an endothermic at $56^{\circ} \mathrm{C}$. The decomposition in the $112-200^{\circ} \mathrm{C}$ range is indicated by endothermic peaks at 113,178 and $188^{\circ} \mathrm{C}$. The DSC analysis Figure (3.146) shows peaks at 113 and 245 ${ }^{\circ} \mathrm{C}$ refer to endothermic process, while the peak at $396{ }^{\circ} \mathrm{C}$ refers to an exothermic decomposition process. The endothermic may signify the metal-ligand bond breaking and the exothermic may indicate the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.145) TGA, DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3-146) DSC thermogram of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.3) Thermal decomposition of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

The TGA thermal analysis curve for $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex is shown in Figure (3.147). The sample decomposes into two endothermic peaks over the temperature range of $93-765{ }^{\circ} \mathrm{C}$. The first step occurs from $93^{\circ} \mathrm{C}$ corresponding to the loss of (NO) molecules with mass loss $1.1394 \mathrm{mg}, 5.22 \%$ (calc. $=1.2474 \mathrm{mg}, 5.72 \%$). The second step at $449{ }^{\circ} \mathrm{C}$ is related to the loss of (2CO) fragments and representing weight loss (obs. $=2.1981 \mathrm{mg}, 10.08 \%$; calc. $=2.3290 \mathrm{mg}, 10.69 \%)^{(197)}$. The third step occurs around $668{ }^{\circ} \mathrm{C}$ corresponding to the loss of $\left(3 \mathrm{~N}_{2}+\mathrm{N}_{2} \mathrm{O}\right)$ molecules showing weight loss of $5.1805 \mathrm{mg}, 23.77 \%$ (calc. $=5.3235 \mathrm{mg}, 24.43 \%$). The final weight of the residue observed at $13.1669 \mathrm{mg}, 60.44 \%$ (calc. $=12.8514 \mathrm{mg}, 59.48 \%$) related to (dipyridyl $\left.+\mathrm{N}_{3}+\mathrm{Fe}_{2}\right)^{(196)}$. The decomposition of the complex at $93-247{ }^{\circ} \mathrm{C}$ is indicated by endothermic peaks at 117,166 and $258^{\circ} \mathrm{C}$. The decomposition at $449.38-548{ }^{\circ} \mathrm{C}$ is indicated by an endothermic peak at $355^{\circ} \mathrm{C}$. The endothermic peak may signify the metal-ligand bond breaking and the exothermic one may indicate the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.147) TGA thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating at heating $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.148) TG-DTG thermograms of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.149) DSC thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.4) Thermal decomposition of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

The complex $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ is found to be stable up-to $200{ }^{\circ} \mathrm{C}$ as shown by the TG curve, Figure (3.150). The complex undergoes a rapid decomposition and weight loss initially at first step (obs. $=0.0844 \mathrm{mg}, 2.63 \%$; calc. $=0.0857 \mathrm{mg}, 2.67 \%$) due to losing of $\left(\mathrm{NH}_{3}\right)$ molecule. The second step with weight loss of $1.3577 \mathrm{mg}, 42.31 \%$ (calc. $=1.4108 \mathrm{mg}, 43.97 \%)$ may related to the detached of $\left(6 \mathrm{~N}_{2}+4 \mathrm{CO}\right)$ molecules. This was represented by DTG peaks centred at 442 and $449{ }^{\circ} \mathrm{C}$. The final weight of the residue observed at $1.7691 \mathrm{mg}, 57.30 \%$ (calc. $=1.9886 \mathrm{mg}, 61.97 \%$) is related to $\left(\mathrm{Cd}_{2} \mathrm{~N}+\right.$ dipyridyl) ${ }^{(196)}$. The DSC analysis Figure(3-152), shows endothermic peaks at $119,167,196$ and $213{ }^{\circ} \mathrm{C}$. The peak at $371^{\circ} \mathrm{C}$ refers to an exothermic decomposition process. The endothermic may signify the metal-ligand bond breaking and the exothermic may indicate the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.150) TGA thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.151) TG-DTG thermograms of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.152) DSC thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.5) Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ complex

The TGA thermal analysis curve for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure(3.153). The sample decomposes in three endothermic steps over the range of temperature $51-450^{\circ} \mathrm{C}$. The first step occurs from $161^{\circ} \mathrm{C}$ corresponding to the loss of $\left(2 \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}\right)$ molecules with weight loss of 0.8104 mg (calc. $\left.=0.8690 \mathrm{mg}, 10.75 \%\right)$. The second step from $240^{\circ} \mathrm{C}$ represents the loss of $\left(2 \mathrm{~N}_{2}\right)$ molecules with weight loss of 0.8332 mg (calc. $=0.7372 \mathrm{mg}, 9.12 \%$). The third step occurs from $343{ }^{\circ} \mathrm{C}$ corresponding to the loss of (CO) molecules with the loss of 0.3753 mg (calc. $=$ $0.3685 \mathrm{mg}, 4.55 \%)^{(196)}$. The fourth step from $375^{\circ} \mathrm{C}$ relates to the loss of $\left(\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}+2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{HCN}\right)$ with mass loss of 2.2334 mg (calc. $\left.=2.2522 \mathrm{mg}, 27.86 \%\right)$. The weight of the compound observed at 3.2085 mg is much less than that calculated weight at $3.8541 \mathrm{mg}, 22.44 \%$ representing the $\left(\mathrm{Mn}_{2} \mathrm{~N}_{2}+\right.$ dipyridyl-H) residue ${ }^{(197)}$. This could be due to partial sublimation process upon thermal analysis. The decomposition of the complex in the range of $51-129$ and $200-243^{\circ} \mathrm{C}$ is indicated by endothermic peaks at 88 and $215^{\circ} \mathrm{C}$, respectively. The decomposition in the range of $400-450^{\circ} \mathrm{C}$ is indicated by an exothermic peak at $431^{\circ} \mathrm{C}$. The DSC analysis Figure (3.154), shows peaks at 117 and $236^{\circ} \mathrm{C}$ refer to an endothermic reaction. Peaks at 347 and $392{ }^{\circ} \mathrm{C}$ refer to the exothermic decomposition process. The endothermic may signify the metal-ligand bond breaking and the exothermic may indicate the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.153) TGA,DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3.154) DSC of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.6) Thermal decomposition of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The complex $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ is found to be stable upto $72{ }^{\circ} \mathrm{C}$ as shown by the TG curve, Figure (3.155). The sample decomposes in three endothermic peaks over the temperature range of $72-400^{\circ} \mathrm{C}$. The decomposition and weight loss initially at rate of (obs. $=0.1430 \mathrm{mg}$; calc. $=0.1498 \mathrm{mg}, 3.01 \%$), (DTG peak centred at 75 and $\left.107^{\circ} \mathrm{C}\right)$ is due to the losing of $\left(\mathrm{H}_{2} \mathrm{O}\right)$ molecule. The second step occurs from $139{ }^{\circ} \mathrm{C}$ corresponding to the loss of (CO) with weight loss of 0.2200 mg (calc. $=0.2330 \mathrm{mg}$, 4.68%). The third step shows weight loss of 1.6400 mg (calc. $=1.6562 \mathrm{mg}, 28.60 \%$),
(DTG 261 and $309{ }^{\circ} \mathrm{C}$) attributed to the losing of $\left(2 \mathrm{~N}_{2}+3 \mathrm{~N}_{2} \mathrm{O}+\mathrm{HCN}\right)$ residue. The final weight of the compound shows weight of 2.6800 mg (calc. $=2.7971 \mathrm{mg}$, 53.96%) related to the residue of $\left(\mathrm{Fe}_{2} \mathrm{~N}+\text { dipyridyl-H) }+\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right]^{(197)}$. The decomposition of the complex in the range of $72-111^{\circ} \mathrm{C}$ is indicated by endothermic peaks at 71 and $111^{\circ} \mathrm{C}$. Other decomposition endothermic peaks are detected at 139 and $147{ }^{\circ} \mathrm{C}$. The decomposition in the range of $259-400{ }^{\circ} \mathrm{C}$ is indicated by endothermic and exothermic peaks at 282; 339 and $400{ }^{\circ} \mathrm{C}$, respectively. The endothermic may signify the metal-ligand bond breaking. The DSC analysis Figure (3.156) shows peaks at 102, 112, and $305{ }^{\circ} \mathrm{C}$ refer to endothermic peaks. Peak detected at $392{ }^{\circ} \mathrm{C}$ refers to an exothermic decomposition process. The endothermic may signify the metal-ligand bond breaking and the exothermic may indicate the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3. 155) TGA, DTG and DTA thermograms of [Fe $\left.\mathbf{e}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.156) DSC thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.7) Thermal decomposition of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The TGA thermal analysis curve for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3. 157). The sample decomposes in two endothermic decomposition processes over the temperature range $145-593^{\circ} \mathrm{C}$. The first step occurs from $220^{\circ} \mathrm{C}$ with weight loss of $0.1683 \mathrm{mg}, 2.69 \%$ (calc. $=0.1725 \mathrm{mg}, 2.75 \%$) corresponding to the loss of $\left(\mathrm{NH}_{3}\right)$. The second and third steps from $382-593{ }^{\circ} \mathrm{C}$ corresponding to the loss of (3CO) with weight loss of $0.8938 \mathrm{mg}, 14.28 \%$ (calc. $=0.8516 \mathrm{mg}, 13.61 \%$) and to the losing of $\left(6 \mathrm{~N}_{2}+\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{HCN}\right)$ fragments with weight loss of 2.1936 mg , 35.07% (calc. $=2.2615 \mathrm{mg}, 36.15 \%$), respectively. The final weight of the compound observed at $2.8317 \mathrm{mg}, 47.99 \%$ (calc $=2.7855 \mathrm{mg}, 44.39 \%$) related to the $\left(\mathrm{Zn}_{2} \mathrm{O}+\mathrm{C}_{10} \mathrm{H}_{8}\right)$ residue ${ }^{(1966,197)}$.

The decomposition of the complex in the $145-225^{\circ} \mathrm{C}$ range is indicated by endothermic processes at 103 and $206{ }^{\circ} \mathrm{C}$. The decomposition in the $382-472{ }^{\circ} \mathrm{C}$ range is indicated by an endothermic decompositon at $268^{\circ} \mathrm{C}$. The endothermic process may signify the metal-ligand bond breaking.

Figure (3.157) TGA thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3.158) TGA-DTG thermograms of $\left[\mathrm{Zn}_{2}\left(\mathbf{L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.159) DSC thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

(3.14.8) Thermal decomposition of L^{4} complex

The TGA thermal analysis curve for L^{4} ligand is shown in Figure (3. 160). The sample decomposes into two endothermic decomposition processes with peaks detected over in the $186-618{ }^{\circ} \mathrm{C}$ range. The first step occurs at $186{ }^{\circ} \mathrm{C}$ with weight loss of $3.6196 \mathrm{mg}, 80.94 \%$ (calc. $=3.6545 \mathrm{mg}, 81.71 \%$), is related to the loss of (dipyridyl +4 CO) fragments. The second step from $461^{\circ} \mathrm{C}$ corresponding to the loss of $\left(2 \mathrm{CH}_{4}\right)$ molecules, showed a weight loss of $0.4405 \mathrm{mg}, 9.85 \%$ (calc. $=0.4374 \mathrm{mg}$, $9.78 \%)^{(196)}$. The decomposition of the complex in the $1856-275 \mathrm{mg}$ is indicated by endothermic peaks at 262 and $276{ }^{\circ} \mathrm{C}$. The endothermic decomposition process may signify the metal-ligand bond breaking. The differences in the calculated in observed of the residue weight may be related to the sublimation upon thermal decomposition.

Figure (3.160) TGA thermogram of L^{4} ligand in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathbf{~ m i n}^{\mathbf{- 1}}$

Figure (3. 161) TG-DTG thermograms of L^{4} ligand in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathbf{~ m i n}^{-1}$

Figure (3.162) DSC thermogram of L^{4} ligand in nitrogen at the heating of $20^{\circ} \mathrm{C}$ $\min ^{-1}$

(3.14.9) Thermal decomposition of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The TGA thermal analysis curve for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure(3. 163). The sample decomposes in four endothermic peaks over the temperature range of $55-484^{\circ} \mathrm{C}$. The first decomposition shows weight loss of 0.6365 mg (calc. $=0.5763 \mathrm{mg}, 7.37 \%$), which is due to losing of $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}\right)$ molecules. The second step with weight loss of 0.1820 mg (calc. $=0.2132 \mathrm{mg}, 2.72 \%$) shows a peak in the DTG in the $150{ }^{\circ} \mathrm{C}$ range. The third and forth steps in the $278-484^{\circ} \mathrm{C}$ range, show weight loss of 1.3648 mg (calc. $=1.4031 \mathrm{mg}, 17.94 \%$) and at 2.8459 mg (calc. $=$ $2.8431 \mathrm{mg}, 33.80 \%)$, corresponding to the loss of $\left(2 \mathrm{~N}_{2}+2 \mathrm{CO}\right)$, and (dipyridyl $+\left(\mathrm{N}_{2} \mathrm{O}\right)$ +HCN) molecules, respectively. The final weight of the residue observed at 2.6360 mg (calc at $2.7801 \mathrm{mg}, 35.55 \%$), is related to the residue of $\left(\mathrm{Mn}_{2} \mathrm{~N}_{4}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right)^{(197)}$. The decomposition of the complex in the $55-108{ }^{\circ} \mathrm{C}$ range is indicated by an endothermic decomposition peak at $91^{\circ} \mathrm{C}$, while the decomposition about 444-484 ${ }^{\circ} \mathrm{C}$ is showed by an exothermic peak at $469{ }^{\circ} \mathrm{C}$. The endothermic decomposition process may signify the metal-ligand bond breaking and the exothermic decomposition process may indicate the oxidation or combustion of the organic ligand in the atmosphere of air. The DSC analysis Figure (3. 164), displays peaks at

383 and $389^{\circ} \mathrm{C}$ indicating exothermic decomposition process. The exothermic may refer to the oxidation or combustion process of the organic ligand in the atmosphere of air.

Figure (3.163) TGA,DTG and DTA thermograms of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3-164) DSC thermogram of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.10) Thermal decomposition of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

The TGA thermal analysis curve for $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex is shown in Figure (3-165). The sample decomposes into two endothermic peaks over the temperature range of $131.95-798.66{ }^{\circ} \mathrm{C}$. The first step occurs in the $131.95-207{ }^{\circ} \mathrm{C}$ range, is corresponding to the loss of (dipyridyl $\left.+6 \mathrm{~N}_{2}+\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}+2\left(\mathrm{CO}_{2}\right)\right)$ molecules and indicated by the weight loss of $1.1077 \mathrm{mg}, 78.55 \%$ (calc. $=1.0855 \mathrm{mg}, 76.98 \%$). The other weight loss of $0.3251 \mathrm{mg}, 23.06 \%$ (calc. $=0.3226 \mathrm{mg}, 23.30 \%$), is detected by the DTG at $\left.329^{\circ} \mathrm{C}\right)$ due to $\left(\mathrm{Fe}_{2}+\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)\right.$. The decomposition of the complex in the $132-207^{\circ} \mathrm{C}$ range is indicated by the endothermic and exothermic peaks at 115 and $189^{\circ} \mathrm{C}$, respectively ${ }^{(197)}$. The endothermic decomposition may signify the metalligand bond breaking and the exothermic may indicated the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.165) TGA thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.166) TG-DTG thermograms of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.167) DSC thermogram of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathbf{~ m i n}^{-1}$

(3.14.11) Thermal decomposition of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

The TGA thermal analysis curve for $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex is shown in Figure(3. 168). The sample decomposes into three endothermic peaks over the temperature range of $103.95-803.66^{\circ} \mathrm{C}$. The first decomposition shows weight loss of $0.0752 \mathrm{mg}, 2.29 \%$ (calc. $=0.0887 \mathrm{mg}, 2.71 \%$). The DTG peak centered at $248{ }^{\circ} \mathrm{C}$ can be attributed to the losing of $\left(\mathrm{NH}_{3}\right)$ molecule. The second step shows weight loss
of $0.6259 \mathrm{mg}, 19.14 \%$ (calc. $=0.5841 \mathrm{mg}, 17.86 \%$), the DTG detected in the $428^{\circ} \mathrm{C}$, is due to the losing of the $(4 \mathrm{CO})$ fragment. The third step with the weight loss of $1.4293 \mathrm{mg}, 43.70 \%$ (calc. $=1.4862 \mathrm{mg}, 45.45 \%$) is assigned to (dipyridyl $+4 \mathrm{~N}_{2}+\mathrm{NH}_{3}$). The final weight of the residue observed at 1.1396 mg , 34.85% (calc. $=1.1256 \mathrm{mg}, 34.25 \%)$ is related to $\left(\mathrm{Zn}_{2} \mathrm{~N}_{2}+\mathrm{C}_{4} \mathrm{H}_{6}\right)$ residue ${ }^{(197)}$. The decomposition of the complex in the $201-275^{\circ} \mathrm{C}$ range is indicated by endothermic peaks at 163 and $277{ }^{\circ} \mathrm{C}$. The endothermic decomposition peaks may signify the metal-ligand bond breaking.

Figure (3.168) TGA thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3-169) TG-DTG thermograms of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3.170) DSC thermogram of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.12) Thermal decomposition of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex

The TGA thermal analysis curve for $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex is shown in Figure (3. 171). The sample decomposes into three endothermic peaks over the temperature range of $190-600^{\circ} \mathrm{C}$. The first step occurs from $190^{\circ} \mathrm{C}$ corresponding to the loss of (NO) molecule. This was indicated from the weight loss of 0.1490 mg , 4.34\% (calc. $=0.1425 \mathrm{mg}, 4.16 \%$) upon decomposition process. The second and third steps in the $407-600{ }^{\circ} \mathrm{C}$ range is corresponding; to the loss of $\left(2 \mathrm{CO}+\mathrm{N}_{2} \mathrm{O}\right)$ molecule with the weight loss of $0.4834 \mathrm{mg}, 14.10 \%$ (calc $.=0.4751 \mathrm{mg}, 13.86 \%$), and the loss of (dipyridyl $+2 \mathrm{~N}_{2}+\mathrm{N}_{2} \mathrm{H}_{4}$) fragment with weight loss of $1.1645 \mathrm{mg}, 33.99 \%$ (calc. $=1.1593 \mathrm{mg}, 33.83 \%$), respectively. The final weight of residue observed at $1.6291 \mathrm{mg}, 47.55 \%$ (calc. $=1.6480 \mathrm{mg}, 48.10 \%$) is assigned to $\left(\mathrm{Cd}_{2} \mathrm{~N}_{3}+\mathrm{C}_{6} \mathrm{H}_{8}\right)^{(196,197)}$. The decomposition of the complex in the $190-249{ }^{\circ} \mathrm{C}$ range is indicated by an endothermic peak at $264^{\circ} \mathrm{C}$. The endothermic decomposition process may signify the metal-ligand bond breaking.

Figure (3.171) TGA thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure (3.172) TG-DTG thermograms of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3.173) DSC thermogram of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}^{-1}$

(3.14.13) Thermal decomposition of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex

The TGA thermal analysis curve for $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3. 174). The sample decomposes in four endothermic peaks over the temperature range of $76-566^{\circ} \mathrm{C}$. The first decomposition with weight loss of 0.4319 mg calc. $=0.4978 \mathrm{mg}, 7.33 \%$), the DTG peak is centered at $76^{\circ} \mathrm{C}$, is due to losing of $\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}\right)$ molecule. The second and third steps show weight loss of 0.5908 mg (calc. $=0.6490 \mathrm{mg}, 9.56 \%$), the DTG peaks centered at 129 and $161^{\circ} \mathrm{C}$, is related to losing of (2NO). The other step with weight loss of 0.7896 mg (calc. $=0.9088 \mathrm{mg}$, 13.39%), the DTG peaks centered at 200, 271, 321 and $429^{\circ} \mathrm{C}$, assigned to losing of $\left(3 \mathrm{~N}_{2}\right)$. The final step shows weight loss of 0.7951 mg (calc. $=0.7682 \mathrm{mg}, 11.32 \%$), the DTG peak is centered at $535{ }^{\circ} \mathrm{C}$), is assigned to the losing of ($\mathrm{N}_{2} \mathrm{O}+\mathrm{HCN}$) molecule. The final weight (obs. $=4.000$, calc. $=3.9716,58.39 \%$) The decomposition of the complex in the $70-88 \mathrm{mg} / \mathrm{min}$ range is indicated by an endothermic peak at 76 ${ }^{\circ} \mathrm{C}$. The decomposition of the complex in the $129-189{ }^{\circ} \mathrm{C}$ range is indicated by an endothermic decomposition process at $161^{\circ} \mathrm{C}$. The decomposition in the $193-429^{\circ} \mathrm{C}$ range is indicated by endothermic peaks at 200 and $407^{\circ} \mathrm{C}$. The complex shows other
decomposition process in the $472-566{ }^{\circ} \mathrm{C}$ range, indicating an exothermic process, which observed at $493^{\circ} \mathrm{C}$. The endothermic decomposition process may signify the metal-ligand bond breaking. The DSC thermogram analysis, Figure (3. 175), shows peaks at 82,183 , and $335^{\circ} \mathrm{C}$, indicating endothermic decomposition process. The peaks at 163 and $393{ }^{\circ} \mathrm{C}$ are referred to exothermic process. The endothermic may signify the metal-ligand bond breaking and the exothermic may indicate the oxidation or combustion of the organic ligand in the atmosphere of air.

