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Abstract

In this paper, a class of E-differentiable multiobjective programming problems with
both inequality and equality constraints is considered. For E-differentiable functions,
the concepts of V -E-pseudo-invexity, strictly V -E-pseudo-invexity and V -E-quasi-
invexity are introduced. Based upon these notions of generalized V -E-invex func-
tions, the sufficiency of the so-called E-Karush-Kuhn-Tucker optimality conditions
are established for the considered E-differentiable vector optimization problems with
both inequality and equality constraints. Furthermore, the so-called vector Mond-
Weir E-dual problem is defined for the considered E-differentiable multiobjective
programming problem and several E-duality theorems in the sense of Mond-Weir are
derived also under appropriate generalized V -E-invexity assumptions.

Key words: V -E-invex function, Generalized V -E-invexity, E-differentiable func-
tion, E-optimality conditions, E-Mond-Weir duality.

AMS Subject Classification: 90C26, 90C30, 90C46, 26B25

1 Introduction

Convexity notion plays an important role to derive the optimality conditions and duality
results for various scalar and vector optimization problems. However, many operational
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86 N. Abdulaleem

research problems that are modeled by various optimization problems are not convex.
During the past decades, therefore, generalized convex functions received much attention.
Various classes of differentiable and nondifferentiable generalized convex functions have
appeared in literature, not only for scalar optimization problems, but also for multiobjec-
tive programming problems. Optimality conditions and duality theorems for differentiable
and nondifferentiable optimization problems have been studied extensively in the litera-
ture (see, for example, [1], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[18], [19], [21], [22], [23], [24], [25], [26], and others).

One of such important generalizations of the convexity notion is the concept of invexity
introduced by Hanson [15] for scalar optimization problems. Jeyakumar and Mond [17] in-
troduced a new class of nonconvex differentiable vector-valued functions, namely V -invex
functions, in order to resolve the difficulty of demanding the same function η for objec-
tive and constraint functions in extremum problems dealing with the concept of invexity
introduced by Hanson [15] for scalar optimization problems. They established sufficient
optimality criteria and duality results in the multiobjective static case for weak Pareto
solutions under V -invexity hypotheses. Megahed et al. [20] presented the concept of an
E-differentiable convex function which transforms a (not necessarily) differentiable convex
function to a differentiable function based on the effect of an operator E : Rn → Rn.
Antczak and Abdulaleem [5] proved the so-called E-optimality conditions and Wolfe E-
duality for E-differentiable vector optimization problems with both inequality and equality
constraints. Abdulaleem [1] introduced a new concept of generalized convexity as a gen-
eralization of the notion of E-differentiable E-convexity. Namely, he defined the concept
of E-differentiable E-invexity in the case of (not necessarily) differentiable vector opti-
mization problems with E-differentiable functions. Recently, Abdulaleem [2] introduced a
new concept of generalized convexity as a generalization of the E-differentiable E-invexity
notion and the concept of V -invexity. Namely, he defined the concept of E-differentiable
V -E-invexity in the case of (not necessarily) differentiable vector optimization problems
with E-differentiable functions.

In this paper, a new class of nonconvex E-differentiable vector optimization problems
with both inequality and equality constraints is considered in which the involved func-
tions are generalized V -E-invex. Therefore, the concepts of V -E-pseudo-invex, strictly
V -E-pseudo-invex and V -E-quasi-invex functions for E-differentiable vector optimization
problems are introduced. Further, the sufficiency of the so-called E-Karush-Kuhn-Tucker
optimality conditions are derived for the considered E-differentiable vector optimization
problem under appropriate generalized V -E-invexity hypotheses. Furthermore, the so-
called vector E-dual problems in the sense of Mond-Weir is defined for E-differentiable
vector dual problems. Then, several Mond-Weir E-duality results are established between
the considered E-differentiable multicriteria optimization problem and its Mond-Weir vec-
tor dual problem also under appropriate generalized V -E-invexity hypotheses.
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2 Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+ be its nonnegative orthant. The

following convention for equalities and inequalities will be used in the paper. For any
vectors x = (x1, x2, ..., xn)

T
and y = (y1, y2, ..., yn)

T
in Rn, we define:

(i) x = y if and only if xi = yi for all i = 1, 2, · · · , n;

(ii) x > y if and only if xi > yi for all i = 1, 2, · · · , n;

(iii) x = y if and only if xi = yi for all i = 1, 2, · · · , n;

(iv) x ≥ y if and only if xi = yi for all i = 1, 2, · · · , n but x 6= y;

(v) x ≯ y is the negation of x > y.

Definition 2.1 [1] Let E : Rn → Rn. A set M ⊆ Rn is said to be an E-invex set if and
only if there exists a vector-valued function η : M ×M → Rn such that the relation

E (u) + λη (E (x) , E (u)) ∈M

holds for all x, u ∈M and any λ ∈ [0, 1].

Let M be a nonempty E-invex subset of Rn.