Figure (3.174) TGA,DTG and DTA thermograms of [Cu $\left.\mathbf{u}_{2}\left(\mathbf{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$

Figure (3.175) DSC thermogram of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in nitrogen at the heating of $20{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Table (3-30) TG/DTG/DTA data for ligands and metal complexes

Compound	Stable up $\text { to }{ }^{\circ} \mathrm{C}$	Stage	Decomposition Temperature Initial-Final $\left({ }^{\circ} \mathrm{C}\right)$	Nature of Transformation/Intermediate Formed \% mass found (calc.)	Nature of DSC peak and Temp. ${ }^{\circ} \mathrm{C}$	DTG peak Temp. ${ }^{\circ} \mathrm{C}$
MnL1	74	1	74-113	0.5000(0.4841)	85	
		2	191-213	0.4676(0.4359)	210	
		3	339-350	0.3335(0.3101)		
		4	369-385	0.8223(0.8133)		
		5	393-406	0.4109(0.4259)	435 Exo	
MnL2	50	1	50-59	0.1502(0.1444)	56 Endo	57 and 81
		2	112-200	1.2954(1.3097)	$\begin{gathered} \hline \text { 113,178 and } \\ 188 \text { Endo } \end{gathered}$	104 and 181
FeL2	93	1	93-247	1.1394(1.2474)	$\begin{gathered} \text { 116.666 Endo } \\ \text { 166 Endo } \\ \text { 258 Endo } \end{gathered}$	110
		2	449-548	2.1981(2.3290)	355.333 Endo	312, 510
		3	668-765	5.1805(5.3235)	-	777
CdL2	390	1	200-300	0.0844 (0.0857)	-	-
		2	390-475	1.3577 (1.4108)	-	442 and 449

Chapter Three
Results and Discussion

Continued Table (3. 30)						
MnL3	51	1	51-129	0.8104 (0.8690)	88 Endo	161
		2	200-243	0.8332 (0.7372)	215 Endo	240
		3	322-354	0.3753 (0.3685)		343
		4	400-450	2.2334 (2.2522)	431 Exo	368, 375
FeL3	70	1	72-111	0.1430 (0.1498)	71, 111 Endo	75, 107
		2	139-173	0.2200 (0.2330)	139, 147 Endo	214
		3	259-400	1.6400 (1.6562)	$\begin{gathered} \text { 282, } 339 \text { Endo } \\ 400 \text { Exo } \end{gathered}$	$\begin{aligned} & 261 \\ & 309 \end{aligned}$
ZnL3	145	1	145-225	0.1683 (0.1725)	$\begin{aligned} & \text { 103.333 Endo } \\ & \text { 205.666 Endo } \end{aligned}$	220
		2	382-472	0.8938 (0.8516)	268.004 Endo	439
		3	557-594	2.1936 (2.2615)		-
L4	186	1	186-275	3.6196 (3.6545)	261.684 Endo	-
		2	461-618	0.4405 (0.4374)	276.337 Endo	250
MnL4	55	1	55-108	0.6365 (0.5763)	91	-
		2	188-209	0.1820 (0.2132)	-	150
		3	278-419	1.3648 (1.4031)	-	250,338
		4	444-484	2.8459 (2.8431)	469 Exo	440
FeL4	132	1	132-207	1.1077 (1.0855)	$\begin{aligned} & 114 \text { Endo } \\ & 189 \text { Exo } \end{aligned}$	189
		2	247-799	0.3251(0.3226)	-	329
ZnL4	103	1	103-125	0.0752 (0.0887)		-
		2	201-275	0.6259 (0.5841)	163 and 277 Endo	248
		3	600-804	1.4293 (1.4862)	-	428
CdL4	190	1	190-249	0.1490 (0.1425)	264 Endo	215
		2	407-486	0.4834 (0.4751)	-	442
		3	586-600	1.1645 (1.1593)	-	719
CuL5	70	1	70-88	0.4319 (0.4978)	76 Endo	-
		2	129-189	0.5908 (0.6490)	161 Endo	129, 161
		3	193-429	0.7896 (0.9088)	200, 407 Endo	$\begin{gathered} \hline 200,271, \\ 321,429 \end{gathered}$
		4	472-566	0.7951 (0.7682)	493 Exo	535

Exo=exothermic, Endo=endothermic

(3.15) Magnetic moment properties

Coordination chemistry provides an effective approach to design and prepare molecular magnetic materials. One approach in this field is the preparation of low dimensional magnetic systems in which magnetic transition metal ions are assembled into coordination polymers by employing suitable ligands. Two types of ligands, the short bridging ligands and coligands, are used to fulfil these requirements. The short bridging ones can mediate effectively near-neighbour magnetic interactions and the auxiliary ones or coligands tuning the final structures as well as the secondary magnetic interactions in the materials. Within this in mind, we have explored the use of a range of ligands with neutral inner-salt dicarboxylato group and azido moiety to prepare complexes. Carboxylate ligands may bind to metal ions with various coordination modes, allowing for varied magnetic interactions. Furthermore, the carboxylato group may coexist with the azido group to bridge adjacent metal centres, giving rise to mixed-bridged complexes. N_{3}^{-}has proved to be very versatile by displaying remarkable diversities in both magnetism and crystal engineering. This is due to the fact that azide can link metal ions in different coordination modes, resulting in polymeric materials of low dimensionalities (chains or layers).

(3.15.1) Magnetic Moment Measurements

In this work, magnetic susceptibility measurements were conducted with an Evans balance. In these experiments a modified form of the Guoy balance method, using a microscale apparatus devised by D. F. Evans and manufactured by JohnsonMatthey, Figure (3. 176).

Figure (3. 176) Schematic diagram of Evans's balance

In this balance, a moveable magnet attached to a torsion balance detects the force created by diamagnetic and paramagnetic moments in the sample. Diamagnetic behaviour makes the magnet move down. However, paramagnetic moment makes the magnet move up.

(3.15.1.1) Evans balance susceptibility calculation

The gram susceptibility of the sample is given by Equation (3.1);
$\chi_{\mathrm{s}}=\underline{C}_{B a l} \times L \times(R-R o)$
Where:
$\chi_{\mathrm{g}}=$ mass magnetic susceptibility
$\boldsymbol{R o}=$ reading from the digital display when the empty sample tube is in place in the balance
$\boldsymbol{R}=$ reading from the digital display when the sample (in the sample tube) is in place in the balance
$\boldsymbol{m}=$ sample mass in grams
$\boldsymbol{L}=$ sample length in centimetres
$C_{B a l}=$ balance calibration constant

The molar magnetic susceptibility, χ_{M}, is obtained from the mass magnetic susceptibility by multiplying by the molecular weight of the sample.
$\chi_{M}=M \chi_{g}$
$\chi_{M}=$ molar magnetic susceptibility
$\boldsymbol{M}=$ molecular weight of the sample in units of $\mathrm{g} / \mathrm{mol}$

Diamagnetic corrections need to be applied to this measured molar magnetic susceptibility. The diamagnetic contributions arise from core paired electrons (metal ion), ligand electron pairs, and counter ion electron pairs.
$\chi_{P}=\chi_{M}-\chi_{D}$
Where: $\boldsymbol{\chi}_{D}=\left\{\boldsymbol{\chi}_{D}\right.$ (core) $+\boldsymbol{\chi}_{D}($ ligand $)+\boldsymbol{\chi}_{D}$ (counter ion) $\}$
The diamagnetic correction factors are tabulated values, called Pascal's constants ${ }^{(210)}$.

The magnetic moment value is obtained by using Equation (3. 2).
$\mu=2.83\left(\chi_{P} T\right)^{1 / 2}$
Where $\mathrm{T}=$ temperature at the time of the measurements in Kelvin.
(3.15.1.2) Worked examples for the calculation of magnetic moment, μ
(3.15.1.3) $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$.

This complex has been used as an example for L^{1} complexes for the calculation method of the magnetic susceptibility measurements of the complexes:

$$
\chi_{\mathrm{g}}=\frac{C_{B a} \times L \times(R-R o)}{m \times 10^{9}}
$$

$\mathrm{C}_{\text {Bal }}$ is a constant $=0.9324$
$\chi_{g}=\quad \underline{0.9324 \times 1.5 \times\{671-(-33)\}}$
(mass of tube and sample-mass of tube) $\times 10^{9}$
$\chi_{\mathrm{g}}=\frac{984.6144}{54700000}$
$=1.80 \times 10^{-5}$
Pascal's constants Tables (3.31 to 3.33) are used to determine the diamagnetic correction factor χ_{D} as follows ${ }^{\text {(210) }}$

Table (3. 31) Values of χ_{D} for cations

Cation	$\boldsymbol{\chi}_{\boldsymbol{D}} /\left(\mathbf{1} \mathbf{1 1 0} \mathbf{0}^{-\mathbf{6}} \mathbf{e m u ~ m o l}^{\mathbf{- 1}}\right)$
Cr^{+3}	-12
Mn^{+2}	-14
Fe^{+2}	-13
Co^{+2}	-12
Ni^{+2}	-12
Cu^{+2}	-11
Ag^{+1}	-28

Table (3. 32) Values of χ_{D} for atoms in covalent species

Atom	$\chi_{\boldsymbol{D}} /\left(\mathbf{1 \times 1 \mathbf { 1 0 } ^ { - 6 }} \mathbf{e m u} \mathbf{~ m o l}^{\mathbf{- 1}}\right)$
$\mathrm{C}_{\text {ring }}$	-6.24
$\mathrm{~N}_{\text {ring }}$	-4.61
H	-2.93
$\mathrm{CO}_{2}{ }^{-}$	-2.0700
Cl^{-}	-23.4
$\mathrm{~K}^{+}$	-18.5
C	-6
N	-5.57
$\mathrm{H}_{2} \mathrm{O}$	-13

Table (3. 33) Values of λ_{i} for specific bond types

Bond	$\lambda_{\mathbf{i}} /\left(\mathbf{1 \times 1 0 ^ { - 6 }} \mathbf{e m u ~ m o l}^{\mathbf{- 1}}\right)$
C-N	-13
Pyridine	0.5
Ar-Ar	-0.5
$\mathrm{C}=\mathrm{O}$	-6.3
$\mathrm{C}-\mathrm{C}$	0.8
$\mathrm{~N}=\mathrm{N}$	1.85

$\chi_{D}=\left[10 \chi_{D}\right.$ (Cring) $+2 \chi_{D}(\mathrm{~N}$ ring $)+12 \chi_{D}(\mathrm{H})+2 \chi_{D}(\mathrm{CO} 2)+2 \lambda(\mathrm{C}-\mathrm{N})+2 \lambda(\mathrm{py})+$ $\left.\lambda(\operatorname{Ar}-\mathrm{Ar})+2 \lambda(\mathrm{C}=\mathrm{O})+12 \chi_{D}(\mathrm{~N})+8 \lambda(\mathrm{~N}=\mathrm{N})+2 \chi_{D}(\mathrm{C})+2 \lambda(\mathrm{C}-\mathrm{C})\right] \times 10^{-6}$
$\chi_{D}=10(-6.24)+2(-4.61)+12(-2.93)+2(-2.0700)+2(-13)+2(0.5)+(-0.5)$
$+2(6.3)+12(-5.57)+8(1.85)+2(-6)+2(0.8)] \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{D}=-62.4-9.22-35.166-4.1400-26+1-0.5+12.6000-66.8400+14.800-$ $12+1.6] \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$
$=-0.00018266$
$\chi_{D}=\left[\left\{\chi_{D}\right.\right.$ (ligand) and azide $\}+\chi_{D}($ core $)+\chi_{D}($ counter ion $\left.)\right]$
χ_{D} for complex CrL1 $=-0.00018266-(0.000022$ for Cr$)+\left(\chi_{D}(\mathrm{Cl})+\left(\chi_{D}\left(\mathrm{H}_{2} \mathrm{O}\right)\right.\right.$
$=-0.00018266-(0.000022$ for Cr$)+(-0.0000201)+(-0.000023 .4)+(-0.000013)$
$=-0.000244666 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{M}=M \chi_{g}$
$=633.25 \times 0.0000180 \mathrm{emu} \mathrm{mol}^{-1}$
$=0.0113985 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{P}=\chi_{M}-\chi_{D}$
$=0.0113985+0.000244666$
$=0.011643166 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{P} T=0.011643166 \times 294 \mathrm{~K}$
$=3.423090804 \mathrm{emu} \mathrm{K} \mathrm{mol}^{-1}$
$\mu=2.83\left(\chi_{A} T\right)^{1 / 2}$
$=2.83(3.423090804)^{1 / 2}$
$=5.233041795 \boldsymbol{\mu}_{\mathrm{B}}$ (for two metal ions)
$=2.616520898 \boldsymbol{\mu}_{\mathrm{B}}$ (for one metal ion)

(3.15.1.4) $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

This complex has been used as an example for L^{2} complexes for the calculation method of the magnetic susceptibility measurements of the complexes:
$\chi_{\mathrm{g}}=\frac{0.9324 \times 1.3 \times\{589-(-23)\}}{\text { (mass of tube and sample-mass of tube) } \times 10^{9}}$
$\mathbf{C}_{\text {Bal }}$ is constant $=0.9324$
$\chi_{\mathrm{g}}=\frac{741.8174}{66400000}$
$=1.12 \times 10^{-5}$
$\chi_{D}=10 \chi_{D}\left(\mathrm{C}_{\text {ring }}\right)+2 \chi_{D}\left(\mathrm{~N}_{\text {ring }}\right)+8 \chi_{D}(\mathrm{H})+2 \chi_{D}\left(\mathrm{CO}_{2}\right)+2 \lambda(\mathrm{C}-\mathrm{N})+2 \lambda(\mathrm{py})+$ $\lambda(\mathrm{Ar}-\mathrm{Ar})+2 \lambda(\mathrm{C}=\mathrm{O})+12 \chi_{D}(\mathrm{~N})+8 \lambda(\mathrm{~N}=\mathrm{N})$
$\chi_{D}=10(-6.24)+2(-4.61)+8(-2.93)+2(-2.0700)+2(-13)+2(0.5)+(-0.5)+$ $2(6.3)+12(-5.57)+8(1.85)] \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$
$\left.\chi_{D}=-62.4-9.22-23.4400-4.1400-26+1-0.5+12.6000-66.8400+14.800\right]$ $\times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$
$=-0.00017894 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{D}=\left[\chi_{D}\{(\right.$ ligand $)+($ azide $)\}+\chi_{D}($ core $)+\chi_{D}($ counter ion $\left.)\right]$
χ_{D} for MnL2 $=-0.00017894+(-0.000028$ for Mn$)+(-0.000013)$ for $\mathrm{H}_{2} \mathrm{O}$
$=-0.00021994 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{M}=M \chi_{g}$
$=540.18 \times 0.0000112$
$=0.006050016 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{P}=\chi_{M}-\chi_{D}$
$=0.006050016+0.00021994$
$=0.006269956 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{P} T=0.006269956 \times 294 \mathrm{~K}$
$=1.843367064 \mathrm{emu} \mathrm{K} \mathrm{mol}^{-1}$
$\mu=2.83\left(\chi_{A} T\right)^{1 / 2}$
$=2.83(1.843367064)^{1 / 2}$
$=3.840174021 \mu_{\mathrm{B}}$ (for two metal ions)
$=1.920870105 \mu_{\mathrm{B}}$ (for one metal ion)

(3.15.1.5) $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

This complex has been used as an example for L^{3} complexes for the calculation method of the magnetic susceptibility measurements of the complexes
$\chi_{\mathrm{g}}=\frac{0.9324 \times 2.5 \times\{502-(-31)\}}{\text { (mass of tube and sample-mass of tube) } \times 10^{9}}$
$\mathbf{C}_{\text {Bal }}$ is constant $=0.9324$

$$
\begin{aligned}
& \chi_{\mathrm{g}}=\frac{1242.4230}{147000000} \\
& =8.5 \times 10^{-6} \\
& \chi_{D}=10 \chi_{D}\left(\mathrm{C}_{\text {ring }}\right)+2 \chi_{D}\left(\mathrm{~N}_{\text {ring }}\right)+16 \chi_{D}(\mathrm{H})+2 \chi_{D}\left(\mathrm{CO}_{2}\right)+2 \lambda(\mathrm{C}-\mathrm{N})+2 \lambda(\mathrm{py})+ \\
& \left.\lambda(\mathrm{Ar}-\mathrm{Ar})+2 \lambda(\mathrm{C}=\mathrm{O})+12 \chi_{D}(\mathrm{~N})+8 \lambda(\mathrm{~N}=\mathrm{N})+4 \chi_{D}(\mathrm{C})+4 \lambda(\mathrm{C}-\mathrm{C})\right] \\
& \chi_{D}=10(-6.24)+2(-4.61)+16(-2.93)+2(-2.0700)+2(-13)+2(0.5)+(-0.5)+ \\
& 2(6.3)+12(-5.57)+8(1.85)+4(-6)+4(0.8)] \times 10^{-6} \mathrm{emu} \mathrm{~mol}^{-1} \\
& =-62.4-9.22-46.8800-4.1400-26+1-0.5+12.6-66.8400+14.800-24+3.2 \\
& =-0.00020838 \mathrm{emu} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\chi_{D}=\left[\left\{\chi_{D}(\text { ligand }) \text { and azide }\right\}+\chi_{D}(\text { core })+\chi_{D}(\text { counter ion })\right]
$$

$$
\chi_{D} \text { for CoL3 }=-0.00020838-(0.000024 \text { for } \mathrm{Co})+(-0.000013) \text { for } \mathrm{H}_{2} \mathrm{O}
$$

$$
=-0.00024538 \mathrm{emu} \mathrm{~mol}^{-1}
$$

$\chi_{M}=M \chi_{g}$
$=604.27 \times 0.0000085$
$=0.005136295 \mathrm{emu} \mathrm{mol}^{-1}$

$$
\begin{aligned}
& \chi_{P}=\chi_{M}-\chi_{D} \\
& =0.005136295+0.00024538 \\
& =0.005381675 \mathrm{emu} \mathrm{~mol}^{-1} \\
& \chi_{P} T=0.005381675 \times 294 \mathrm{~K} \\
& =1.58221245 \mathrm{emu} \mathrm{~K} \mathrm{~mol}^{-1} \\
& \mu=2.83\left(\chi_{A} T\right)^{1 / 2} \\
& \mu=2.83(1.58221245)^{1 / 2} \\
& =3.557766097 \mu_{\mathrm{B}} \text { (for two metal ions) } \\
& =1.778883049 \mu_{\mathrm{B}} \text { (for one metal ion) }
\end{aligned}
$$

(3.15.1.6) $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

This complex has been used as an example for L^{4} complexes for the calculation method of the magnetic susceptibility measurements of the complexes
$\mathbf{C}_{\text {Bal }}$ is constant $=0.9324$
$\chi_{\mathrm{g}}=\frac{581.8176}{87600000}$
$=6.6 \times 10^{-6}$
$\chi_{D}=10 \chi_{D}$ (Cring) $+2 \chi_{D}(\mathrm{~N}$ ring $)+20 \chi_{D}(\mathrm{H})+2 \chi_{D}\left(\mathrm{CO}_{2}\right)+2 \lambda(\mathrm{C}-\mathrm{N})+2 \lambda(\mathrm{py})+$ $\left.\lambda(\mathrm{Ar}-\mathrm{Ar})+2 \lambda(\mathrm{C}=\mathrm{O})+12 \chi_{D}(\mathrm{~N})+8 \lambda(\mathrm{~N}=\mathrm{N})+6 \chi_{D}(\mathrm{C})+6 \lambda(\mathrm{C}-\mathrm{C})\right] \times 10^{-6}$

```
\chiD = 10(-6.24) + 2(-4.61) +20(-2.93) + 2(-2.0700) + 2(-13) + 2(0.5) + (-0.5) +
2(6.3) + 12(-5.57) + 8(1.85) + 6(-6) + 6(0.8)] \times10-6 emu mol
= [62.4-9.22-58.600-4.1400-26 + 1-0.5 + 12.6-66.8400 + 14.800-36 +
4.800] }\times1\mp@subsup{0}{}{-6}\mp@subsup{\textrm{emu mol}}{}{-1
= - 0.0002305 emu mol
\mp@subsup{\chi}{D}{}}=[{\mp@subsup{\chi}{D}{}(\mathrm{ ligand) and azide } + }\mp@subsup{\chi}{D}{}(\mathrm{ core ) }+\mp@subsup{\chi}{D}{}(\mathrm{ counter ion })
\chiD for NiL4 = - 0.00031794 + (- 0.000024 for Ni) + (-0.000013) for H2O
= - 0.0002675 emu mol
\chiM}=M\mp@subsup{\chi}{g}{
= 631.85×0.0000066
= 0.00417021 emu mol
\chiP= }\mp@subsup{\chi}{M}{}-\mp@subsup{\chi}{D}{
= 0.00417021 + 0.0002675
= 0.00443771 emu mol}\mp@subsup{}{}{-1
\chi}\mp@subsup{\chi}{P}{}T=0.00443771\times294
    = 1.30468674 emu K mol}\mp@subsup{}{}{-1
    \mu=2.83(\mp@subsup{\chi}{A}{}T)}\mp@subsup{)}{}{1/2
    \mu=2.83(1.30468674) 1/2
    = 3.230711055 }\mp@subsup{\mu}{\textrm{B}}{}\mathrm{ (for two metal ions)
    = 1.615355775 每(for one metal ion)
```


(3.15.1.7) $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$.

This complex has been used as an example for L^{5} complexes for the calculation method of the magnetic susceptibility measurements of the complexes
$\chi_{\mathrm{g}}=\frac{0.9324 \times 1.2 \times\{737-(-29)\}}{\text { (mass of tube and sample-mass of tube) } \times 10^{9}}$
$\mathbf{C}_{\text {Bal }}$ is constant $=0.9324$
$\chi_{g}=\frac{409.5101}{55000000}$
$=7.4 \times 10^{-6}$
$\chi_{D}=10 \chi_{D}\left(\mathrm{C}_{\text {ring }}\right)+2 \chi_{D}\left(\mathrm{~N}_{\text {ring }}\right)+18 \chi_{D}(\mathrm{H})+2 \chi_{D}\left(\mathrm{CO}_{2}\right)+2 \lambda(\mathrm{C}-\mathrm{N})+2 \lambda(\mathrm{py})+$ $\left.\lambda(\mathrm{Ar}-\mathrm{Ar})+2 \lambda(\mathrm{C}=\mathrm{O})+12 \chi_{D}(\mathrm{~N})+8 \lambda(\mathrm{~N}=\mathrm{N})+5 \chi_{D}(\mathrm{C})+2 \lambda(\mathrm{C}-\mathrm{C})+4 \lambda(\mathrm{C}-\mathrm{C})\right] \times$ 10^{-6}
$\chi_{D}=10(-6.24)+2(-4.61)+18(-2.93)+2(-2.0700)+2(-13)+2(0.5)+(-0.5)$
$+2(6.3)+12(-5.57)+8(1.85)+5(-6)+4(0.8)] \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$
$=62.4-9.22-52.7400-4.1400-26+1-0.5+12.6-66.8400+14.800-30+$ $3.2] \times 10^{-6} \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{D}=-0.00022024 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{D}=\left[\left\{\chi_{D}\right.\right.$ (ligand) and azide $\}+\chi_{D}($ core $)+\chi_{D}($ counter ion $\left.)\right]$
χ_{D} for FeL5 $=-0.00022024+(-0.000026$ for Fe$)+(-0.000013)$ for $\mathrm{H}_{2} \mathrm{O}$
$=-0.00025924 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{M}=M \chi_{g}$
$=612.12 \times 0.0000074$
$=0.004529688 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{P}=\chi_{M}-\chi_{D}$
$=0.004529688+0.00025924$
$=0.004788928 \mathrm{emu} \mathrm{mol}^{-1}$
$\chi_{P} T=0.004788928 \times 294 \mathrm{~K}$
$=1.407944832 \mathrm{emu} \mathrm{K} \mathrm{mol}{ }^{-1}$
$\mu=2.83\left(\chi_{A} T\right)^{1 / 2}$
$\mu=2.83(1.407944832)^{1 / 2}$
$=3.356122503 \mu_{\mathrm{B}}$ (for two metal ions)
$=1.678061252 \mu_{\mathrm{B}}$ (for one metal ion)

Table (3. 34) Calculation of magnetic moment measurements for $\mathbf{L}^{\mathbf{1}}-\mathbf{L}^{\mathbf{5}}$

complexes							
Complex	Ro	\boldsymbol{R}	Mass of tube	$\begin{gathered} \text { Mass of } \\ \text { (tube + } \\ \text { sample) } \end{gathered}$	Length in cm	$\chi_{\text {g }}$	$\mu_{\text {eff }}$ per atom
$\left[\mathrm{Cr}_{2}{ }^{\text {III }}\left(\mathrm{L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	-33	671	2.6805	2.7352	1.5	1.80×10^{-5}	2.6165
$\left.\left[\mathrm{Mn}_{2}{ }^{\text {II }}\left(\mathrm{L}^{1}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-54	380	2.7013	2.7298	1.0	1.42×10^{-5}	2.2086
$\left.\left[\mathrm{Fe}_{2}{ }^{\text {II }}\left(\mathrm{L}^{1}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-22	561	2.7467	2.8160	2.5	1.93×10^{-5}	2.5693
$\left.\left[\mathrm{Co}_{2}{ }^{\text {II }}\left(\mathrm{L}^{1}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-61	275	2.7455	2.7749	1	1.07×10^{-5}	1.9382
$\left.\left.\left[\mathrm{Ni}_{2}{ }^{\text {II }} \mathrm{L}^{1}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-60	147	2.5939	2.6698	2.5	6.4×10^{-6}	1.5158
$\left.\left[\mathrm{Cu}_{2}{ }^{\text {II }}\left(\mathrm{L}^{1}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-53	-16	2.7027	2.7956	3.0	1.1×10^{-6}	0.7132
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}{ }^{1}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-54	-57	2.7014	2.7688	2.5	1.2×10^{-6}	0.8317
$\left.\left[\mathrm{Mn}_{2}{ }^{\text {II }}\left(\mathrm{L}^{2}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-23	589	2.6802	2.7466	1.3	1.12×10^{-5}	1.9208

Chapter Three
Results and Discussion

$\begin{aligned} & \text { Continued Table (3- } \\ & \text { 34) } \end{aligned}$							
$\left.\left[\mathrm{Fe}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{2}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	-58	781	2.5930	2.7096	3.0	2.01×10^{-5}	2.5126
$\left[\mathrm{Co}_{2}{ }^{\text {II }} \mathrm{L}^{2}\right)$)($\left.\left.\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-32	$\begin{aligned} & 101 \\ & 8 \end{aligned}$	2.8429	2.8798	1	2.65×10^{-5}	2.9442
$\left.\left[\mathrm{Cu}_{2}{ }^{\text {II }}\left(\mathrm{L}^{2}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-31	109	2.8361	2.9673	2.21	2.2×10^{-6}	0.9202
$\left[\mathrm{Cr}_{2}{ }^{\text {III }}\left(\mathrm{L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	-51	182	2.7045	2.7480	3	1.5×10^{-5}	2.4473
$\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	-58	247	2.7478	2.7818	3	2.51×10^{-5}	3.0352
$\left[\mathrm{Fe}_{2}{ }^{1 \mathrm{I}}\left(\mathrm{L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-58	-23	2.5946	2.6634	3	1.4×10^{-6}	0.7986
$\left.\left[\mathrm{Co}_{2}{ }^{\text {II }} \mathrm{L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-31	502	2.8199	2.9669	2.5	8.5×10^{-6}	1.7788
$\left.\left[\mathrm{Ni}_{2}{ }^{11} \mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-52	144	2.7032	2.7887	3	6.412×10^{-6}	1.5536
$\left.\left[\mathrm{Cu}_{2}{ }^{\text {II }} \mathrm{L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	-58	22	2.5951	2.6704	3	3×10^{-6}	1.0889
$\left[\mathrm{Cr}_{2}{ }^{\text {III }}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	-61	242	2.7450	2.8510	3	8×10^{-6}	1.8473
$\left[\mathrm{Mn}_{2}{ }^{\text {II }}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-23	981	2.6800	2.7302	1.2	2.24×10^{-5}	2.8975
$\left[\mathrm{Co}_{2}{ }^{\text {II }}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-31	511	2.8360	2.8753	0.7	9×10^{-6}	1.8717
$\left[\mathrm{Ni}_{2}{ }^{\text {II }}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-58	150	2.5930	2.6806	3	6.6×10^{-6}	1.6153
$\left.\left[\mathrm{Cu}_{2}{ }^{\text {II }} \mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-60	-27	2.6996	2.7497	2.7	1.7×10^{-6}	0.8929
$\left[\mathrm{Cr}_{2}{ }^{\text {III }}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	-59	274	2.6989	2.7300	1.2	1.2×10^{-5}	2.2251
$\left[\mathrm{Mn}_{2}{ }^{\text {II }}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-56	283	2.5932	2.7309	2.2	5×10^{-6}	1.3956
$\left[\mathrm{Fe}_{2}{ }^{11}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-29	737	2.8362	2.8912	1.2	7.4×10^{-6}	1.6780
$\left[\mathrm{Co}_{2}{ }^{\text {II }}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-31	607	2.8240	2.9363	1.9	1.01×10^{-5}	1.9553
$\left.\left[\mathrm{Cu}_{2}{ }^{\text {II }} \mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	-60	-15	2.6989	2.7300	3.3	4.5×10^{-6}	1.3455

(3.15.2) Magnetic properties of complexes; experimental and modelling calculated values

In this work, room temperature magnetic moment of the mixed-(azido, carboxylato)-bridged complexes was investigated. Since the nature of the donor atoms and the bridging groups in all the complexes are the same. It would be very interesting to compare the magnetic properties of the same M(II)-complexes based on the increasing of the chain length of the caboxylate segment and the introduction of the spacer in the ligand.

Polynuclear metal carboxylates ${ }^{(198)}$ of the 4,4-dipyridine are good candidates for the investigation of magnetic exchange interaction between adjacent metal ions. It is well known that the carboxylate group can bridge metal ions to give rise to a variety of polynuclear transition metal complexes, ranging from discrete entities to three-dimensional systems ${ }^{(199,}{ }^{200)}$. Carboxylate group can adopt many types of bridging conformations, the most important being triatomic, syn-syn, syn-anti, antianti and monoatomic (see scheme 3.15, page 247) ${ }^{(201)}$. The syn-syn conformation mediates the antiferromagnetic exchange pathway between the metal centers and resulted in a low-dimensional feature, while the syn-anti favors the ferromagnetic exchange interaction with some exceptions in both cases. On the other hand, the magnetic exchange mediated via an azido bridge can be ferro- or antiferromagnetic, depending on the bridging mode and bonding parameters.

The experimental magnetic moment values of the complexes are shown in Tables (3. 34).

The magnetic moment values at (294 K) of the $\left[\mathrm{Cr}_{2}{ }^{\mathrm{III}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes show values in the range of 1.84-2.61 B.M, Table (3. 34) which are lower than the total spin-only values, Table (3. 35) indicating a high spin octahedral geometry around $\left[\mathrm{Cr}_{2}{ }^{\text {III }}\left(\mathrm{L}^{\mathrm{I}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes ${ }^{(202)}$. The lowering of these magnetic moments indicates a dominant antiferromagnetic interaction in all complexes. This may due to the fact that the syn-syn carboxylate bridges provide a
small metal-metal distance and results in a good overlap of the magnetic orbitals, an antiferromagnetic coupling is always induced ${ }^{(203)}$. For the EO azido bridge, previous theoretical studies on $\left[\mathrm{Cr}_{2}{ }^{\text {III }}\left(\mathrm{L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes ${ }^{(163)}$ have indicated that the main factor controlling the exchange should be the $\mathrm{M}-\mathrm{N}-\mathrm{M}$ bridging angle Φ : a crossover between ferro- and antiferromagnetic interactions occurs at $\Phi 98^{\circ}$, and the ferromagnetic interaction increases from $\Phi 98^{\circ}$, with the maximum ferromagnetic interaction appearing at $\Phi 114^{\circ}$. In the octahedral $\left[\mathrm{Cr}_{2}{ }^{\mathrm{III}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes, the predicted Φ values obtained from the modelling of the complexes using Chemoffice programme are around (85.1-102.5º) Table (3. 36). This value is within the range of bond angles mentioned above, for a crossover between ferroand antiferromagnetic interactions. Therefore, intrachain antiferromagnetic coupling might be promoted by EO azido bridges. Moreover, cooperative effect of the syn-syn carboxylate and EO azido bridges results in a strong antiferromagnetic coupling between the Cr atoms. The low magnetic moment values behavior and the insolubility of these complexes in most common organic solvents, soluble only in a hot DMSO, could refer to the formation of a polymeric structure of these complexes.

The magnetic moment measurements of the $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$
complexes show values in the range of 1.39-3.03 B.M, Tabl3 (3. 34). The $\mu_{\text {eff }}$ value of all complexes, are much lower than the spin only value, Table (3. 35). This is attributed to the strong antiferromagnetic coupling interaction through the bridgedmixed ligands. This behavior could refer to the formation of a polymeric structure in these complexes. The carboxylate groups are in the syn-syn bridging mode, and assuming that the antiferromagnetic behavior is mainly due to intrachain exchange interactions through the carboxylato bridge. ${ }^{(196)}$. $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$ complexes show increase in the $\mu_{\text {eff }}$ values as the length of the carboxylate CH_{2}-segment are increased and as follows: $\mathrm{MnL}^{2}<\mathrm{MnL}^{1}<\mathrm{MnL}^{3}>\mathrm{MnL}^{4}$. An exceptional trend is observed in the MnL^{4} complex, which shows a lower $\mu_{\text {eff }}$ value.

According to the predicted structural data generated by the Chemoffice program, the system can magnetically be treated as an infinite uniform chain in which
magnetic coupling is mediated through a triple bridge (a two EO azido and a syn-syn carboxylato $)^{(203)}$. The decrease of magnetic moment for all complexes may be attributed to the saturation effect or to presence of interchain antiferromagnetic interactions. Structurally, these compounds are isomorphic and contain almost identical chains in which neighboring metal ions are triply linked by two EO azido bridges and syn-syn carboxylato bridge, with only minor differences in bond parameters. Magnetically, $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$ compounds display antiferromagnetic coupling through the triple bridges It is well established that the syn-syn carboxylato bridge is a universal antiferromagnetic pathway because it induces a good overlap of magnetic orbitals ${ }^{(204)}$. The incorporation of cabboxylato bridge lead to decrease of the Φ for the two azido bridges, and according the $\mathrm{Mn}-\mathrm{N}$ Mn bridging angle Φ might be the key factor for the crossover between ferro- and antiferromagnetic interactions. In the $\left[\mathrm{Mn}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$ complexes, the predicted Φ values of the modelling complexes using Chemoffice programme are about (94.3$99.3^{\circ}$), Table (3. 36) and thus the azido bridge is expected to promote antiferromagnetic exchange. The observed antiferromagnetic interaction suggest that the antiferromagnetic pathway through the carboxylato overtakes the antiferromagnetic one through the azido ${ }^{(203)}$.

The magnetic moment measurement of $\left[\mathrm{Fe}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes show values in the range of 0.79-2.56 B.M, Table (3.34). The $\mu_{\text {eff }}$ values for all complexes are much lower than the spin only value, Table (3.35), indicating a high spin octahedral geometry around $\mathrm{Fe}^{\mathrm{II}}$ atom. The lowering of these magnetic moments is due to antiferromagnetic phenomena. The predicted Φ values of the modelling complexes using Chemoffice programme for Fe are about (88.1-99.7º), Table (3.36) and thus the azido bridge is expected to promote antiferromagnetic exchange.
The carboxylato groups are in the syn-syn bridging mode, and assuming that the antiferromagnetic interactions are mainly due to intrachain exchange interactions through the carboxylato bridge ${ }^{(196)}$. The observed antiferromagnetic interaction
suggest that the antiferromagnetic pathway through the carboxylato overtakes the antiferromagnetic one through the azido ${ }^{(203)}$.

The magnetic moment measurements for $\left[\mathrm{Co}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes show values in the range of 1.77-2.94 B.M, Table (3. 34). The $\mu_{\text {eff }}$ values of all complexes are much lower than the spin only value, Table (3.35). This is attributed to the strong antiferromagnetic coupling interaction through nitrogen atoms of the azido moieties. This behavior could refer to the formation of a polymeric structure in these complexes. The predicted Φ values of the modelling complexes using Chemoffice programme for Co are about (87.9-93.1), Table (3.36) and thus the azido bridge is expected to promote antiferromagnetic exchange. The carboxylato groups are in the syn-syn bridging mode, and assuming that the antiferromagnetic interactions are mainly due to intrachain exchange interactions through the carboxylato bridge ${ }^{(196)}$. The $\left[\mathrm{Co}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complexes show antiferromagnetic exchange interaction, because the ligands are expected to saturate the coordination sites around the metal ions, preferring six-coordinate complexes via self assembly, through the carboxylato and azido groups, leading to a polymeric structure bearing a mixed carboxylato-azido bridges ${ }^{(196)}$. The magnetic behaviors of the complexes based on the CH_{2}-aliphatic chain attached to the carboxylato moiety are as follows: CoL2 $>\mathrm{CoL} 1>\mathrm{CoL} 3<$ CoL4. These values indicate that the increase of the chain length has a positive influence on the antiferromagnetic behavior. The complex $\left[\mathrm{Co}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ shows value similar to that of CoL^{1}, which indicate that no effect with add the spacer.

The magnetic moment measurements for $\left[\mathrm{Ni}_{2}{ }^{11}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes show values in the range of 1.51-1.61 B.M, Table (3. 34). The $\mu_{\text {eff }}$ values of all complexes are much lower than the spin only value, Table (3. 35). The lowering of these magnetic moments is due to antiferromagnetic coupling interaction through the nitrogen atoms of the azido moieties. The carboxylato groups are in the syn-syn bridging mode, and assuming that the antiferromagnetic interactions are mainly due to intrachain exchange interactions through the carboxylato bridge. ${ }^{(196)}$. The
predicted Φ values of the modelling complexes using Chemoffice programme for Ni are about (86.6-90 ${ }^{\circ}$), Table (3. 36) and thus the azido bridge is expected to promote antiferromagnetic exchange. The following order can be see $\operatorname{NiL} 1<\mathrm{NiL} 3<\mathrm{NiL} 4$. It is well known that, magnetic exchange interactions are mainly propagated by the bridging of RCOO- group in which an antiferromagnetic (AF) coupling transmits can be achieved upon syn-syn carboxylato bridge mood ${ }^{(205-207)}$. The experimental magnetic values of the complexes presented in this work indicate a dominated intermolecular antiferromagnetic interaction between adjacent Ni atom through the end-on azido exchange bridge. This pattern is in agreement with moderate antiferromagnetic coupling reported in literature ${ }^{(208,209)}$.

The magnetic moment measurements of $\left.\left[\mathrm{Cu}_{2}{ }^{\text {II }}\left(\mathrm{L}^{\mathrm{n}}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{nH}_{2} \mathrm{O}$ complexes show values in the range of $0.71-1.34$ B.M, Table (3. 34). The $\mu_{\text {eff }}$ values of all complexes are much lower than the spin only value, Table (3. 35), indicating a high spin octahedral geometry around Cu atom. The lowering of these magnetic moments is due to antiferromagnetic coupling via nitrogen atoms of the azido groups and the intrachain exchange interactions through the carboxylato bridge ${ }^{(196)}$. The predicted Φ values of the modelling complexes using Chemoffice programme for Cu are about (87.6-105.5 ${ }^{\circ}$), Table (3. 36) and thus the azido bridge is expected to promote antiferromagnetic exchange. The obtained data show there is no trend could be followed regarding the relationship between the length of the CH_{2} group and the $\mu_{\text {eff }}$ values. The CuL5 shows value higher to that reported for other $\left.\left[\mathrm{Cu}_{2}{ }^{\mathrm{II}}\left(\mathrm{L}^{2}\right)\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes, which may related to the introduction of the spacer into the ligand system. On other hand, we may consider that the exchange coupling will be mainly propagated by bridges direct towards the magnetic orbitals which, for $\mathrm{Cu}^{\mathrm{II}}$ ions in axially elongated octahedral environments, are of $\mathrm{d}_{\mathrm{x}-\mathrm{y}}^{2}{ }^{2}$ character. Thus, the main exchange pathways will be within the formed polymeric chains, since inter-chain bridging in only accomplished through axially coordinated azides. These occupy orbitals of dz^{2} character, thus the coupling they transmit is expected to be weak, and can be neglected ${ }^{(108,107)}$. It is indicate that, the CH_{2} spacer groups may play a role in
the enhancement of the overlap between Cu atom and the bridged-moieties orbitals, leading to propagate the antiferromagnetic interaction.

The antiferromagnetic behaviour of the prepared complexes support the formation of a polymeric structure in which, the carboxylato group is adopting the syn-syn mode upon complex formation. This is in agreement with the obtained IR data in this work which reveled the carboxylato moiety is adopting the syn-syn mode upon complex formation.

Table (3. 35) Values of spin only of the metal ions

Number of unpaired electron	Value of magnetic moment $\mu_{\text {eff }}$
1	1.73
2	2.83
3	3.87
4	4.96
5	5.92

Table (3. 36) Values of bond angle $\Phi\left({ }^{\circ}\right)$ of M-N-M

Metal ion	$\mathbf{L}^{\mathbf{1}}$	$\mathbf{L}^{\mathbf{2}}$	$\mathbf{L}^{\mathbf{3}}$	\mathbf{L}^{4}	$\mathbf{L}^{\mathbf{5}}$
Cr^{+3}	102.5	85.1	88.3	86.7	86.9
Mn^{+2}	99.3	94.3	96.7	97.5	96.5
Fe^{+2}	89.9	93.0	88.1	88.2	99.7
Co^{+2}	87.9	93.1	88.1	88.1	88.4
Ni^{+2}	89.6	90.0	89.6	89.6	86.6
Cu^{+2}	89.9	87.6	89.9	105.5	87.7

(3. 16) Theoretical calculations to predict $\Delta\left(v_{a s^{-}} v_{s}\right)$ value and coordination mode of the carboxylato group

The carboxylate group has proved to be very versatile by displaying a range of coordination behaviour upon complex formation. It can display several coordination modes, including ionic, monodentate, bidentate, chelating or bridging, Scheme (3. 15). Infrared spectroscopy (IR) is an important method that can be used to determine the mode of the carboxylate binding, especially when no structural data are available.

Correlation between the COO stretching frequencies and the types of COO coordination has been investigated extensively ${ }^{(164)}$. In these studies, the mode of the carboxylate binding can be predicted from the asymmetric vibration frequency of the carboxylate, $v_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)$, and the magnitude of the separation between the carboxylate stretches, $\Delta\left(v_{a 5^{-}} v_{\mathrm{s}}\right)$. These are used as spectroscopic guides to determine the mode of the carboxylate coordination binding inorganic complexes ${ }^{(211,}{ }^{212)}$ and biomolecules ${ }^{(213)}$. Deacon and Phillip ${ }^{(214)}$ have observed a correlation between the solid structures and the IR frequencies for a number of divalent metal carboxylates, and have proposed an empirical rule for the correlation between $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ and the types of coordination of the COO group:

$$
\Delta \text { (chelating) }<\Delta \text { (bridging) }<\Delta \text { (ionic) }<\Delta \text { (monodentate) }
$$

where Δ ionic is approximately $160-170 \mathrm{~cm}^{-1}$ for acetates ${ }^{(211,212)}$. In the bridging coordination, when one divalent metal cation is bound to one of the oxygens of the COO group and another divalent metal cation to the other oxygen, the band $v_{a s}\left(\mathrm{COO}^{-}\right)$is located at the same position as that of the ionic group ${ }^{(214)}$. However, the range $160-170 \mathrm{~cm}^{-1}$ was derived for acetates and in general the comparison of the Δ value of the title complex with the Δ value of the particular sodium salt should be used for the assignment following the guidelines: (i) bidentate chelating coordination occurs when $\Delta\left(\mathrm{COO}^{-}\right)_{\text {sodium complex }} \ll \Delta\left(\mathrm{COO}^{-}\right)_{\text {sodium salt; }}$; (ii) the bidentate bridging carboxylate exists when $\Delta(\mathrm{COO})$ studied complex $\leq \Delta(\mathrm{COO})_{\text {sodium salt; }}$ (iii) monodentate coordination is characterised by $\Delta\left(\mathrm{COO}^{-}\right)_{\text {studied complex }} \gg \Delta\left(\mathrm{COO}^{-}\right)_{\text {sodium }}$ salt• (211, 212, 215)..