Definition 2.2 [20] Let E : Rn → Rn and f : M → R be a (not necessarily) differentiable
function at a given point u ∈ M . It is said that f is an E-differentiable function at u if
and only if f ◦ E is a differentiable function at u (in the usual sense), that is,

(f ◦ E) (x) = (f ◦ E) (u) +∇ (f ◦ E) (u) (x− u) + θ (u, x− u) ‖x− u‖ , (2.1)

where θ (u, x− u)→ 0 as x→ u.

Definition 2.3 [2] Let E : Rn → Rn and f : M → Rk be an E-differentiable function on
M . It is said that f is a V -E-invex function (a strictly V -E-invex function) with respect
to η at u ∈M on M if, there exist functions η : M×M → Rn and αi : M×M → R+\{0},
i = 1, 2, ..., k, such that, for each x ∈M (E(x) 6= E(u)), the inequalities

fi(E(x))− fi(E(u)) = αi(E(x), E(u))∇fi(E(u))η(E(x), E(u)) (>) (2.2)

hold. If inequalities (2.2) are fulfilled for any u ∈M (E(x) 6= E(u)), then f is V -E-invex
(strictly V -E-invex) with respect to η on M . Each function fi, i = 1, ..., k, for which (2.2)
is fulfilled is said to be αi-E-invex (strictly αi-E-invex) with respect to η at u on M .

Remark 2.4 Note that the Definition 2.3 generalizes and extends several generalized con-
vexity notions, previously introduced in the literature. Indeed, there are the following special
cases:
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a) In the case when αi(x, u) = 1, i = 1, ..., k, then the definition of a V -E-invex function
reduces to the definition of an E-invex function introduced by Abdulaleem [1].

b) If f is differentiable and E(x) ≡ x (E is an identity map), then the definition of
a V -E-invex function reduces to the definition of a V -invex function introduced by
Jeyakumar and Mond [17].

c) If f is differentiable, E(x) ≡ x (E is an identity map) and αi(x, u) = 1, k = 1, then
the definition of a V -E-invex function reduces to the definition of an invex function
introduced by Hanson [13].

d) If η : Rn × Rn → Rn is defined by η(x, u) = x − u and αi(x, u) = 1, i = 1, ..., k,
then we obtain the definition of an E-differentiable E-convex vector-valued function
introduced by Megahed et al. [20].

e) If f is differentiable, E(x) = x and η(x, u) = x − u and αi(x, u) = 1, i = 1, ..., k,
then the definition of a V -E-invex function reduces to the definition of a differentiable
convex vector-valued function.

f) If f is a differentiable scalar function, η(x, u) = x − u and αi(x, u) = 1, then we
obtain the definition of a differentiable E-convex function introduced by Youness [26].

Now, we introduce various classes of generalized E-differentiable V -E-invex functions.

Definition 2.5 Let E : Rn → Rn and f : M → Rk be an E-differentiable function on
M . It is said that f is a V -E-pseudo-invex function with respect to η at u ∈M on M if,
there exist functions η : M ×M → Rn and αi : M ×M → R+ \ {0}, i = 1, 2, ..., k, such
that, for each x ∈M, the relations

k∑
i=1

αi(E(x), E(u))fi(E(x)) <

k∑
i=1

αi(E(x), E(u))fi(E(u))

⇒
k∑

i=1

∇fi(E(u))η(E(x), E(u)) < 0 (2.3)

hold. If (2.3) are fulfilled for any u ∈ M , then f is V -E-pseudo-invex with respect to η
on M . Each function fi, i = 1, ..., k, satisfying (2.3) is said to be αi-E-pseudo-invex with
respect to η at u on M .

Definition 2.6 Let E : Rn → Rn and f : M → Rk be an E-differentiable function on M .
It is said that f is a strictly V -E-pseudo-invex function with respect to η at u ∈M on M
if, there exist functions η : M ×M → Rn and αi : M ×M → R+ \ {0}, i = 1, 2, ..., k, such
that, for each x ∈M, E(x) 6= E(u), the relations

k∑
i=1

αi(E(x), E(u))fi(E(x)) 5
k∑

i=1

αi(E(x), E(u))fi(E(u))
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⇒
k∑

i=1

∇fi(E(u))η(E(x), E(u)) < 0 (2.4)

hold. If (2.4) are fulfilled for any u ∈ M, E(x) 6= E(u), then f is strictly V -E-pseudo-
invex with respect to η on M . Each function fi, i = 1, ..., k, satisfying (2.4) is said to be
strictly αi-E-pseudo-invex with respect to η at u on M .

Note that each strictly V -E-pseudo-invex function is V -E-pseudo-invex and each E-
differentiable E-pseudo-invex function is V -E-pseudo-invex. Also, each V -pseudo-invex
function is V -E-invex and each V -E-invex function is V -E-pseudo-invex, but the converse
is not true.

Now, we present an example of such a V -E-invex function which is not an E-invex
function with respect to η.