The frequency of asymmetric and symmetric vibration depends on the electronic charge density of the C-O bonds in the carboxylato. Therefore, one can suppose that the higher are differences in electronic density of C-O bonds and C-O bond lengths the higher is frequency of the asymmetric vibration and the lower is the frequency of the symmetric vibration ${ }^{(165)}$.

Scheme (3.15) Carboxylate binding mode for divalent metal ions

Tasumi et al. ${ }^{(164)}$ proposed a relation between the values of $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$, in cm^{-1}, and the structure of the carboxylato anion. This was based on a theoretical approach derived from the $A b$ initio molecular orbital calculations of the vibrational frequencies of the carboxylate groups in different compounds ${ }^{(216,217)}$:
$\Delta\left(v_{a s^{-}} v_{a s}\right)=1818.1 \delta r+16.47\left(\theta_{\text {oco }}-120\right)+66.8$
where δr is the difference between the two CO bond lengths in (\AA) and ($\theta_{\text {OCO }}$) is the (O-C-O) angle in ($\left.{ }^{0}\right)^{(164)}$.

The correlation between δr and $\Delta\left(v_{a s}-v_{s}\right)$ is rationalised by examining the vibrational patterns in the $\left(\mathrm{COO}^{-}\right)$anti-symmetric and symmetric stretching modes. The correlation between ($\theta \mathrm{OCO}$) and $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ is considered to originate mainly from the following two factors. One is the change in the interaction force constant between the stretches of the two CO bonds. As (θ_{OCO}) becomes smaller, this interaction force constant becomes larger. The other factor is the change in the
mixing of the (O-C-O) bond and the (C-C) stretch with the (COO^{-}) symmetric stretch. The (OCO) bond and the (C-C) stretch are more strongly mixed with the $\left(\mathrm{COO}^{-}\right)$symmetric stretch in a species having a smaller value of $\left(\theta_{\mathrm{OCO}}\right)$. Since the strong mixing of these vibrations raises the frequency of the (COO^{-}) symmetric stretch, $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ decreases as $\left(\theta_{\mathrm{OcO}}\right)$ becomes smaller.

(3.16.1) Relationship between the structures and the COO^{-}stretching frequencies of the carboxylato group

The optimised structures, bond lengths and bond angles, of the carboxylate group for the L^{3} and L^{5} complexes are shown in Table (3. 37). Molecular modelling of the proposed structures of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. The optimised structures have been obtained on the assumption that the carboxylato moiety is bound to the metal ion in the bridging mode.

Carboxylate group can adopt many types of bridging conformations, the most important being the syn-syn, syn-anti and anti-anti (see Scheme 3.15).

The aim of this theoretical calculation is; to investigate the applicability of Equation (3-3) in the prediction of the $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ values of the carboxylato group upon complex formation; and to validate the bridging conformations mode of the carboxylato group upon complex formation, based on the experimental values.

The relationship stated in Equation (3. 3) was applied to calculate the $\Delta\left(v_{a s}{ }^{-}\right.$ v_{s}) of the carboxylato group of the L^{1} and L^{5} metal complexes. Results show there is a difference in the Δ value compared with the experimental one, (see Table 3. 37). $\left[\mathrm{Fe}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$ complex has been used as an example for L^{5} complexes to calculate the $\Delta\left(v_{a s}-v_{s}\right)$ value of the carboxylate group.

The carboxylato ligands in the Fe-complex are not equivalent and the pairs of bridges differ in $\mathrm{C}-\mathrm{O}$ distances (1.208 and $1.3381 \AA$), indicating that the $\left(\mathrm{COO}^{-}\right)$ group is anti-symmetric, and $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles (102.096 ${ }^{\circ}$ and 123.616°), Scheme (316).

Carboxylato 1

Carboxylato 2

Scheme (3. 16) Optimised structures of the carboxylate moieties

 interacting with Fe^{2+}The values of the $\Delta\left(v_{a s^{-}} v_{s}\right)$ of the carboxylate groups can be calculated as follows:

$$
\begin{aligned}
\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)_{1} & =1818.1 \delta r+16.47\left(\theta_{\mathrm{OCO}}-120\right)+66.8(1) \\
& =1818.1(1.338-1.208)+16.47(115.044-120)+66.8 \\
& =1818.1(0.130)+16.47(-4.956)+66.8 \\
& =236.353-81.625+66.8 \\
& =221.52 \mathrm{~cm}^{-1} \\
\Delta\left(v_{a 5^{-}}-v_{\mathrm{s}}\right)_{2} & =1818.1 \delta r+16.47\left(\theta_{\mathrm{OCO}}-120\right)+66.8(1) \\
& =1818.1(1.338-1.208)+16.47(115.503-120)+66.8 \\
& =1818.1(0.130)+16.47(-4.497)+66.8 \\
& =236.353-74.065+66.8 \\
& =229.08 \mathrm{~cm}^{-1}
\end{aligned}
$$

Average $=221.52+229.08$

$$
=450.60 \div 2
$$

$=225.31 \mathrm{~cm}^{-1}$ (calculated value), $212 \mathrm{~cm}^{-1}$ (experimental value)
The obtained Δ value of the carboxylato groups indicate that, the $\left(\mathrm{COO}^{-}\right)$ group is interacting with the Fe^{+2} in the bridging mode. The distances between Fe^{+2} and the two oxygen atoms of the $\left(\mathrm{COO}^{-}\right)$group are different by about $0.13 \AA$. The difference in the bond length refers to the fact that, one of the oxygen atoms interacting to the metal ion stronger than the other one. Contrast to the experimental data, only one value is observed in the spectrum. The existence of two distinct vibration levels may relate to the conjugation effects between pyridyl rings and
carboxylate groups. The non-coplanar orientation between the two pyridyl groups is more favourable than the coplanar orientation, and consequently the electronic charge density in both carboxylato ligands should be different. Therefore two vibrational levels for the non-equivalent carboxylate groups should be expected in line with the two distinct values Δ calc. However, this fact does not agree with the experiment, where only one asymmetric and symmetric stretch was observed. Accordingly, we propose that because the non-equivalent pyridyl-carboxylato parts have the same symmetry, their vibration levels may be also very close. Therefore an interaction may exist between these groups originating to only one pair of the bands $v_{a s}\left(\mathrm{COO}^{-}\right)$and $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$in the IR spectrum. This assumption agrees well with the calculated and experimental of the Δ value. The calculation gave Δ calc $=225.31 \mathrm{~cm}^{-1}$. The experimental value is very close to the calculated one, $\Delta \exp =212 \mathrm{~cm}^{-1}$. Other complexes that have large differences between the calculated and experimental value in the $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ can be attributed to the substantial asymmetric in $\left(\mathrm{COO}^{-}\right)$group, which is induced by a stronger interaction with metal ions upon complexation.

Calculation on the other carboxylate ions with large n-alkyl chains may useful information on this problem, because the $\left(\mathrm{COO}^{-}\right)$symmetric stretch is more or less mixed with the neighbouring (C-C) stretch, which is likely to be influenced by vibrations of the group bonded to the (C-C) bond or even by those of farther groups.

Table (3. 37) Calculated frequencies (in cm^{-1}) of the COO -symmetric and antisymmetric stretches of the acetate ion interacting with metal ions

Compound	Bond length1 L1 (A)	Bond length2 L2 (\AA)	L2-L1	Bond angle (${ }^{\circ}$)	$\Delta v_{\text {as }}-v_{\text {s }}$	Experimental value	Calculated value
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1.388	1.208	0.130	115.1308	222.9573	203	222.9573
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.3595 \\ & 1.3592 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1908 \\ & 1.2031 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1687 \\ & 0.1561 \\ & \hline \end{aligned}$	$\begin{aligned} & 114.927 \\ & 114.997 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 289.9612 \\ 268.206 \\ \hline \end{gathered}$	186	279.08358
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.388 \\ & 1.388 \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.13 \end{aligned}$	$\begin{gathered} 115.0448 \\ 115.503 \end{gathered}$	$\begin{aligned} & 221.5409 \\ & 229.0874 \end{aligned}$	212	225.3141
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 1.338 \\ 1.3583 \end{gathered}$	$\begin{gathered} 1.208 \\ 1.2743 \end{gathered}$	$\begin{gathered} 0.13 \\ 0.084 \\ \hline \end{gathered}$	$\begin{aligned} & 120.126 \\ & 116.966 \end{aligned}$	$\begin{aligned} & 305.2282 \\ & 169.5504 \\ & \hline \end{aligned}$	222	237.38932
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} \hline 1.3381 \\ 1.338 \end{gathered}$	$\begin{aligned} & \hline 1.208 \\ & 1.208 \end{aligned}$	$\begin{gathered} \hline 1.1301 \\ 0.13 \end{gathered}$	123.6156	$\begin{gathered} 362.8837 \\ 7.8294 \end{gathered}$	193	185.3565
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.338 \\ & 1.338 \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.13 \end{aligned}$	$\begin{gathered} 116.579 \\ 115.65 \end{gathered}$	$\begin{aligned} & 246.8091 \\ & 231.5085 \end{aligned}$	189	239.1588
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.338 \\ & 1.338 \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.208 \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & 0.13 \end{aligned}$	$\begin{gathered} 118.76 \\ 115.625 \end{gathered}$	$\begin{aligned} & 282.7302 \\ & 231.0968 \end{aligned}$	191	256.9134
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} \hline 1.3608 \\ 1.338 \end{gathered}$	$\begin{gathered} 1.2202 \\ 1.208 \end{gathered}$	$\begin{gathered} \hline 0.1406 \\ 0.13 \end{gathered}$	$\begin{gathered} \hline 116.97 \\ 118.779 \end{gathered}$	$\begin{aligned} & 272.5208 \\ & 283.0431 \end{aligned}$	181	277.7819
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 1.357 \\ 1.36 \end{gathered}$	$\begin{gathered} 1.2276 \\ 1.218 \end{gathered}$	$\begin{gathered} 0.1294 \\ 0.142 \\ \hline \end{gathered}$	$\begin{gathered} 117.109 \\ 115.78 \end{gathered}$	$\begin{array}{r} 254.4474 \\ 255.4668 \\ \hline \end{array}$	209	254.9570
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.355 \\ & 1.338 \end{aligned}$	$\begin{aligned} & 1.121 \\ & 1.233 \end{aligned}$	$\begin{aligned} & 0.234 \\ & 0.105 \end{aligned}$	$\begin{aligned} & 104.93 \\ & 112.97 \end{aligned}$	$\begin{aligned} & 244.0325 \\ & 141.9164 \end{aligned}$	200	192.97445
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 1.338 \\ & 1.344 \end{aligned}$	$\begin{aligned} & 1.251 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 0.087 \\ & 0.136 \end{aligned}$	$\begin{aligned} & 116.74 \\ & 114.61 \end{aligned}$	$\begin{aligned} & 171.2825 \\ & 225.2883 \\ & \hline \end{aligned}$	191	198.2845
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 1.338 \\ & 1.338 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.208 \end{aligned}$	$\begin{aligned} & \hline 0.13 \\ & 0.13 \end{aligned}$	$\begin{aligned} & \hline 115.91 \\ & 114.44 \end{aligned}$	$\begin{aligned} & 235.7907 \\ & 211.5798 \end{aligned}$	217	223.68525
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \hline 1.359 \\ & 1.327 \end{aligned}$	$\begin{aligned} & 1.251 \\ & 1.221 \end{aligned}$	$\begin{aligned} & \hline 0.108 \\ & 0.106 \end{aligned}$	$\begin{aligned} & \hline 114.78 \\ & 117.81 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 177.1814 \\ & 223.4493 \\ & \hline \end{aligned}$	191	200.31535
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.344 \\ & 1.338 \end{aligned}$	$\begin{aligned} & 1.1197 \\ & 1.1201 \end{aligned}$	$\begin{aligned} & \hline 0.2243 \\ & 0.2179 \end{aligned}$	$\begin{gathered} 102.7308 \\ 102.738 \end{gathered}$	$\begin{aligned} & 190.1761 \\ & 178.6589 \end{aligned}$	189	184.417478
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	$\begin{aligned} & 1.341 \\ & 1.338 \end{aligned}$	$\begin{aligned} & 1.208 \\ & 1.221 \end{aligned}$	$\begin{aligned} & 0.133 \\ & 0.117 \end{aligned}$	$\begin{aligned} & 117.25 \\ & 114.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 263.3148 \\ & 196.5089 \end{aligned}$	216	229.91185
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.328 \\ & 1.328 \end{aligned}$	$\begin{aligned} & 1.201 \\ & 1.208 \end{aligned}$	$\begin{aligned} & \hline 0.127 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 118.21 \\ & 113.11 \end{aligned}$	$\begin{aligned} & 268.2174 \\ & 189.6747 \\ & \hline \end{aligned}$	195	228.94605
[Cd2(L ${ }^{3}$)(N3)4]. $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 1.338 \\ & 1.360 \end{aligned}$	$\begin{aligned} & 1.228 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 0.110 \\ & 0.152 \end{aligned}$	$\begin{aligned} & 118.96 \\ & 112.31 \end{aligned}$	$\begin{aligned} & 249.6622 \\ & 216.4969 \end{aligned}$	183	233.07955
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 1.338 \\ 1.3608 \end{gathered}$	$\begin{aligned} & 1.207 \\ & 1.208 \end{aligned}$	$\begin{gathered} 0.131 \\ 0.1528 \end{gathered}$	$\begin{aligned} & 116.37 \\ & 111.69 \end{aligned}$	$\begin{gathered} 245.185 \\ 207.74 \end{gathered}$	166	226.46249

(3.17) Molar conductance measurements

Table (3. 38) displays the molar conductance data of the prepared complexes. Conductance measurement values of all complexes, except $\mathrm{Cr}^{\text {III }}$ and Ag^{I}, in DMSO lie in the range of $6.36-22.74 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. These values are too low to account for any dissociation of the complexes in DMSO, indicating their non electrolytes in nature. Conductivity measurements of $\mathrm{Cr}^{\mathrm{III}}$ and Ag^{I} complexes lie in the 71.41-78.46 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ range, indicating their 1:2 electrolytic behaviour ${ }^{(218)}$.

Table (3. 38) Molar conductivity measurements in DMSO for the Complexes

No	Compound	$\Lambda_{M}\left(\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$	Behaviour
1	$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	72.11	1:2
2	$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	17.13	non-electrolyte
3	$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	14.62	non-electrolyte
4	$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	16.81	non-electrolyte
5	$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	18.21	non-electrolyte
6	$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	16.62	non-electrolyte
7	$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	14.32	non-electrolyte
8	$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	17.13	non-electrolyte
9	$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	76.09	1:2
10	$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	78.23	1:2
11	$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	18.42	non-electrolyte
12	$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	16.63	non-electrolyte
13	$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	12.95	non-electrolyte
14	$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	22.74	non-electrolyte
15	$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	15.57	non-electrolyte
16	$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	6.36	non-electrolyte
17	$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	13.71	non-electrolyte
18	$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	75.12	1:2
19	$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	78.46	1:2
20	$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	18.47	non-electrolyte
21	$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	12.67	non-electrolyte
22	$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	17.13	non-electrolyte
23	$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	14.78	non-electrolyte
24	$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	12.11	non-electrolyte
25	$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	18.24	non-electrolyte
26	$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	11.54	non-electrolyte
27	$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	71.41	1:2

Results and Discussion

Continued Table $(3 \cdot 38)$			
28	$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	73.01	$1: 2$
29	$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	31.52	non-electrolyte
30	$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	15.64	non-electrolyte
31	$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	19.82	non-electrolyte
32	$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	13.46	non-electrolyte
33	$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	18.63	non-electrolyte
34	$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	17.07	non-electrolyte
35	$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	17.15	non-electrolyte
36	$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	73.37	$1: 2$
37	$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	76.27	$1: 2$
38	$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	18.69	non-electrolyte
39	$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	18.19	non-electrolyte
40	$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	13.32	non-electrolyte
41	$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	11.04	non-electrolyte
42	$\left[\mathrm{Ca}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	12.78	non-electrolyte
43	$\left[\mathrm{Za}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	18.66	non-electrolyte
44	$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	13.40	non-electrolyte
45	$\left.\mathrm{Na}_{2}\left[\mathrm{Ag}_{2} \mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	77.18	$1: 2$

(3.18) Conclusion and proposed molecular structure for complexes

(3.18.1) The proposed molecular structure for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\quad\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes
According to the following analytical results:

- I.R spectra

The I.R spectra for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes (where $\mathrm{n}=1-4$), Tables (3.18) to (3.21) and Figures (3.40); (3. 49); (3.58) and (3.67), show new bands around 2037-2114 cm^{-1} assigned to $v_{a s}\left(\mathrm{~N}_{3}\right)$. Bands about 1593-1626 and 1406-1420 cm^{-1} were attributed to the anti-symmetric $v_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$of the carboxylato groups, respectively. These bands are shifted to lower frequency compared with that in the free ligands, due to delocalisation of electronic density of the metal ion into the π-system of the ligands (HOMO \rightarrow LUMO). The $\Delta\left(v_{a s^{-}} v_{a s}\right)$ value around (181-208) cm^{-1} consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode. These information are supported by theoretical studies conducted to calculate the $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ of the acetate group, in which the mode of the carboxylato binding can be predicted from the magnitude of the separation between the carboxylato stretches, $\Delta\left(v_{a s^{-}} v_{s}\right)$. Bands detected about $1335-1369 \mathrm{~cm}^{-1}$ attributed to $v_{\mathrm{s}}\left(\mathrm{N}_{3}\right)$. Bands around $532-588 \mathrm{~cm}^{-1}$ were assigned to $v(\mathrm{M}-\mathrm{O})$, while bands about 419-499 cm^{-1} were attributed to $v(\mathrm{M}-\mathrm{N})$. The insolubility behaviour of the complexes in most organic solvent may indicate the formation of polymeric structures.

- UV-Vis spectra and magnetic moments

The UV-Vis spectral data for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes (where $\mathrm{n}=1$ 4), Tables (3.23) to (3.26) and Figures (3. 85); (3. 94); (3. 103) and (3. 112), display peaks around $263-287 \mathrm{~nm}$ assigned to intraligand field in the complexes. Peaks detected at the visible region around $356-467 \mathrm{~nm}$ assigned to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}\left(v_{1}\right)$, while peaks observed about 604-670 nm assigned to ${ }^{4} \mathrm{~A}_{2} g^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}\left(\mathrm{v}_{2}\right)$, indicating
an octahedral geometry about Cr atom. These complexes show magnetic moment values in the range of 1.84-2.61 B.M, Table (3. 34) which are lower than the total spin-only values (see Table 3.35), supported octahedral geometry around Cr atom ${ }^{(202)}$. The lowering of these magnetic moments may suggest dominant antiferromagnetic interactions in all complexes. This may due to the fact that the synsyn carboxylato bridges provide a small metal-metal distance and resulted in a good overlap of the magnetic orbitals, an antiferromagnetic coupling is always induced ${ }^{(203)}$. For the EO azido bridge, previous theoretical studies on metal complexes ${ }^{(163)}$ indicated that the main factor controlling the exchange should be the $\mathrm{M}-\mathrm{N}-\mathrm{M}$ bridging angle Φ : a crossover between ferro- and antiferromagnetic interactions occurs at $\Phi 98^{\circ}$, and the antiferromagnetic interaction increases below $\Phi 98^{\circ}$. The maximum ferromagnetic interaction appears at $\Phi 114^{\circ}$.

- Conductivity measurements

The molar conductance of complexes in DMSO lie in the range 72.11-78.46 $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, Table (3. 38), indicating their electrolyte nature with a $1: 2$ ratio ${ }^{(218)}$.

- Elemental microanalysis

The elemental microanalysis (C.H.N) along with metal analysis (A.A), and chloride content results for the complexes Tables (3. 9), (3. 11), (3.13) and (3.15) are in good agreement with the calculated values. These data supported the formation of complexes and helped in verifying the suggested formula of the complexes. These data predicated a six coordinate environment about Cr atom in the $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes, where $\mathrm{n}=1-4$.

- ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ - and DEPT ${ }^{13} \mathrm{C}$ NMR

The ${ }^{1} \mathrm{H}$ - ${ }^{13} \mathrm{C}$ - and DEPT ${ }^{13} \mathrm{C}$ NMR spectroscopy of diamagnetic complexes were used to confirm the formation of the complexes. The ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and DEPT ${ }^{13} \mathrm{C}$-NMR spectra of the ligands in DMSO-d6 displayed signals corresponding to the various proton and carbon nuclei consistent with the proposed structural formula. The NMR
data of complexes in DMSO-d6 showed peaks of coordinated ligand, shifted downfield, indicating the formation of the complexes.

- Mass spectrum

The mass spectra of the ligands were also consistent with the proposed structural formula. The positive mass spectrum for selected complexes showed several peaks corresponding to successive fragmentation of the molecule.

- Thermal gravimetric analysis

This technique was used to show thermal stability and chemical composition of compounds, which helped in the characterisation of complexes.

- Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. This interactive graphics program allows rapid structure building, geometry optimisation with minimum energy and molecular display. Bond lengths and bond angles of the suggested structure are shown in Table (3.39). Figure (3.177) depicts a general polymeric structure for the complexes. The proposed octahedral monomeric structure for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3.178).
(3.18.2) The proposed molecular structure for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathbf{O}$, $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] 2 \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \quad\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \quad\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \quad\left[\mathrm{Co}\left(\mathrm{L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ $\left.\mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right)\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\right.$ $\left.\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right], \quad\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$, $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right],\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$ complexes: According to the results shown below:

- I.R spectra

The I.R spectra for these complexes, Tables (3-18) to (3-21), Figures (341), (3.50), (3.59), (3.68), (3.42), (3.51), (3.60), (3.69), (3.43), (3.52), (3.61),
(3. 70), (3. 44), (3. 53), (3. 62) , (3.71), (3. 45), (3. 54), (3. 63), (3. 72), (3. show new bands around 2114-2037 cm^{-1} assigned to $v_{a s}\left(\mathrm{~N}_{3}\right)$. Band about 1591-1629 and 1404-1462 cm^{-1} were attributed to the anti-symmetric to $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$of the carboxylato groups, respectively. These bands are shifted to lower or to higher frequency compared with that in the free ligands, if it shifted to lower frequency due to delocalisation of electronic density of the metal ion into the π-system of the ligands (HOMO-LUMO), while if it shifted to higher due to weak coordination between the metal ion and the ligand. The $\Delta\left(v_{a{ }^{-}} v_{s}\right)$ value around (183-217) cm^{-1} consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode, except CoL^{1} in syn-anti mode. These information are supported by theoretical studies conducted to calculate the $\Delta\left(v_{a s}-v_{\mathrm{s}}\right)$ of the acetate group, in which the mode of the carboxylato binding can be predicted from the magnitude of the separation between the carboxylato stretches, $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$. Bands detected about $1298-1369 \mathrm{~cm}^{-1}$ attributed to $v_{\mathrm{s}}\left(\mathrm{N}_{3}\right)$. Bands around 498-627 were assigned to $v(\mathrm{M}-\mathrm{O})$, while bands at 401-499 were attributed to $v(\mathrm{M}-\mathrm{N})$. The insolubility behaviour of the complex in most organic solvent may indicate the formation of polymeric structures.

- UV-Vis spectra and magnetic momments

The UV-Vis spectral data for these complexes, Tables (3. 23) to (3. 26), Figures (3. 86), (3. 95), (3. 104), (3. 113), (3. 87), (3. 96), (3. 105), (3. 114), (3. 88), (3. 97), (3. 106), (3. 115), (3. 89), (3. 98), (3. 107), (3. 116), (3. 90), (3. 99), (3. 108), (3.117), (3.91), (3.100), (3.109), (3.118) , (3. 92), (3.101), (3.110) and (3.119), display peaks at range 259-278 nm assigned to ligand field and intraligand in these complexes. Peaks detected at the 303-379 nm assigned to charge transfer. Peaks detected at the visible are different from the complexes and all the transition refer to octahedral structures. These complexes show magnetic moment values in the range of $0.71-3.03 B . M$, Table (3. 34) which are lower than the total spin-only values (see Table 3.35), supported octahedral geometry around Mn atom ${ }^{(202)}$. The lowering of
these magnetic moments may suggest dominant antiferromagnetic interactions in all complexes. The carboxylate groups are in the syn-syn bridging mode, and assuming that the antiferromagnetic behavior is mainly due to intrachain exchange interactions through the carboxylato bridge.

- Conductivity measurements

The molar conductance of complexes in DMSO lie in the range 6.36-22.74 $\boldsymbol{\Omega}^{-}$ ${ }^{1} \mathbf{c m}^{2} \mathbf{m o l}^{-1}$, Table (3. 38), indicating their nonelectrolyte.

- Elemental microanalysis

The elemental microanalysis (C.H.N) along with metal analysis (A.A), and chloride content results for the complexes, Table (3. 9), (3. 11), (3.13) and (3. 15) are in good agreement with the calculated values. These data supported the formation of complexes and helped in verifying the suggested formula of the complexes. These data predicted a six coordinate environment about M^{II} atom in the complexes.

- ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ - and DEPT ${ }^{13} \mathrm{C}$ NMR
- Mass spectrum
- Thermal gravimetric analysis
- Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. This interactive graphics program allows rapid structure building, geometry optimisation with minimum energy and molecular display. Bond lengths and bond angles of the suggested structure are shown in Table (3.40-3.46). Figure (3.1743.180) depicts a general polymeric structure for the complexes. The proposed octahedral monomeric structure for selected complexes is shown in Figures (3.1793.185).
(3.18.3) The proposed molecular structure for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left.\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right)\right] \mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes:
According to the results shown below:

- I.R spectra

The I.R spectra for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{n}=1-4$) complexes, Tables (3.18) to (3. 21), Figures (3. 48), (3. 57), (3. 66) and (3.75) show new bands about $2095-2045 \mathrm{~cm}^{-1}$ assigned to $v_{a s}\left(\mathrm{~N}_{3}\right)$. Bands about 1628-1591 and $1406-1462 \mathrm{~cm}^{-1}$ were attributed to the anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{s}\left(\mathrm{COO}^{-}\right)$of the carboxylato groups, respectively. These bands are shifted to lower frequency compared with that in the free ligands, due to delocalisation of electronic density of the metal ion into the π-system of the ligands (HOMO-LUMO). The $\Delta\left(v_{a s^{-}} v_{s}\right)$ value around (185-194) cm^{-1} consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode. These information are supported by theoretical studies of IR vibration pf carboxylate group. Bands detected about 1302-1361 cm^{-1} attributed to $v_{s}\left(\mathrm{~N}_{3}\right)$. Bands at range $498-586 \mathrm{~cm}^{-1}$ were assigned to $v(\mathrm{M}-\mathrm{O})$, while bands about 419-483 cm^{-1} were attributed to $v(\mathrm{M}-\mathrm{N})$. The insolubility behaviour of the complexes in most organic solvent may indicate the formation of polymeric structure.

- UV-Vis spectra and magnetic moments

The UV-Vis spectral data for $\mathrm{Na}_{2}\left[\operatorname{Ag}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{n}=1-4$) complexes, Tables (3. 23), (3-24), (3-25) and (3-26), Figure (3. 93), (3. 102), (3. 111) and (3.120), display peaks at range (264-267) nm assigned to ligand field and intraligand in the complexes. The peaks at range (307-372) nm assigned to charge transfer. The peaks at the visible region are different from the complexes and all the transition refer to octahedral structure. The magnetic moment of Ag^{1} complexes show small values due to d^{10}.

- Conductivity measurements

The molar conductance of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathrm{n}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ (where $\mathrm{n}=1-4$) complexes in DMSO lie in the range 71.41-77.18 $\mathbf{\Omega}^{-1} \mathbf{c m}^{2} \mathbf{m o l}^{-1}$, Table (3. 38), indicating their electrolyte with 1:2 ratio ${ }^{(218)}$.

- Elemental microanalysis

The elemental microanalysis (C.H.N) along with metal analysis (A.A), and chloride content results for the complexes Table (3. 9), (3. 11), (3.13) and (3. 15) are in good agreement with the calculated values. These data supported the formation of complexes and helped in verifying the suggested formula of the complexes. These data predicted a six environment about Ag^{I} atom in the complexes.

- Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. This interactive graphics program allows rapid structure building, geometry optimisation with minimum energy and molecular display. Bond lengths and bond angles of the suggested structure are shown in Table (3.47). Figure (3.181) depicts a general polymeric structure for the complexes. The proposed octahedral monomeric structure for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3.186).

(3.18.4) The proposed molecular structure for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complexes

 According to the results shown below:
- I.R spectra

The I.R spectra for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Tables (3. 22), Figure (3. 76), show new bands at $2043 \mathrm{~cm}^{-1}$ assigned to $v_{a s}\left(\mathrm{~N}_{3}\right)$. Bands at 1601 and $1398 \mathrm{~cm}^{-}$ ${ }^{1}$ were attributed to anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$of carboxylato groups, respectively. These bands are shifted to lower frequency in compared with that in the free ligands, due to delocalisation of electronic densitym of the metal ion into the π-system of the ligands (HOMO-LUMO). The $\Delta\left(v_{a s^{-}} v_{s}\right)$
value around (203) cm^{-1} consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode. These information are supported by theoretical studies of IR vibration pf carboxylate group. Bands detected at $1319 \mathrm{~cm}^{-1}$ attributed to $v_{\mathrm{s}}\left(\mathrm{N}_{3}\right)$. Bands around 530 and $565 \mathrm{~cm}^{-1}$ were assigned to $v(\mathrm{M}-\mathrm{O})$, while bands about 467 and $494 \mathrm{~cm}^{-1}$ can be attributed to $v(\mathrm{M}-\mathrm{N})$. The insolubility behaviour of the complexes in most organic solvent may indicate the formation of polymeric structure.

UV-Vis spectra and magnetic momments

The UV-Vis spectral data for the complexes $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, Table (3. 27), Figure (3. 121), display peak at 269 nm can be assigned to intraligand in the complex. The peaks at the visible region around (356 nm) in assigned to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})}$ $\rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}^{(\mathrm{F})}\left(\mathrm{v}_{1}\right)$ (calc), while peaks at 637 nm assigned to ${ }^{4} \mathrm{~A}_{2} \mathrm{~g}^{(\mathrm{F})} \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}^{(\mathrm{F})}$ transition in octahedral structure. We can use the same method that used to explanation CrL^{1} complex.

- Conductivity measurements

The molar conductance of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ complex in DMSO lie in the range $76.27 \mathbf{\Omega}^{-1} \mathbf{c m}^{\mathbf{2}} \mathbf{m o l}^{\mathbf{- 1}}$, Table (3. 38), indicating their electrolyte with 1:2 ratio ${ }^{(214)}$.

- Elemental microanalysis

The elemental microanalysis (C.H.N) along with metal analysis (A.A), and chloride content results for the complex Table (3.17), is in good agreement with the calculated values. These data supported the formation of complexes and helped in verifying the suggested formula of the complexes. These data predicted a six environment about Cr atom in the complexes.

- Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. This interactive graphics program allows rapid structure building, geometry optimisation with minimum energy and molecular display. Bond lengths and bond angles of the suggested structure are shown in Table (3.48). Figure (3.181) depicts a
general polymeric structure for the complexes. The proposed octahedral monomeric structure for $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3.187).
(3.18.5) The proposed molecular structure for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$, $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes:

According to the results shown below:

- I.R spectra

The I.R spectra for $\left[\mathrm{M}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes (where $\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$, Cu, Zn and Cd) complexes, Table (3.22), Figures (3. 77 to 3. 83), show new bands at 2037-2104 cm^{-1} assigned to $v_{a s}\left(\mathrm{~N}_{3}\right)$. Bands about 1609-1618 and 1394-1433 cm^{-1} were attributed to anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{s}\left(\mathrm{COO}^{-}\right)$of the carboxylato groups, respectively. These bands are shifted to lower frequency compared with that in the free ligands, due to delocalisation of electronic density of the metal ion into the π-system of the ligands (HOMO-LUMO). The $\Delta\left(v_{a s^{-}} v_{\mathrm{s}}\right)$ value around (181-222) cm^{-1} consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode. These information are supported by theoretical studies of IR vibration pf carboxylate group. Bands detected about $1302-1354 \mathrm{~cm}^{-1}$ attributed to $v_{s}\left(\mathrm{~N}_{3}\right)$. Bands around $505-604 \mathrm{~cm}^{-1}$ were assigned to $v(\mathrm{M}-\mathrm{O})$, while bands about 409-494 cm^{-1} can be attributed to $v(\mathrm{M}-\mathrm{N})$. The insolubility behaviour of the complexes in most organic solvent may indicate the formation of polymeric structure.

UV-Vis spectra and magnetic momments

The UV-Vis spectral data for the complexes $\left[\mathrm{M}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes (where $\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ and Cd), display peaks at 257-270 nm assigned to ligand field and intraligand in the complexes. Peaks detected at 315-405 nm
assigned to charge transfer in these complexes. The peaks at the visible region are different from the complexes and all transition refer to octahedral structure. We can use the same method that used to explanation MnL^{1} complex.

- Conductivity measurements

The molar conductance of $\left[\mathrm{M}\left(\mathrm{L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes (where $\mathrm{M}=\mathrm{Mn}$, Fe , $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ and Cd) complexes, in DMSO lie in the range $11.04-18.69 \mathbf{\Omega}^{-1} \mathbf{c m}^{\mathbf{2}} \mathbf{m o l}^{-}$ ${ }^{1}$, Table (3. 38), indicating their nonelectrolyte.

- Elemental microanalysis

The elemental microanalysis (C.H.N) along with metal analysis (A.A), and chloride content results for the complex Table (3.17), is in good agreement with the calculated values. These data supported the formation of complexes and helped in verifying the suggested formula of the complexes. These data predicted a six environment about Cr atom in the $\left[\mathrm{M}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complexes (where $\mathrm{M}=\mathrm{Mn}$, Fe , $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ and Cd) complexes.

- Mass spectrum

- Thermal gravimetric analysis
- Molecular modelling

3D molecular modelling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. This interactive graphics program allows rapid structure building, geometry optimisation with minimum energy and molecular display. Bond lengths and bond angles of the suggested structure are shown in Table (3.49). Figure (3.183) depicts a general polymeric structure for the complexes. The proposed octahedral monomeric structure for $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3.188).
(3.18.6) The proposed molecular structure for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex: According to the results shown below:

- I.R spectra

The I.R spectra for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Tables (3. 22.), Figure (3-84), show new bands at 2045 and $2083 \mathrm{~cm}^{-1}$ assigned to $v_{a s}\left(\mathrm{~N}_{3}\right)$. Bands at 1609 and $1400 \mathrm{~cm}^{-1}$ were attributed to anti-symmetric $v_{a s}\left(\mathrm{COO}^{-}\right)$and symmetric $v_{\mathrm{s}}\left(\mathrm{COO}^{-}\right)$ of the carboxylato groups, respectively. These bands are shifted to lower frequency compared with that in the free ligand, due to delocalisation of electronic density of the metal ion into the π-system of the ligands (HOMO-LUMO). The $\Delta\left(v_{a s^{-}} v_{s}\right)$ value around (209) cm^{-1} consistent with carboxylato bridging coordination fashion with the metal atoms in the syn-syn mode. These information are supported by theoretical studies of IR vibration of carboxylate group. Bands detected about $1315 \mathrm{~cm}^{-1}$ attributed to $v_{s}\left(\mathrm{~N}_{3}\right)$. Bands around 513 and $571 \mathrm{~cm}^{-1}$ were assigned to $v(\mathrm{M}-\mathrm{O})$, while bands at 419 and $455 \mathrm{~cm}^{-1}$ can be attributed to $v(\mathrm{M}-\mathrm{N})$. The insolubility behaviour of the complexes in most organic solvent may indicate the formation of polymeric structure.

UV-Vis spectra and magnetic momments

The UV-Vis spectral data for $\mathrm{Na}_{2}\left[\operatorname{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex, Table (3. 27), display peak at (266) nm assigned to the ligand field in the complex. We can use the same method that used to explanation AgL^{1} complex.

- Conductivity measurements

The molar conductance of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex in DMSO lie in the range $77.18 \mathbf{\Omega}^{-1} \mathbf{c m}^{2} \mathbf{m o l}^{-1}$, Table (3.38), indicating their electrolyte nature with a 2:1 ratio.

- Elemental microanalysis

The elemental microanalysis (C.H.N) along with metal analysis (A.A), and chloride content results for the complex Table (3.17), is in good agreement with the calculated values. These data supported the formation of complexes and helped in
verifying the suggested formula of the complexes. These data predicted a six environment about Ag atom in the $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex.

- Molecular modelling

3D molecular modeling of the proposed structure of the complexes was performed using CS Chem 3D Ultra Molecular Modelling and Analysis Program ${ }^{(160)}$. This interactive graphics program allows rapid structure building, geometry optimisation with minimum energy and molecular display. Bond lengths and bond angles of the suggested structure are shown in Table (3.50). Figure (3.184) depicts a general polymeric structure for the complexes. The proposed octahedral monomeric structure for $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complex is shown in Figure (3.189).

The proposed structure of all complexes can be draw at following structure Figure (3. 177):

Figure (3.177) The proposed polymeric structure of complexes

(3-19) 3D molecular modelling and analysis of bonding modes

Molecular mechanics attempts to reproduce molecular geometries, energies and other features. This is based on adjusting bond lengths, bond angles and torsion angles to equilibrium values that are dependent on the hybridization of an atom and its bonding scheme. In order to obtain estimates of structural details of these complexes and in view the coordination of all complexes; we have optimised the molecular structure of selected complexes of different ligands. For example we have chosen $\left[\mathrm{Cr}^{\text {III }}{ }_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ for L^{1} complexes as a representative compound (Figure 3.178). The details of bond lengths and bond angles per the 3D molecular structure are given in Tables (3.39). Energy minimisation was repeated several times to find the global minimum ${ }^{(219)}$. The energy minimisation value for octahedral and without restricting the structure for the Cr-complex is almost same i.e, 124.0233 Kcal /mol. The molecular modelling for the modulated Cr (III)-complex indicates the distorted octahedral geometry around $\mathrm{Cr}(\mathrm{II})$ ion ${ }^{(220)}$. Energy minimisation of other complexes for different ligands was repeated several times to find the global minimum, (Tables 3.51 to 3.55).

Table (3-39) The calculated bond lengths and bond angles of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length $\left(\mathbf{A}^{\circ}\right)$	Type of Bond	Bond angle (${ }^{\circ}$)
$\mathrm{Cr}_{1}-\mathrm{O}_{1}$	1.861	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Cr}_{1}$	120.531
$\mathrm{Cr}_{1}-\mathrm{N}_{2}$	1.856	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{2}$	167.369
$\mathrm{Cr}_{1}-\mathrm{N}_{4}$	1.910	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{4}$	93.620
$\mathrm{Cr}_{1}-\mathrm{N}_{3}$	1.912	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{3}$	96.618
$\mathrm{Cr}_{1}-\mathrm{N}_{1}$	1.876	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{1}$	87.811
$\mathrm{Cr}_{1}-\mathrm{O}_{2}$	1.841	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	84.917
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.418	$\mathrm{~N}_{2}-\mathrm{Cr}_{1}-\mathrm{N}_{4}$	89.848
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.364	$\mathrm{~N}_{2}-\mathrm{Cr}_{1}-\mathrm{N}_{3}$	95.749
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.363	$\mathrm{~N}_{2}-\mathrm{Cr}_{1}-\mathrm{N}_{1}$	90.060
		$\mathrm{~N}_{2}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	82.695
		$\mathrm{~N}_{4}-\mathrm{Cr}_{1}-\mathrm{N}_{3}$	85.687
		$\mathrm{~N}_{4}-\mathrm{Cr}_{1}-\mathrm{N}_{1}$	173.706
	$\mathrm{~N}_{4}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	94.744	
		$\mathrm{~N}_{3}-\mathrm{Cr}_{1}-\mathrm{N}_{1}$	88.058
		$\mathrm{~N}_{3}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	178.387
	$\mathrm{~N}_{1}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	91.488	
	$\mathrm{Cr}_{1}-\mathrm{N} 4^{4}-\mathrm{N}^{2}$	117.436	
	$\mathrm{Cr}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	117.052	
		$\mathrm{Cr}_{1}-\mathrm{N}_{4}-\mathrm{Cr}_{2}$	102.501
	$\mathrm{Cr}_{1}-\mathrm{N}_{3}-\mathrm{Cr}_{2}$	102.292	

Figure (3-178) The proposed molecular structure of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-340) The calculated bond length and bond angle of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A)	Type of Bond	Bond angle
$\mathrm{Mn}_{1}-\mathrm{O}_{1}$	1.837	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Mn}_{1}$	118.111
$\mathrm{Mn}_{1}-\mathrm{N}_{2}$	1.867	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{2}$	168.640
$\mathrm{Mn}_{1}-\mathrm{N}_{4}$	1.881	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{4}$	90.341
$\mathrm{Mn}_{1}-\mathrm{N}_{3}$	1.884	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{3}$	93.803
$\mathrm{Mn}_{1}-\mathrm{N}_{1}$	1.866	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	88.278
$\mathrm{Mn}_{1}-\mathrm{O}_{2}$	1.830	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	84.435
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.407	$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{N}_{4}$	93.828
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.363	$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{N}_{3}$	97.379
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.366	$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	89.748
		$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	84.578
		$\mathrm{~N}_{4}-\mathrm{Mn}_{1}-\mathrm{N}_{3}$	78.446
	$\mathrm{~N}_{4}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	168.179	
		$\mathrm{~N}_{4}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	96.919
	$\mathrm{~N}_{3}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	89.929	
		$\mathrm{~N}_{3}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	175.054
		$\mathrm{~N}_{1}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	94.632
		$\mathrm{Mn}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	116.559
		$\mathrm{Mn}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	115.557
		$\mathrm{Mn}_{1}-\mathrm{N}_{4}-\mathrm{Mn}_{2}$	99.329
		$\mathrm{Mn}_{1}-\mathrm{N}_{3}-\mathrm{Mn}_{2}$	99.100

$4 \quad 1$
$6 \quad 2 \quad 1$
Figure (3-179) The proposed molecular structure of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-41) The calculated bond length and bond angle of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Type of Bond	Bond length $\left(\mathbf{A}^{\circ}\right)$	Type of Bond	Bond angle(${ }^{\circ}$)
$\mathrm{Fe} 28-\mathrm{O} 26$	1.853	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Fe}_{1}$	112.366
		$\mathrm{C}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{1}$	168.397
$\mathrm{Fe}_{1}-\mathrm{N}_{1}$	1.868	$\mathrm{O}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{3}$	101.673
$\mathrm{Fe}_{1}-\mathrm{N}_{3}$	1.894	$\mathrm{O}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{4}$	85.451
$\mathrm{Fe}_{1}-\mathrm{N}_{4}$	1.889	$\mathrm{O}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{2}$	86.711
$\mathrm{Fe}_{1}-\mathrm{N}_{2}$	1.865	$\mathrm{O}_{1}-\mathrm{Fe}_{1}-\mathrm{O}_{2}$	86.260
$\mathrm{Fe}_{1}-\mathrm{O}_{2}$	1.810	$\mathrm{~N}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{3}$	87.204
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.360	$\mathrm{~N}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{4}$	103.322
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.360	$\mathrm{~N}_{1}-\mathrm{Fe}_{1}-\mathrm{N}_{2}$	84.412
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.375	$\mathrm{~N}_{1}-\mathrm{Fe}_{1}-\mathrm{O}_{2}$	85.713
		$\mathrm{~N}_{3}-\mathrm{Fe}_{1}-\mathrm{N}_{4}$	82.191
	$\mathrm{~N}_{3}-\mathrm{Fe}_{1}-\mathrm{N}_{2}$	171.595	
		$\mathrm{~N}_{3}-\mathrm{Fe}_{1}-\mathrm{O}_{2}$	93.721
	$\mathrm{~N}_{4}-\mathrm{Fe}_{1}-\mathrm{N}_{2}$	99.203	
		$\mathrm{~N}_{4}-\mathrm{Fe}_{1}-\mathrm{O}_{2}$	169.819
	$\mathrm{~N}_{2}-\mathrm{Fe}_{1}-\mathrm{O}_{2}$	86.202	
		$\mathrm{Fe}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	116.027
		$\mathrm{Fe}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	114.957
		$\mathrm{Fe}_{1}-\mathrm{N}_{3}-\mathrm{Fe}_{2}$	93.016
		$\mathrm{Fe}_{1}-\mathrm{N}_{4}-\mathrm{Fe}_{2}$	93.099

Figure (3-180) The proposed molecular structure of $\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Table (3-42) The calculated bond length and bond angle of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A°)	Type of Bond	Bond angle(${ }^{\circ}$)
Fe28-O26	1.853	$\mathrm{C}_{1}-\mathrm{O}_{1}$ - Co_{1}	114.135
		$\mathrm{C}_{1}-\mathrm{Co}_{1}$ - N_{1}	170.125
$\mathrm{Co}_{1}-\mathrm{N}_{1}$	1.845	$\mathrm{O}_{1}-\mathrm{Co}_{1}$ - N_{3}	100.458
$\mathrm{Co}_{1}-\mathrm{N}_{3}$	1.859	$\mathrm{O}_{1}-\mathrm{Co}_{1}-\mathrm{N}_{4}$	85.968
Co ${ }_{1}-\mathrm{N}_{4}$	1.885	$\mathrm{O}_{1}-\mathrm{Co}_{1}$ - N_{2}	85.611
$\mathrm{Co}_{1}-\mathrm{N}_{2}$	1.883	$\mathrm{O}_{1}-\mathrm{Co}_{1}{ }^{-} \mathrm{O}_{2}$	87.666
$\mathrm{Co}_{1}-\mathrm{O}_{2}$	1.858	$\mathrm{N}_{1}-\mathrm{Co}_{1}-\mathrm{N}_{3}$	88.659
$\mathrm{N}_{4}-\mathrm{N}_{6}$	1.359	N_{1} - $\mathrm{Co} 1-\mathrm{N}_{4}$	99.145
$\mathrm{N}_{3}-\mathrm{N}_{5}$	1.359	$\mathrm{N}_{1}-\mathrm{Co}_{1}$ - N_{2}	85.632
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.375	N1- Co 1-O ${ }_{2}$	88.072
		$\mathrm{N}_{3}-\mathrm{Co}_{1}-\mathrm{N}_{4}$	82.183
		$\mathrm{N}_{3}-\mathrm{Co}_{1}-\mathrm{N}_{2}$	172.326
		$\mathrm{N}_{3}-\mathrm{Co}_{1}-\mathrm{O}_{2}$	92.999
		$\mathrm{N}_{4}-\mathrm{Co}_{1}-\mathrm{N}_{2}$	93.651
		$\mathrm{N}_{4}-\mathrm{Co}_{1}-\mathrm{O}_{2}$	171.179
		$\mathrm{N}_{2}-\mathrm{Co}_{1}-\mathrm{O}_{2}$	91.936
		$\mathrm{Co}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	115.936
		$\mathrm{Co}_{1}-\mathrm{N} 4-\mathrm{N}_{6}$	115.408
		$\mathrm{Co}_{1}-\mathrm{N} 3-\mathrm{Co}_{2}$	93.146
		$\mathrm{Co}_{1}-\mathrm{N}_{4}-\mathrm{CO}_{2}$	93.174

Figure (3-181) The proposed molecular structure of $\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-43) The calculated bond length and bond angle of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length $\left(\mathbf{A}^{\circ}\right)$	Type of Bond	Bond angle $\left.{ }^{(}{ }^{\circ}\right)$
$\mathrm{Ni}_{1}-\mathrm{O}_{1}$	1.790	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Ni}_{1}$	109.470
$\mathrm{Ni}_{1}-\mathrm{N}_{1}$	1.826	$\mathrm{O}_{1}-\mathrm{Ni}_{1}-\mathrm{N}_{1}$	180.00
$\mathrm{Ni}_{1}-\mathrm{N}_{3}$	1.826	$\mathrm{O}_{1}-\mathrm{Ni}_{1}-\mathrm{N}_{3}$	89.999
$\mathrm{Ni}_{1}-\mathrm{N}_{4}$	1.838	$\mathrm{O}_{1}-\mathrm{Ni}_{1}-\mathrm{N}_{4}$	89.915
$\mathrm{Ni}_{1}-\mathrm{N}_{2}$	1.826	$\mathrm{O}_{1}-\mathrm{Ni}_{1}-\mathrm{N}_{2}$	89.993
$\mathrm{Ni}_{1}-\mathrm{O}_{2}$	1.790	$\mathrm{O}_{1}-\mathrm{Ni}_{1}-\mathrm{O}_{2}$	89.997
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.402	$\mathrm{~N}_{1}-\mathrm{Ni}_{1}-\mathrm{N}_{3}$	90.004
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.351	$\mathrm{~N}_{1}-\mathrm{Ni}_{1}-\mathrm{N}_{4}$	90.082
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.351	$\mathrm{~N}_{1^{-}-\mathrm{Ni}_{1}-\mathrm{N}_{2}}$	90.004
		$\mathrm{~N}_{1}-\mathrm{Ni}_{1}-\mathrm{O}_{2}$	90.004
	$\mathrm{~N}_{3}-\mathrm{Ni}_{1}-\mathrm{N}_{4}$	89.637	
	$\mathrm{~N}_{3}-\mathrm{Ni}_{1}-\mathrm{N}_{2}$	104.244	
	$\mathrm{~N}_{3}-\mathrm{Ni}_{1}-\mathrm{O}_{2}$	74.103	
		$\mathrm{~N}_{4}-\mathrm{Ni}_{1}-\mathrm{N}_{2}$	64.607
	$\mathrm{~N}_{4}-\mathrm{Ni}_{1}-\mathrm{O}_{2}$	163.737	
		$\mathrm{~N}_{2}-\mathrm{Ni}_{1}-\mathrm{O}_{2}$	178.355
		$\mathrm{Ni}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	109.475
	$\mathrm{Ni}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	109.465	
		$\mathrm{Ni}_{1}-\mathrm{N}_{3}-\mathrm{Ni}_{2}$	90.00
		$\mathrm{Ni}_{1}-\mathrm{N}_{4}-\mathrm{Ni}_{2}$	89.642

Fig.(3-182) The proposed molecular structure of $\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-44) The calculated bond length and bond angle of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A°)	Type of Bond	Bond angle (${ }^{\circ}$)
$\mathrm{Zn}_{1}-\mathrm{O}_{1}$	1.890	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Zn}_{1}$	109.468
$\mathrm{Zn}_{1}-\mathrm{N}_{1}$	1.926	$\mathrm{O}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{1}$	180.00
$\mathrm{Zn}_{1}-\mathrm{N}_{3}$	1.926	$\mathrm{O}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{3}$	90.002
$\mathrm{Zn}_{1}-\mathrm{N}_{4}$	1.926	$\mathrm{O}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{4}$	90.002
$\mathrm{Zn}_{1}-\mathrm{N}_{2}$	1.926	$\mathrm{O}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{2}$	90.002
$\mathrm{Zn}_{1}-\mathrm{O}_{2}$	1.889	$\mathrm{O}_{1}-\mathrm{Zn}_{1}-\mathrm{O}_{2}$	90.004
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.402	$\mathrm{N}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{3}$	89.999
$\mathrm{N}_{3}-\mathrm{N}_{5}$	1.352	$\mathrm{N}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{4}$	90.00
$\mathrm{N}_{4}-\mathrm{N}_{6}$	1.352	$\mathrm{N}_{1}-\mathrm{Zn}_{1}-\mathrm{N}_{2}$	90.00
		$\mathrm{N}_{1}-\mathrm{Zn}_{1}-\mathrm{O}_{2}$	89.993
		$\mathrm{N}_{3}-\mathrm{Zn}_{1}-\mathrm{N}_{4}$	90.005
		$\mathrm{N}_{3}-\mathrm{Zn}_{1}-\mathrm{N}_{2}$	76.946
		$\mathrm{N}_{3}-\mathrm{Zn}_{1}-\mathrm{O}_{2}$	67.089
		$\mathrm{N}_{4}-\mathrm{Zn}_{1}-\mathrm{N}_{2}$	113.060
		$\mathrm{N}_{4}-\mathrm{Zn}_{1}-\mathrm{O}_{2}$	157.097
		$\mathrm{N}_{2}-\mathrm{Zn} 1-\mathrm{O}_{2}$	144.033
		$\mathrm{Zn}_{1}-\mathrm{N} 3-\mathrm{N}_{5}$	109.468
		$\mathrm{Zn}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	109.474
		Zn1-N3- Zn2	89.995
		Zn1-N4- Zn2	83.148

Figure (3-183) The proposed molecular structure of $\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-45) The calculated bond length and bond angle of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A)	Type of Bond	Bond angle
$\mathrm{Cu}_{1}-\mathrm{O}_{1}$	1.810	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Cu}_{1}$	109.467
$\mathrm{Cu}_{1}-\mathrm{N}_{1}$	1.845	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{1}$	180.00
$\mathrm{Cu}_{1}-\mathrm{N}_{4}$	1.846	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{4}$	89.988
$\mathrm{Cu}_{1}-\mathrm{N}_{3}$	1.846	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{3}$	89.986
$\mathrm{Cu}_{1}-\mathrm{N}_{2}$	1.846	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{2}$	89.988
$\mathrm{Cu}_{1}-\mathrm{O}_{2}$	1.810	$\mathrm{O}_{1}-\mathrm{Cu}_{1}-\mathrm{O}_{2}$	89.986
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.352	$\mathrm{~N}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{4}$	90.011
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.351	$\mathrm{~N}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{3}$	90.012
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.402	$\mathrm{~N}_{1}-\mathrm{Cu}_{1}-\mathrm{N}_{2}$	90.011
		$\mathrm{~N}_{1}-\mathrm{Cu}_{1}-\mathrm{O}_{2}$	90.011
		$\mathrm{~N}_{4}-\mathrm{Cu}_{1}-\mathrm{N}_{3}$	89.993
		$\mathrm{~N}_{4}-\mathrm{Cu}_{1}-\mathrm{N}_{2}$	9.743
		$\mathrm{~N}_{4}-\mathrm{Cu}_{1}-\mathrm{O}_{2}$	9.717
		$\mathrm{~N}_{3}-\mathrm{Cu}_{1}-\mathrm{N}_{2}$	80.252
		$\mathrm{~N}_{3}-\mathrm{Cu}_{1}-\mathrm{O}_{2}$	80.280
		$\mathrm{~N}_{2}-\mathrm{Cu}_{1}-\mathrm{O}_{2}$	0.000
	$\mathrm{Cu}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	109.456	
		$\mathrm{Cu}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	109.482
		$\mathrm{Cu}_{1}-\mathrm{N}_{4}-\mathrm{Cu}_{2}$	105.541
		$\mathrm{Cu}_{1}-\mathrm{N}_{3}-\mathrm{Cu}_{2}$	62.860

Figure (3-184) The proposed molecular structure of $\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-46) The calculated bond length and bond angle of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Type of Bond	Bond length (\mathbf{A}°)	Type of Bond	Bond angle (${ }^{\circ}$)
$\mathrm{Cd}_{1}-\mathrm{O}_{1}$	2.120	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Cd}_{1}$	109.465
$\mathrm{Cd}_{1}-\mathrm{N}_{1}$	2.155	$\mathrm{O}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{1}$	180.00
$\mathrm{Cd}_{1}-\mathrm{N}_{4}$	2.156	$\mathrm{O}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{4}$	89.993
$\mathrm{Cd}_{1}-\mathrm{N}_{3}$	2.156	$\mathrm{O}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{3}$	89.993
$\mathrm{Cd}_{1}-\mathrm{N}_{2}$	2.156	$\mathrm{O}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{2}$	89.993
$\mathrm{Cd}_{1}-\mathrm{O}_{2}$	2.120	$\mathrm{O}_{1}-\mathrm{Cd}_{1}-\mathrm{O}_{2}$	89.990
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.351	$\mathrm{~N}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{4}$	90.007
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.352	$\mathrm{~N}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{3}$	90.009
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.402	$\mathrm{~N}_{1}-\mathrm{Cd}_{1}-\mathrm{N}_{2}$	90.007
		$\mathrm{~N}_{1}-\mathrm{Cd}_{1}-\mathrm{O}_{2}$	90.011
		$\mathrm{~N}_{4}-\mathrm{Cd}_{1}-\mathrm{N}_{3}$	90.00
		$\mathrm{~N}_{4}-\mathrm{Cd}_{1}-\mathrm{N}_{2}$	19.697
	$\mathrm{~N}_{4}-\mathrm{Cd}_{1}-\mathrm{O}_{2}$	19.526	
		$\mathrm{~N}_{3}-\mathrm{Cd}_{1}-\mathrm{N}_{2}$	70.301
		$\mathrm{~N}_{3}-\mathrm{Cd}_{1}-\mathrm{O}_{2}$	70.474
	$\mathrm{~N}_{2}-\mathrm{Cd}_{1}-\mathrm{O}_{2}$	0.000	
	$\mathrm{Cd}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	109.447	
		$\mathrm{Cd}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	109.481
		$\mathrm{Cd}_{1}-\mathrm{N}_{4}-\mathrm{Cd}_{2}$	99.734
		$\mathrm{Cd}_{1}-\mathrm{N}_{3}-\mathrm{Cd}_{2}$	64.321

Figure (3-185) The proposed molecular structure of $\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$

Table (3-47) The calculated bond length and bond angle of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A' ${ }^{\circ}$)	Type of Bond	Bond angle(${ }^{\circ}$)
$\mathrm{Ag}_{1}-\mathrm{O}_{1}$	1.969	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Ag}_{1}$	107.874
$\mathrm{Ag}_{1}-\mathrm{N}_{1}$	2.140	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{1}$	180.00
$\mathrm{Ag}_{1}-\mathrm{N}_{3}$	2.140	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{3}$	87.875
$\mathrm{Ag}_{1}-\mathrm{N}_{4}$	2.140	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{4}$	89.863
$\mathrm{Ag}_{1}-\mathrm{N}_{2}$	2.140	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	89.863
$\mathrm{Ag}_{1}-\mathrm{O}_{2}$	1.9994	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	89.743
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.347	$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{3}$	90.211
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.349	$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{4}$	90.208
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.441	$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	90.211
		$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	90.201
		$\mathrm{~N}_{3}-\mathrm{Ag}_{1}-\mathrm{N}_{4}$	89.786
		$\mathrm{~N}_{3}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	13.893
	$\mathrm{~N}_{3}-\mathrm{Ag}_{1_{1}-\mathrm{O}_{2}}$		
		$\mathrm{~N}_{4}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	162.234
		$\mathrm{~N}_{4}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	76.408
		$\mathrm{~N}_{2}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	77.387
		$\mathrm{Ag}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	16.158
		$\mathrm{Ag}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	109.214
		$\mathrm{Ag}_{1}-\mathrm{N}_{3}-\mathrm{Ag}_{2}$	109.208
		$\mathrm{Ag}_{1}-\mathrm{N}_{4}-\mathrm{Ag}_{2}$	101.982
			63.657

Figure (3-186) The proposed molecular structure of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-48) The calculated bond length and bond angle of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	$\begin{aligned} & \text { Bond length } \\ & \left(\mathbf{A}^{\circ}\right) \end{aligned}$	Type of Bond	Bond angle(${ }^{\circ}$)
$\mathrm{Cr}_{1}-\mathrm{O}_{1}$	1.864	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Cr}_{1}$	120.460
$\mathrm{Cr}_{1}-\mathrm{N}_{1}$	1.880	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{1}$	84.136
$\mathrm{Cr}_{1}-\mathrm{N}_{3}$	1.913	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{3}$	92.189
$\mathrm{Cr}_{1}-\mathrm{N}_{4}$	1.915	O_{1} - $\mathrm{Cr} 1-\mathrm{N}_{4}$	96.510
$\mathrm{Cr}_{1}-\mathrm{N}_{2}$	1.878	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{2}$	168.247
$\mathrm{Cr}_{1}-\mathrm{O}_{2}$	1.842	$\mathrm{O}_{1}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	87.944
$\mathrm{N}_{3}-\mathrm{N}_{5}$	1.363	N_{1} - Cr1-N3	91.929
$\mathrm{N}_{4}-\mathrm{N}_{6}$	1.364	$\mathrm{N}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{4}$	177.390
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.420	$\mathrm{N}_{1}-\mathrm{Cr}_{1}-\mathrm{N}_{2}$	84.783
		$\mathrm{N}_{1}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	98.461
		$\mathrm{N}_{3}-\mathrm{Cr}_{1}-\mathrm{N}_{4}$	85.524
		$\mathrm{N}_{3}-\mathrm{Cr}_{1}-\mathrm{N}_{2}$	92.093
		$\mathrm{N}_{3}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	169.564
		$\mathrm{N}_{4}-\mathrm{Cr}_{1}-\mathrm{N}_{2}$	94.735
		$\mathrm{N}_{4}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	84.094
		$\mathrm{N}_{2}-\mathrm{Cr}_{1}-\mathrm{O}_{2}$	89.817
		$\mathrm{Cr}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	117.253
		$\mathrm{Cr}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	117.833
		$\mathrm{Cr}_{1}-\mathrm{N} 3-\mathrm{Cr}_{2}$	86.696
		$\mathrm{Cr}_{1}-\mathrm{N}_{4}-\mathrm{Cr}_{2}$	86.588

Figure (3-187) The proposed molecular structure of $\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right) \mathbf{4}_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Table (3-49) The calculated bond length and bond angle of $\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A)	Type of Bond	Bond angle
$\mathrm{Mn}_{1}-\mathrm{O}_{1}$	1.748	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Mn}_{1}$	114.074
$\mathrm{Mn}_{1}-\mathrm{N}_{2}$	1.773	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{2}$	164.354
$\mathrm{Mn}_{1}-\mathrm{N}_{4}$	1.821	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{4}$	90.027
$\mathrm{Mn}_{1}-\mathrm{N}_{3}$	1.864	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{3}$	93.742
$\mathrm{Mn}_{1}-\mathrm{N}_{1}$	1.802	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	88.457
$\mathrm{Mn}_{1}-\mathrm{O}_{2}$	1.801	$\mathrm{O}_{1}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	84.875
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.396	$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{N}_{4}$	92.718
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.317	$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{N}_{3}$	95.201
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.352	$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	87.124
		$\mathrm{~N}_{2}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	82.365
		$\mathrm{~N}_{4}-\mathrm{Mn}_{1}-\mathrm{N}_{3}$	75.981
		$\mathrm{~N}_{4}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	165.011
		$\mathrm{~N}_{4}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	93.714
		$\mathrm{~N}_{3}-\mathrm{Mn}_{1}-\mathrm{N}_{1}$	85.308
		$\mathrm{~N}_{3}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	172.540
		$\mathrm{~N}_{1}-\mathrm{Mn}_{1}-\mathrm{O}_{2}$	92.367
		$\mathrm{Mn}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	113.684
		$\mathrm{Mn}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	112.557
		$\mathrm{Mn}_{1}-\mathrm{N}_{4}-\mathrm{Mn}_{2}$	96.003
		$\mathrm{Mn}_{1}-\mathrm{N}_{3}-\mathrm{Mn}_{2}$	97.608

Figure (3-188) The proposed molecular structure of $\left[\mathbf{M n}_{2}\left(\mathbf{L}^{5}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathbf{H}_{\mathbf{2}} \mathrm{O}$

Table (3-50) The calculated bond length and bond angle of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Type of Bond	Bond length (A ${ }^{\circ}$)	Type of Bond	Bond angle(${ }^{\circ}$)
$\mathrm{Ag}_{1}-\mathrm{O}_{1}$	1.980	$\mathrm{C}_{1}-\mathrm{O}_{1}-\mathrm{Ag}_{1}$	109.465
$\mathrm{Ag}_{1}-\mathrm{N}_{1}$	2.016	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{1}$	180
$\mathrm{Ag}_{1}-\mathrm{N}_{3}$	2.016	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{3}$	89.990
$\mathrm{Ag}_{1}-\mathrm{N}_{4}$	2.016	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{4}$	89.992
$\mathrm{Ag}_{1}-\mathrm{N}_{2}$	2.016	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	89.992
$\mathrm{Ag}_{1}-\mathrm{O}_{2}$	1.980	$\mathrm{O}_{1}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	89.990
$\mathrm{~N}_{3}-\mathrm{N}_{5}$	1.351	$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{3}$	90.011
$\mathrm{~N}_{4}-\mathrm{N}_{6}$	1.352	$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{4}$	90.007
$\mathrm{C}_{1}-\mathrm{O}_{1}$	1.402	$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	90.009
		$\mathrm{~N}_{1}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	90.011
		$\mathrm{~N}_{3}-\mathrm{Ag}_{1}-\mathrm{N}_{4}$	89.999
		$\mathrm{~N}_{3}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	13.943
		$\mathrm{~N}_{3}-\mathrm{Ag}_{1^{1}-\mathrm{O}_{2}}$	
		$\mathrm{~N}_{4}-\mathrm{Ag}_{1}-\mathrm{N}_{2}$	162.570
		$\mathrm{~N}_{4}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	76.056
		$\mathrm{~N}_{2}-\mathrm{Ag}_{1}-\mathrm{O}_{2}$	77.427
	$\mathrm{Ag}_{1}-\mathrm{N}_{3}-\mathrm{N}_{5}$	16.380	
		$\mathrm{Ag}_{1}-\mathrm{N}_{4}-\mathrm{N}_{6}$	109.475
		$\mathrm{Ag}_{1}-\mathrm{N}_{3}-\mathrm{Ag}_{2}$	109.482
		$\mathrm{Ag}_{1}-\mathrm{N}_{4}-\mathrm{Ag}_{2}$	63.383

Fig.(3-189) The proposed molecular structure of $\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathbf{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
Table (3-51) Minimisation energy of L^{1} complexes in $\mathrm{Kcal} / \mathrm{mol}$

Complex	Stretch	Bend	StretchBend	Torsion	Non-1,4 VDW	VDW	Charge/ Charge	Charge /Dipole	Dipole/ Dipole	Total Energy Kcal/mol
L^{1}	0.4861	4.7461	0.0551	-9.6143	-1.2864	15.4306	-158.3900	-0.1037	-0.0122	-148.6887
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	3.2649	69.8095	0.0024	-5.4058	-7.3521	34.6253	30.7618	-7.6400	5.9572	124.0233
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.6282	72.1820	0.1480	-9.2256	-10.2224	33.8643	30.5051	-1.5172	3.1996	122.5619
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	1.8392	68.2980	-0.0025	-5.4869	-4.8244	12.1315	30.7802	-3.3399	3.5634	102.9585
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	23.4650	122.5929	-2.1594	-2.8250	-9.2758	50.2437	31.4081	-8.5100	-4.4848	200.4545
[$\left.\mathrm{Ni}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	236.3985	337.2670	2.7842	-5.3427	-0.8550	68.8038	30.7656	-1.2572	-	668.5644
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.7886	81.8782	-1.6499	-5.3715	-6.9779	21.1018	30.8082	-4.9467	4.9522	126.5830
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.7030	90.7822	-2.8755	-5.4232	-6.9045	19.9947	30.7982	-4.3796	5.7716	131.4667
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{1}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	2.8713	74.8387	-2.8390	-5.4499	-6.2927	18.6014	30.8026	-7.1243	6.9262	112.3343
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{\mathbf{1}}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	2.6476	60.0234	-1.6488	-5.0402	-7.3825	22.7238	30.8124	-7.8302	5.7121	100.0175

VDW=Van der Waals interaction
Table (3-52) Minimisation energy of L^{2} complexes in Kcal/mol

Complex	Stretch	Bend	Stretch -Bend	Torsion	Non-1,4 VDW	VDW	Charge/ Charge	Charge/ Dipole	Dipole/ Dipole	Total Energy Kcal/mol
\mathbf{L}^{2}	0.3309	0.7264	0.0201	-7.6590	-1.5088	6.9558	2.9021	0.5295	0.0244	2.3215
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	3.7499	71.7094	-0.4478	23.7845	-10.1455	41.6571	37.5766	-52.0531	5.7419	121.5729
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.6363	73.0147	-0.4606	22.0988	-10.1538	38.2068	36.8856	-50.2051	6.8352	119.8580
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	2.0048	65.7376	0.0051	-3.5476	-5.4751	15.7389	32.4396	-0.2230	5.7319	112.4122
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	25.2227	118.6664	-2.4998	-4.7989	-6.5427	54.0673	32.4350	2.4493	-1.7222	217.2772
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	239.0974	351.1421	0.0213	50.8687	41.0235	87.3033	63.7946	-202.4981	-	630.7529
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.2572	83.1182	-2.1208	23.2851	-8.7616	30.4159	37.3019	-51.5600	5.9116	121.8475
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.3293	92.2440	-3.2423	17.6846	-9.7354	27.1037	35.3873	-39.0975	7.6224	132.2965
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3.8590	124.1412	-3.4364	18.3518	-8.2732	29.1650	35.5280	-45.8686	6.5070	159.9739
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{2}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.2711	61.4204	-2.1015	18.3360	-9.2465	28.6835	35.5989	-43.7813	7.1757	99.3563

Table (3-53) Minimize energy of \mathbf{L}^{3} complexes in $\mathrm{Kcal} / \mathrm{mol}$

Complex	Stretch	Bend	StretchBend	Torsion	Non-1,4 VDW	VDW	Charge/ Charge	Charge/ Dipole	Dipole/ Dipole	Total Energy Kcal/mol
\mathbf{L}^{3}	0.8610	1.0263	0.1178	-9.4034	9.8269	13.8063	-155.2766	0.9348	-0.0084	-138.1154
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	4.8561	73.9384	0.3791	-11.3613	-5.5453	44.9584	31.6775	7.1326	2.8595	148.8950
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.7636	75.3233	0.3615	-10.0061	-5.0164	41.4056	31.6686	8.7909	2.0868	149.3776
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3.4018	71.6066	0.3504	-9.7152	-3.2331	22.3490	31.6943	9.0813	2.7910	128.3262
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	27.8664	125.2559	-2.1001	-9.2265	-6.0334	61.1864	31.7999	-16.8022	-4.3950	207.5514
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	238.3848	338.6709	3.3990	-6.2591	-10.8605	84.7271	32.1783	-30.6939	-	649.5465
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	5.3182	85.1859	-1.3637	-10.8229	-5.2021	34.4234	31.6901	6.9079	3.9125	150.0493
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.3293	92.2440	-3.2423	17.6846	-9.7354	27.1037	35.3873	-39.0975	7.6224	132.2965
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.8590	124.1412	-3.4364	18.3518	-8.2732	29.1650	35.5280	-45.8686	6.5070	159.9739
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{3}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.2629	64.2175	-1.2687	-10.4598	-3.9894	32.6717	31.6644	8.3923	4.5104	130.0012

VDW= Van der Waals interaction
Table (3-54) Minimisatiion energy of L^{4} complexes in $\mathrm{Kcal} / \mathrm{mol}$

Complex	Stretch	Bend	Stretch -Bend	Torsion	Non-1,4 VDW	VDW	Charge/ Charge	Charge/ Dipole	Dipole/ Dipole	Total Energy Kcal/mol
\mathbf{L}^{4}	1.2294	4.7412	0.2550	-6.6099	9.6810	14.1818	-167.1188	-1.4778	0.0267	-145.0912
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	4.9671	73.5914	0.3520	10.4531	-6.1421	46.3226	31.6710	0.3357	2.4032	143.0476
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.9276	76.7671	0.3948	10.7620	-4.0431	44.2842	31.6703	-1.2548	2.0880	144.0721
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	3.5504	71.6926	0.3432	-9.8168	-3.4332	22.9071	31.6688	6.3854	2.1102	125.4075
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	27.3119	126.1901	-2.0040	-8.9445	-4.6297	63.4269	31.8157	-8.9943	-4.2798	219.8923
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 236.311 \\ 2 \end{gathered}$	344.4473	4.5645	10.0352	-10.1944	90.1613	33.6191	-66.7752	-	642.1690
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	5.3182	85.1859	-1.3637	10.8229	-5.2021	34.4234	31.6901	6.9079	3.9125	150.0493
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	69.1472	259.4193	-5.7666	1.7385	12.5127	110.3154	32.7062	-48.7585	4.2804	435.5946
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right]$	20.0220	184.3346	-8.1751	12.5286	-5.9878	44.9047	32.4031	-34.8171	6.2935	251.5066
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{4}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.2664	63.1307	-1.3007	-9.5034	-7.4315	35.1595	31.7378	-8.0190	4.1383	112.1781

VDW= Van der Waals interaction
Table (3-55) Minimisation energy of \mathbf{L}^{5} complexes in $\mathbf{k c a l} / \mathrm{mol}$

Complex	Stretch	Bend	Stretch -Bend	Torsion	Non-1,4 VDW	VDW	Charge/ Charge	Charge/ Dipole	Dipole/ Dipole	Total Energy Kcal/mol
\mathbf{L}^{5}	0.7717	7.8306	0.1343	-3.3142	-2.8047	16.3092	-178.3736	-6.8667	-0.2541	-166.5675
$\left[\mathrm{Cr}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	4.1129	75.6144	0.2294	-1.7187	-16.5237	44.5656	35.8872	-46.9232	2.6078	97.8517
$\left[\mathrm{Mn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.9785	77.7057	0.3275	-1.7330	-16.7557	42.2458	35.6757	-45.0317	2.4544	98.8673
$\left[\mathrm{Fe}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	1.7658	67.5667	-0.0513	-3.0826	-5.2857	10.7706	21.7093	-7.2781	4.1743	90.2890
$\left[\mathrm{Co}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	25.1511	122.0128	-2.0433	-5.0326	-13.4073	60.4950	23.8613	-7.1058	-4.2356	199.6957
$\left[\mathrm{Ni}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{gathered} 237.8601 \\ 5 \\ \hline \end{gathered}$	339.0763	3.2372	-1.5934	-8.7610	81.8857	32.0331	-46.4100	-	637.3280
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.7874	86.1395	-1.7042	0.7326	-15.9410	36.8611	29.7212	-34.9466	3.7245	109.3746
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	4.7072	95.4744	-2.6523	-1.7340	-12.3473	30.8917	35.0427	-47.4069	5.5104	107.4860
$\left[\mathrm{Cd}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.9288	124.4754	-2.9252	-1.8594	-12.7812	31.4805	35.0775	-43.3093	4.0064	138.0935
$\mathrm{Na}_{2}\left[\mathrm{Ag}_{2}\left(\mathrm{~L}^{5}\right)\left(\mathrm{N}_{3}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	3.5441	60.9903	-1.4971	-6.2516	-11.0694	32.1801	22.1023	-4.7653	4.5075	99.7409

Prospective studies

1. Preparation of new polydentate ligands with different substituents.
2. Synthesis of polymeric complexes employing different bridging systems. These complexes may have potential applications in photochemistry, molecular magnetism, catalysis, optoelectronic devices and clean energy.
3. Determination of the magnetic behaviour of complexes using variable temperature magnetic studies.

References

1. T. Tanase, J. W. Yun, S. J. Lippard, Inorg. Chem., 35, 3585, (1996).
2. M. Melnik, M. Koman, D. Hudecov, J. Moncol, B. Dudov, T. Glowiak, J. Mrozinski, C. E. Holloway, Inorg. Chem. Acta, 308, (2000)
3. V. Zelenak, K. Gyoryov, D. Mlynar, Met. Based Drugs, 8, 269, (2002).
4. P. Koczo, J. Piekut, M. Borawska, R. Swisłocka, W. Lewandowski, Spectrochim. Acta, Part A: Mol. Biomol. Struct. 61, 1917, (2005).
5. P. Koczo, J. Piekut, M. Borawska, R. Swisłocka, W. ewandowski, J. Mol. Struct., 651-653 (2003).
6. D. Aiello, R. Aiello, F. Testa, T. Martino, I. Aiello, M. L. Deda, M. Ghedini, J. Photochem. Photobio. A. 201, 81-86, (2009).
7. K. Yu, Z. C. Gu, R. N. Ji, L. L. Lou, S. X. Liu, Tetrahedron, 65, 305-311, (2009).
8. B. J .Jung, N. J. Tremblay, M. L. Yeh, H. E. Katz, Chem. Mater. 23, 568-582, (2011).
9. V. K. Garripelli, J. K. Kim, S. Son, W. J. Kim, M. A. Repka, S. Jo, Acta Biomater., 7, 1984-1992, (2011).
10. J. S. Pap, B. Kripli, T. Varadi, M. Giorgi, J. Kaizer, G. Speier, J. Inorg. Biochem., 105, 911-918, (2011).
11. D. M. Griffith, B. Szocs, T. Keogh, K. Y. Suponitsky, E. Farkas, P. Buglyo, C. J. Marmion, J. Inorg. Biochem., 105, 763-769, (2011).
12. A. L. Pochodylo, R. L. LaDuca, Inorg. Chem. Comm., 14, 722-726, (2011).
13. Q. Ma, M. L. Zhu, L. P. Lu, S. S. Feng, J. Z. Yan, Inorg. Chem. Acta, 370, 102107, (2011).
14. S. Losse, J. G. Vos, S. Rau, Coord. Chem. Rev.
15. S. R. Batten, R. Robson, Angew. Chem., Int. Ed., 37, 1460, (1998).
16. L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev., 246-247, (2003).
17. S. R. Batten, Cryst Eng Comm., 3, 67, (2001).
18. X-J Kong, X-J Long., L-S Long ., Z-P Zheng., R-B Huang, L-S Zheng, Acc. Chem .Res., 43, 201-209, (2009).
19. E-Q Gao, Y- F Yue , S-Q Bai , Z-Yan He.. J. Am. Chem. Soc., 126, 1419, (2004).
20. P. P Liu, A. L. Cheng, N. Liu, W. W. Sun, E. Q. Gao, Chem. Mater., 19, 2724, (2007).
21. X. Y. Wang, L. Wang, Z. M. Wang, S. Gao, J. Am. Chem. Soc., 128, 674, (2006).
22. Y. Z. Zhang, H. Y. Wei, F. Pan, Z. M. Wang, Z. D. Chen, S. Gao, Angew. Chem. Int. Ed., 44, 5841, (2005).
23. S. R. Caskey, A. J. Matzger, Inorg. Chem., 47, 7942, (2008).
24. P. Ren, W. Shi, P. Cheng, Cryst. Growth Des., 8, 1097, (2008).
25. J. W. Cheng, J. Zhang, S. T. Zheng, E. Ma, G. Y. Yang, Inorg. Chem., 46, 10534, (2007).
26. Y. Ouyang, W. Zhang, N. Xu, G. F. Xu, D. Z. Liao, S. P. Yan, P. Cheng, Inorg. Chem., 46, 8454, (2007).
27. X. Q. Zhao, B. Y. Ma, W. Shi, P. Cheng, Z. H. Jiang, D. Z. Liao, S. P. Yan, Inorg. Chem., 46, 5832, (2007).
28. M. Du, X. H. Bu, Y. M. Guo, J. Ribas, J. Chem.-Eur. J., 10, 1345, (2004).
29. X. Y. Wang, Z. M. Wang, S. Gao, Chem. Comm., 281, (2008).
30. S. C. Chen, Z. H. Zhang, K. L. Huang, Q. Chen, M. Y. He, A. J. Cui, C. Li, Q. Liu, M. Du. Cryst. Growth Des., 8, 3437, (2008).
31. B. R. Manzano, F. A. Jalon, M. L. Soriano, M. C. Carrion, M. P. Carranza, K. Mereiter, A. M. Rodriguez, A. dela Hoz, A. SanchezMigallon, Inorg. Chem., 47, 8957, (2008).
32. T. K. Prasad, M. V. Rajasekharan. Cryst. Growth Des., 8, 1346, (2008).
33. T. Enoki, A. Miyazaki, Chem. Rev., 104, 5449-5477, (2004).
34. P. Amo-Ochoa, O. Castillo, S. S. AlexandreL. Welte, L.; P. J. de Pablo, M. I. Rodriguez-Tapiador, J. Gomez- Herrero, F. Zamora, Inorg. Chem., 48, 79317936, (2009).
35. D. Gatteschi, R. Sessoli, Angew. Chem., Int. Ed., 42, 268, (2003).
36. R. Lescouezec, L. M. Toma, J. Vaissermann, M. Verdaguer, F. S. Delgado, C. Ruiz-Perez, F. Lloret, M. Julve, Coord. Chem. Rev., 249, 2691, (2005).
37. G. Aromi, D. Aguila, P. Gamez, F. Luis, O. Roubeau, Chem. Soc. Rev., 41, 537, (2012).
38. A. Escuer, G. Aromı, Eur. J. Inorg. Chem., 4721, (2006).
39. Y. F. Zeng, X. Hu, F. C. Liu, X. H. Bu, Chem. Soc. Rev., 38, 469, (2009).
40. C. H. Ge, A. L. Cui, Z. H. Ni, Y.-B. Jiang, L.-F. Zhang, J. Ribas, H. Z. Kou, Inorg. Chem., 45, 4883, (2006).
41. X.-Y. Wang, L. Wang, Z. M. Wang, G. Su, S. Gao, Chem. Mater., 17, 6369, (2005).
42. T. F. Liu, D Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, Y. J. Liu, J. Am. Chem. Soc., 125, 13976, (2003).
43. Y. F. Yue, E. Q. Gao, C. J. Fang, T. Zheng, J. Liang, C. H. Yan, Inorg. Chem., 8, 3295, (2008).
44. X. T. Liu, X.-Y. Wang, W.-X. Zhang, P. Cui, S. Gao, Adv. Mater., 18, 2852, (2006).
45. P. S. Mukherjee, T. K. Maji, G. Mostafa, T. Mallah, N. R. Chaudhuri, Inorg. Chem., 39, 5147, (2000).
46. R. Y. Li, X. Y. Wang, T. Liu, H.-B. Xu, F. Zhao, Z.-M. Wang, S. Gao, Inorg. Chem., 47, 8134, (2008).
47. H. Li, M. Eddaoud, M. Okeeffe, O.M. Yaghi, Nature, 402, 276, (1999).
48.A. Escuer, R. Vicente, F. A. Mautner, M. A. Goher, M. A. M. Abu-Youssef, Chem. Comm., 64, 2002.
48. T. Liu, Y. J. Zhang, Z. M. Wang, S. Gao, Inorg. Chem., 45, 2782, (2006).
49. X. T. Wang, X. H. Wang, Z. M. Wang, S. Gao, Inorg. Chem., 48, 1301, (2009).
50. F. C. Liu, Y. F. Zeng, J. R. Li, X. H. Bu, H.-J. Zhang, J. Inorg. Chem., 44, 7298, (2005).
51. G. Aromi, E. K. Brechin, Struct. Bond. 122, 1-67, (2006).
52. Y. Q. Wang, J. Y. Zhang, Q. X. Jia, E. Q. Gao, C. M. Liu, Inorg. Chem., 48, 789, (2009).
53. J. Xia, B. Zhao, H. S. Wang, P. Cheng. Inorg. Chem., 46, 3450 (2007).
54. X. H. Zhou, Y. H. Peng, X. D. Du, C. F. Wang, J. L. Zuo, X. Z. You. Cryst. Growth Des., 9, 1028, (2009).
55. P. King, R. Clerac, C. E. Anson, A. K. Powell. Dalton Trans., 6, 852, (2004).
56. J. C. Bayon, P. Esteban, G. Net, P.G. Rasmussen, K. N. Baker, C. W. Hahn, M. M. Gumz. Inorg. Chem., 30, 2572, (1991).
57. J. L. Tian, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng. Inorg. Chem. Comm., 6, 1025, (2003).
58. S. Y. Zhang, Y. H. Li, W. Li. Inorg. Chem. Acta, 362, 2247 (2009).
59. P. King, R. Clerac, C. E. Anson, C. Coulon, A. K. Powell. Inorg. Chem., 42, 3492, (2003).
60. L. F. Chen, X. Y. Cao, Z. J. Li, J. K. Cheng, Q. P. Lin, Y. G. Yao. Inorg. Chem. Comm., 11, 961, (2008).
61. J. J. Wang, B. Zhang, H. M.Shu, C. Q. Du, H. M. Hu. Acta Cryst., 63, 2190, (2007).
62. Y. Wang, Y. Song, Z. R. Pan, Y. Z. Shen, Z. Hu, Z. J. Guo, H. G. Zheng., Dalton Trans., 41, 5588, (2008).
63. D. G. Branzea, A. Guerri, O. Fabelo, C. Ruiz-Perez, L.M. Chamoreau, C. Sangregorio, A. Caneschi, M. Andruh. Cryst. Growth Des., 8, 941, (2008).
64. M. Frisch, C. L. Cahill., Dalton Trans., 8, 1518, (2005).
65. T. C. Stamatatos, K. A. Abboud, W. Wernsdorfer, G. Christou, Angew. Chem., Int. Ed., 46, 844, (2007).
66. C. I. Yang, W. Wernsdorfer, G. H. Lee, H. L. Tsai, J. Am. Chem. Soc., 129, 456, (2007).
67. S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem., Int. Ed., 43, 2334, (2004).
68. G. Ferey, Chem. Soc. Rev., 37, 191, (2008).
69. J. R. Li, R. J. Kuppler, H. C. Zhou. Chem. Soc. Rev., 38, 1477, (2009).
70. L. Q. Ma, C. Abney, W. B. Lin. Chem. Soc. Rev., 38, 1248, (2009).
71. D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O. Keeffe, O. M. Yaghi. Chem. Soc. Rev., 38, 1257, (2009).
72. J. B. Goodenough, Prog. Solid State Chem., 5, 149, (1971).
73. D. Gatteschi and R. Sessoli, Angew. Chem. Int. Ed., 42, 268, (2003).
74. J. Veciana, Struct. Bonding, 100, 1, (2001).
75. J. M. Baik and J. L. Lee Adv. Mater., 17, 2745, (2005).
76. S. K. Pati and C. N. Rao, Chem. Comm., 4683, (2008).
77. D. Grohol, K. Matan, J. H. Cho, S. H. Lee, J. W. Lynn, D. G. Nocera and Y. S. Lee, Nat. Mater., 4, 323, (2005).
78. A. B. Gaspar, V. Ksenofontov, M. Seredyuk and P. Gütlich, Coord. Chem. Rev., 249, 2661, (2005).
79. S. W. Cheong and M. Mostovoy, Nat. Mater., 6, 13, (2007).
80. E. Coronado, J. R. Galan-Mascaros, M. Monrabal-Capilla, J. Garcia-Martiand P. P. Pardo-Ibanez, Adv. Mater., 19, 1359-1361, (2007).
81. C. N. Rao, S. Natarajan and R. Vaidhyanathan, Angew. Chem. Int. Ed., 43, 1466, (2004).
82. S. Natarajan and P. Mahata, J. Ind. Ins. Sci., 88, 179, (2008).
83. D. Maspoch , D. Ruiz-Molina and B. Veciana J. Chem. Soc. Rev., 36, 770, (2007).
84. L. J. Smith , H. Eckert and A. K. Cheetham, J. Am.Chem. Soc., 122, 1700, (2000).
85. S. Cobo, G. Molnar, J. A. Real and A. Bousseksou, Angew. Chem., 45, 5786, (2006).
86. E. Freysz, S. Montant, S. Letard and J. F. Letard, Chem. Phys. Lett. 394, 318232, (2005).
87. J. F. Letard, P. Guionneau and L. Goux-Capes, Top. Curr. Chem. 235, 22149, (2004).
88. O. Kahn and C. J. Martinez, Science, 279, 44-8, (1998).
89. P. Gutlich, A. Hauser and H. Spiering, Angew. Chem. Int. Ed. Engl. 33 202454, (1994).
90. P. Gutlich and H.A. Goodwin, Top. Curr. Chem., Spin Cross in Transition Metal Compounds I-III, 233-235, (2004).
91. P. Gutlich, Y. Garcia and H. A. Goodwin, Chem. Soc. Rev., 29, 419, (2000).
92. Malcolm A. Halcrow, Chem. Soc. Rev., 37, 278-289, (2008).
93. R. Pritchard, C. A. Kilner and M. A. Halcrow, Chem. Comm., 577, (2007).
94. B. A. Leita, B. Moubaraki, K. S. Murray, J. P. Smith and J. D. Cashion, Chem. Comm., 156, (2004).
95. A. B. Gasper, V. Ksenofontov, S. Reiman, P. Gutlich, A. L. Thompson, A. E. Goeta, M. C. Munoz and J. A. Real, Chem.-Eur. J., 12, 9289, (2006).
96. J. A. Real, I. Castro, A. Bousseksou, M. Verdaguer, R. Burriel, J. Linares and F. Varret, Inorg. Chem., 36, 455, (1997).
97. F. Volatron, L. Catala, E. Riviere, A. Gloter, O. Stephan and T. Mallah, Inorg. Chem., 47, 6584-6586, (2008).
98. T. Fujigaya, D. L. Jiang and T. Aida, Chem.-Asian J., 2, 106-113, (2007).
99. J. F. Letard, P. Guionneau, and L. Goux-Capes, in Spin Crossover in Transition Metal Compounds III, springer-Berlin, vol.235, pp.221-249, (2004).
100. D. F. Shriver and P. W. Atkins, Inorg. Chem., Oxford University Press, Oxford, (1999).
101. A. Hauser, in Spin Crossover in Transition Metal Compounds I, SpringerBerlin, vol. 233, pp. 49-58, (2004).
102. Y. Tanabe and S. Sugano, J, Phys. Soc. Jpn., 9, 766-779, (1954).
103. M. Sorai and S. Seki, J. Phys. Chem. Solids, 35, 555-570, (1974).
104. T. Forestier, S. Mornet, N. Daro, T. Nishihara, S. Mouri, K. Tanaka, O. Fouche, E. Freysz and J. F. Letard, Chem. Comm., 4327-4329, (2008).
105. Xue-Ting Liu, Xin-Yi, Wei-Xin Zhang, Peng Cui, and Song Gao, Adv. Mater, 18, 2852-2856, (2006).
106. G. Lazari, T. Stamatatos, C. Raptopoulou, Va. Psycharis, M. Pissas, S. Perlepes and A. Boudalis, Daltom Trans., 3215-3221, (2009).
107. T. C. Stamatatos, J. C. Vlahopoulou, V. S. Tangoulis, C. P. Raptopoulou, A. Terzis, G. S. Papaefstathiou, and S. P. Perlepes, Polyhedron, 28, 1656-1663, (2009).
108. Q. Yang, J.-P. Zhao, B.-W. Hu, X.-F. Zhang and X.-H. Bu, Inorg.Chem., 49, 3746-3751, (2010).
109. S. Saha, D. Biswas, P. P. Chakrabarty, A. D. Jana, A. Boudalis, S K. Seth and T. Kar, Polyhedron, 29, 3342-3348, (2010).
110. Oindrila Sengupta, Bappaditya Gole, Sandip Mukherjee and Partha Sarathi Mukherjee, Dalton Trans., 39, 7451-7465, (2010).
111. Yang Fu, Hua Li, Xingguo Chen and Jingui Qin, Inorg. Chem.. Comm., 14, 268-270, (2011).
112. Feng Luan, Ling Xu, Yuan Gao and Bing Liu, Bull. Korean Chem. Soc. Vol. 32, No.5, (2011).
113. Noelia De La Pinta, M. Luz Fidalgo, Luis Lezama, Gotzon Madariga, Lorena Callejo and Roberto Cortes, Cryst. Growth Des., 11, 1310-1317, (2011).
114. Ken-ichi Sakai, Tomoyuki Akutagawa, and Takayoshi Nakamura, Eur. J. Inorg. Chem., 116-120, (2011).
115. Yan-Qin Wang, Qian Sun and En-Qing Gao, Inorg. Chem. Comm., 15, 8-11, (2012).
116. J. B. Goodenough, Magnetism and the chemical bond (New York: Wiley), (1963).
117. Partha Mahata, Debajit Sarma and Sriniv Asan Natarajan, J. Chem. Soc., vol. 122, No.1, 19-35, (2010).
118. Jin-Zhong Gu, Wen-Guan Lu, Long Jiang, Hong-Cai Zhou, and Tong-Bu Lu, Inorg. Chem., 46, 5835-5837, (2007).
119. J. -F. Song, R.-S. Zhouy, T.-P. Huy, Z. Cheny and B.-B. Wang, J. Coord. Chem., Vol. 63, No. 24, , 4201-4214, (2010).
120. T. Okubo, N. Tanaka, K. H. Kim, H. Yone, M. Maekawa, and T. Kuroda-Sowa, Inorg. Chem., 49, 3700-3702, (2010).
121. Ming-Hua Zeng, Yan-Ling Zhou, Mei-Chun Wu, Hao-Ling Sun and Miao Du, Inorg. Chem., 49, 6436-6442, (2010).
122. Dong-Yu Lv, Zhu-Qing Gao, Jin-Zhong Gu, Ren Ren, Wei Dou, Transition Met Chem, 36, 313-318, (2011).
123. Tarak Nath Mandal, Somnath Roy, Samik Gupta, Kinsuk Das, Rajat Saha, Golam Mostafa, Ray J. Butcher, Cai-Ming Liu, Susanta Kumar Kar, Polyhedron, 30 , 1571-1578, (2011).
124. Hong-Lin Zhu, Jian-Lin, Wei Xu, Jie Zhang and Yue-Qing Zhang, J. Coord. Chem., Vol. 64, No. 12, 2088-2100, (2011).
125. Xin Zhang, Zhao-Ji Li, Ye-Yan Qin and Yuan-Gen Yao, Inorg. Chem. Comm., 15, 1-4, (2012).
126. Sarvendra Kumar and Fabio Doctorovich, Inorg. Chem. Comm., 15, 33-36, (2012).
127. Guo-Jie Yin, Bao-Ming Ji and Chen-Xia Du, Inorg.Chem. Comm., 15, 21-24, (2012).
128. Cui-huan Jiao, Cui-hong He, Jian-chen Geng and Guang-hua Cui, Transition Met Chem, 37, 17-23, (2012).
129. Balasubramanian Murugesapandian and Peter W. Roesky, Eur. J. Chem., 292-297, (2012).
130. Veronica Gomez, Montserrat corbella, Gema Fernandez, Oliver Roubeau, Simon J. Teat and Miguel A. Maestro, Eur. J. Inorg. Chem. 2359-2367, (2012).
131. A. K. Gupta and M. Gupta, Biomaterials, 26, 3995, (2005).
132. R. Weissleder and M. J. Pittet, Nature, 452, 580, (2008).
133. Y. W. Jun, J. H. Lee and J. W. Cheon, Angew. Chem., Int. Ed., 47, 5122, (2008).
134. Chenjie Xu and Shouheng Sun, Dalton Trans., 5583-5591, (2009).
135. Y. Hu, J. Xie, Y. W. Tong and C. H. Wang, J. Controlled Release, 7, 118, (2007).
136. Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon, K. S. Kim, J. S. Shin, J. S. Suh and J. Cheon, J. Am. Chem. Soc., 127, 12387, (2005).
137. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao and S. Sun, Adv. Mater., 22, 2729, (2010).
138. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander

Elst and R. N. Muller, Chem. Rev., 108, 2064, (2008).
140. Nohyun Lee and Taeghwan Hyeon, Chem. Soc. Rev., 41, 2575-2589, (2012).
141. B. Wang, C. J. Xu, J. Xie, Z. Yang and S. H. Sun, J. Am. Chem. Soc., 130, 14436, (2008).
142. T. K. Jian, M. A. Moralles, S. K. Sahoo, D. L. Lesllie-Pellecky and V. Labhasetwar, Mol. Pharm., 2, 194, (2005).
143. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer and K. M. Shakesheff, Chem. Rev., 99, 3181, (1999).
144.
N. Kohler, C. Sun, J. Wang and M. Q. Zhang, Langmuir, 21, 8858, (2005).
145. G. Timco, T. B. Faust, F. Tuna, R.E. P. Winpenny, Chem. Soc. Rev., 40, 3067, (2011).

Chapter Three

146. J. Ashley, M. P. Bernal,G. W. Burr, H. Coufal, H. Guenther, J. A.

Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shely and G. T. Sincerbox, IBM J. Res. Dev.,44, 341-368, (2000).
147. L. Hesselink, S. S. Orlov and M. C. Bashaw, Proc. IEEE, 92, 12311280, (2004).
148. J. Kusz, P. Gutlich and H. Spiering, in Spin Crossover in Transition Metal Compounds II, Springer- Berlin, vol. 234, pp. 129-153, (2004).
149. A. Hauser, Coord. Chem. Rev., 111, 275-290, (1991).
150. P. Gutlich, Y. Garcia and T. Woike, Coord. Chem. Rev., 219, 839879, (2001).
151. Roberta Sessoli, Angew. Chem. Int. Ed. 51, 43-45, (2012).
152. C. S. Smith and K. R. Mann, Chem. Mater., 21, 5042-5049, (2009).
153. O. Oter, K. Ertekin and S. Derinkuyu, Mater. Chem. Phys., 113, 322-328, (2009).
154. N. J. Hinks, A. C. Mckinlay, B. Xiao, P. S. Wheatley, R. E. Morris, Microporous, Mesoporous Mater., 129, 330, (2010).
155. L. H. Williams, Acc. Chem. Res., 32, 869, (1999).
156. Jacqueline L. Harding and Melissa M. Reynolds, J. Am. Chem. Soc., 134, 3330-3333, (2012).
157. A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew.

Chem., Int. Ed., 47, 8002-8018, (2008).
158. J. W. Steed, Chem. Comm., 47, 1379-1383, (2011).
159. Prakash Kanoo, R. Sambhu andTapas Kumar Maji, Inorg. Chem., 50, 400-402, (2011).
160.

CS Chem 3D Ultra Molecular Modelling and Analysis, Cambridge, www. cambridgesoft.com.
161. R. C. Maurya, S. Rajput, J. Molecular Structure, 794 24-34, (2006) (molecular modelling).
162.
A. Jiang-Gao Mao, Hong-Jie Zhang, Jia-Zuan Ni, Shu-Bin Wang, Thomas C. W. Mak, Polyhedron, 18, 1519-1525, (1999). 162.B. A. D. Philips, Z. Fei, W. H. Ang, R.S. Scopelliti and P. J. Dyson, Cry. Growth \& Design, 9(4), 1966-1978, (2009)
163. Yu Ma, Yan-Qing Wen, Jian-Yong Zhang, En-Qing Gao and CaiMing Liu, Dalton Trans., 39, 1846-1854, 2010.).
164. Masayuki Nara, Hajem Torri and Mitsuo Tasumi, J. Phs.Chem., 100, 51, (1996).
165. V. Zelenak, Z. Vargova, K. Gyoryova, Spectrochemica Acta, 66, 262272, (2007).
166. Li-Fang Song, Chun-Hong Jiang, Cheng-Li Jiao, Jian Zhang, Li-Xian Sun, Fen Xu, Wan-Sheng You, Zhong-Gang Wang and Ji-Jun Zhao, Crystal Growth\& Design. Vol. 10, No. 12, (2010).
167. Guang-Xiang Liu, Kun Zhu, Huan-Min Xu, Sadafumi Nishihara, Rong-Yi Huang and Xiao-Ming Ren, Cryst. Eng.Comm., 12, 1175-1185, (2010).
168. Robert M. Silverstein, Spectrometric identification of organic compounds $7^{\text {th }}$ edition, John Willey and Son, inc., p 174, (2005).
169. Mikhail A. Kiskin, Grygory G. Aleksandrov, Artem S. Bogomyakov, Vladimir M. Novotortsev and Igor L. Eremenko, Inorg. Chem. Comm., 11, 1015-1018, (2008).
170. Feng-Mei Nie, Zhi-Yun Dong, Fei Lu, and Guo-Xing Li, J. Coord. Chem., 63, 24, 4259-4270, (2010).
171.

Yu Pang, Dan Tian, Yuhui Luo, Xiao Fei Zhu and Hong Zhang, J. Coord.Chem., No. 11, 2002-2009, (2011).
172. Qi Ma, Miaoli Zhu, Liping LuSisi Feng and Juanzhi Yan, Inorg. Chem. Acta, 370, 102-107, (2011).
173. Sandip Mukherjee, Bappaditya Gole, Yo Song and Partha Sarathi Mukherjee, Inorg .Chem., 50, 3621-3631, (2011).
174.
N. Raman, S. Esther, C. Thangaraj, J. Chem. Soc, 116(4),209, (2004).
175. Krzysztof Drabent, Zbigniew Ciunik and Andrzej Ozarowski, Inorg. Chem, 47, 3358-3365, (2008).
176. Oindrila Sengupta, Bappaditya Gole, Sandip Mukherjee and Partha Xiao Sarathi Mukherjee, Dalton Trans., 39, 7451-7465, (2010).
177. -Ning Cheng, Wei Xue and Xiao-Ming Chen, Eur. J. Inorg. Chem. 38503855, (2010).
178. K. Nakamato Infrared spectra of inorganic and coordination compounds, 4th edn. Wiley, New York, (1996).
179. N. Chkaku, K. Nakamato, Inorg. Chem, 10, 768, (1971)
180. Choong-Sun Lim, Jennifer K. Schnobrich, Antek G. Wong-Foy and Adam J. Matzger, Inorg. Chem., 49, 5271-5275, (2010).
181.

Dong-Yu Lv, Zhu-Qing Gao, Jin-Zhong Gu, Jian-Zhao Liu and Wei Dou, Transition Met Chem., 36, 275-281, (2011).
182. E. Hamed, M. Attia and K. Bassiouny, Bioinorg. Chem. and Appli., 10:1155, 979680, (2009).
183.
M. A. Mesubi, (An infrared study of zinc, cadmium, and lead salts of some fatty acids), J. Molecular Structure, vol. 81, no. 1-2, pp. 61-71, (1982).
184.
A. Escuer, M. A. Goher, F. A. Mautner, R. Vicente, Inorg. Chem., 39, 2107, (2000).
185. Theocharis C. Stamatatos, Giannis S. Papaefstathiou, Leonard R. MacGillivray, Albert Escuer, Ramon Vicente, Eliseo Ruiz and Spyros P. Perlepes, Inorg. Chem., 46, 21, (2007).
186. En-Cui Yang, Wen Feng, Jing-Yi Wang and Xiao-Jun Zhao, Inorg. Chem. Acta, 363, 308-316, (2010).
187. Mohamad Jaber Al-Jeboori, Ahlam Jamil Abdul-Ghani and Ahmed Jassim Al-Karawi, Transition Met. Chem., 33, 925-930, (2008).
188. S. Chandra, M. Pundir, Spectrochem Acta, Part A, 69, 1, (2007).
189. Mohamad Jaber Al-Jeboori, Amar H. Al-Dujaili and Alyaa E. AlJanabi, Transition Met. Chem., 34, 109-113, (2009).
190. A. Z. El-Sonbati, A. S. Al-Shihri and A. A. El-Bindary, Spectrochemica Acta Part A., 60, 1763, (2004).
191. Kemal Sancak, Mustafa Er, Yasemin Unver, Melike Yildirim and Ismail Degirmencioglu, Transition Metal Chemistry, 32, 16-22, (2007).
192. Ahlam Jamil Abdul-Ghani, Mohamad Jaber Al-Jeboori, Ahmed Jasim M. Al-Karawi, J. Coord. Chem., Vol. 62, No. 16, 2736-2744, (2009).
193. Modi CK Spectrochim Acta Part A., 71, 1741, (2009) .
194. Jin Suk Kwag, Hanyoung Park, Alan J. Lough and Ju Chang Kim, Bull. Korean Chem. Soc. Vol. 31, No. 1, (2010).
195. Mohamad Jaber Al-Jeboori, Hassan Ahmed Hassan, Worood A. Jaafer Al-Sa’idy, Transition Met Chem, 34, 593-598, (2009).
196. Himanshu Arora, Francesc Lloret and Rabindranath Mukherjee, Eur. J. Inorg. Chem., 3317-3325, (2009).
197. Qing Chen, Ming-Hua Zeng, Lian-Qiang Wei and Mohamedally Kurmoo, Chem. Mater, 22, 4328-4334, (2010).
198.
H. C. Zhang, L. N. Zakharov, S. K. Das, M. M. Hetu, A. L. Rheingold, Inorg.Chim. Acta, 360, 1691-1701, (2007).
199. O. Kahn, Adv. Inorg. Chem., 43, 179-259, (1995) .
200. V. Tangoluis, G. Psomas, C. Dendrinou-Samara, C. P. Raptopoulou, A. Terzis, D. P. Kessissoglou, Inorg. Chem., 35, (1996)
201. M. Kato, Y. Muto, Coord. Chem. Rev., 92, 45-83, (1988).
202. Z. Guo, G. Li, L. Zhou, S. Su, Y. Li, S. Dang, H. Zhang., Inorg. Chem., 48, 8069, (2009).
203.

Pablo Albores and Eva Rentschler, Inorg. Chem., 49, 8953-8961, (2010).
204.
T. Cauchy, E. Ruiz, S. Alvarez, J. Am. chem. Soc., 128, 15722, (2006).
205. A. Tsohos, S. Dionyssopoulou, C. P. Raptopoulou, A. Terzis, E. G. Bakalbassis, S. P. Perlepes, Angew. Chem. Int. Ed.,38, 983-985, (1999).
206. C. V. Wullen, J. Phys. Chem., 113, 1535-1540, (2009).
207. T. Tohyama, T. Saito, M. Mizumaki, A. Agui, Y. Shimakawa, Inorg. Chem., 49, 2492-2495, (2010).
208. S. H. Zhang, Y. Song, H. Liang, M. H. Zeng, Cryst. Eng. Comm., 11, 865-872, (2009).
209. S. H. Zhang, Y. L. Zhou, X. J. Sun, L. Q. Wei, M. H. Zeng, H. Liang, J. Solid State Chem., 182, 2991-2996, (2009).
210. Gordon A. Bain and John F. Berry, J. Chem.Education, vol. 85, No.4, (2008).
211. D. Martini, M. Pellei, C. Pettinari, B. W. Skelton, A. H. White, Inorg. Chem. Acta, 72, 333, (2002).
212. W. Lewandowski, M. Kalinowska, H. Lewandowska, Inorg. Chem. Acta, 358, 2155, (2005).
213. D. Czakis-Sulikowska, A. Czylkowska, J. Therm. Anal. Cal. 71, 395, (2003).
214. G.B. Deacon, R. J. Philip, Coord. Chem. Rev., 33, 227, (1980).
215. W. Lewandowski, M. Kalinowska, H. Lewandowska, J. Inorg. Biochem., 99, 1407, (2005).
216. M. W. Wong, M. J. Frisch, K. B. Wiberg, J. Am. Chem. Soc., 113, 4776, (1991).
217. M. W. Wong, K. B. Wiberg, M. J. Frisch, J.
218. Chem. Phys., 95, 8991, (1991).
219. W. J. Geary, Coord Chem. Rev., 7, 81, (1971)
220. A P. Mishra, R. K. Mishra, S.P. Shrivastava, J. of the Serbian Chem. Soc., 74, 523-535, (2009).
221. P. Børsting and P.J. Steel, Eur. J. Inorg. Chem., 376-380, (2004).

[^0]: (\div) sparingly, (+) soluble, (-) insoluble

[^1]: (Calculated)