Example 2.7 Let f : R→ R2 be defined by f(x) = (2e
3
√
x, 4e

3
√
x) and E : R→ R be an

operator defined by E(x) = x3 and η be defined by

η(E(x), E(u)) =

{
−1
4 if x < u,

eu − ex if x = u.

where αi(E(x), E(u)) : R×R→ R+ \ {0} defined by

αi(E(x), E(u)) =

{
4eu−4ex

eu if x < u,
1
eu if x = u.

Then f is V -E-invex on R, but f is not E-invex with respect to η defined above as can be
seen by taking x = ln 4, u = ln 10, since the inequalities

fi(E(x))− fi(E(u)) < ∇fi(E(u))η(E(x), E(u))

hold. Hence, by the definition of an E-invex function [1], it follows that f is not E-invex
with respect to η given above.

Definition 2.8 Let E : Rn → Rn and f : M → Rk be an E-differentiable function on M .
It is said that f is a V -E-quasi-invex function with respect to η at u ∈ M on M if there
exist functions η : M ×M → Rn and αi : M ×M → R+ \ {0}, i = 1, 2, ..., k, such that for
each x ∈M, the relations

k∑
i=1

αi(E(x), E(u))fi(E(x)) 5
k∑

i=1

αi(E(x), E(u))fi(E(u))

⇒
k∑

i=1

∇fi(E(u))η(E(x), E(u)) 5 0 (2.5)

hold. If (2.5) are fulfilled for any u ∈M , then f is V -E-quasi-invex on M . Each function
fi, i = 1, ..., k, satisfying (2.5) is said to be αi-E-quasi-invex with respect to η at u on M .
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Note that every E-differentiable V -E-invex is V -E-quasi-invex and every V -E-pseudo-
invex function is V -E-quasi-invex.

Now, we present an example of such an E-differentiable V -E-pseudo-invex function
which is not V -E-invex or E-invex.

Example 2.9 Let f : R → R2 be defined by f(x) = (2e
3
√
x, e

3
√
x), E : R → R be an

operator defined by E(x) = x3 and η : R×R→ R be defined by

η(x, u) =

{
1

( 3
√
x− 3
√
u)e

3√u
if x > u,

−1 if x 5 u.

where α : R×R→ R+ \ {0} defined by

αi(x, u) =

{
3
√
x− 3
√
u if x > u,

2 if x 5 u.

Let x 5 u. Then, we have

k∑
i=1

αi(E(x), E(u))fi(E (x)) = 6ex 5 6eu =

k∑
i=1

αi(E(x), E(u))fi(E (u)).

Moreover, we have
∑k

i=1∇fi(E (u))η (E (x) , E (u)) = −3eu < 0. Let x > u. Then, we

have
∑k

i=1∇fi(E (u))η (E (x) , E (u)) = 3
x−u > 0. Moreover, we have

k∑
i=1

αi(E(x), E(u))fi(E (x)) = 3(x− u)ex > 3(x− u)eu =

k∑
i=1

αi(E(x), E(u))fi(E (u)).

Therefore, by Definition 2.5, f is an E-differentiable V -E-pseudo-invex function on R.
However, it is not V -E-invex on R with respect to η and α given above. Indeed, if we set
x = ln(1.5), u = ln(1), then we have

fi(E(x))− fi(E(u)) < αi(E(x), E(u))∇fi(E(u))η(E(x), E(u)).

Hence, by Definition 2.3, it follows that f is not V -E-invex with respect to η and α given
above (see Abdulaleem [2]). Also, f is not E-invex on R with respect to η given above.
Indeed, if we set x = ln(1.5), u = ln(1), then we have

f(E(x))− f(E(u)) < ∇f(E(u))η(E(x), E(u)).

Hence, by the definition of an E-invex function (see Abdulaleem [1]), it follows that f is
not E-invex with respect to η given above.
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3 E-differentiable multiobjective programming

In this paper, we consider the following (not necessarily differentiable) multiobjective
programming problem (MOP) with both inequality and equality constraints:

minimize f(x) = (f1 (x) , ..., fq (x))

subject to gj(x) 5 0, j ∈ J = {1, ..., p} ,

hk(x) = 0, k ∈ K = {1, ..., s} ,

x ∈ Rn,

(MOP)

where fi : Rn → R, i ∈ I = {1, ..., q}, gj : Rn → R, j ∈ J , hk : Rn → R, k ∈ K,
are real-valued functions defined on Rn. We shall write g := (g1, ..., gp) : Rn → Rp and
h := (h1, ..., hs) : Rn → Rs for convenience. Let

Ω := {x ∈ Rn : gj(x) 5 0, j ∈ J , hk(x) = 0, k ∈ K}

be the set of all feasible solutions of (MOP). Further, we denote by J (x) the set of
inequality constraint indices that are active at a feasible solution x, that is, J (x) =
{j ∈ J : gj(x) = 0} .

Definition 3.1 A feasible point x is said to be a weak Pareto (weakly efficient) solution
of (MOP) if and only if there is no other feasible solution x such that

f(x) < f(x).

Definition 3.2 A feasible point x is said to be a Pareto (efficient) solution of (MOP) if
and only if there is no other feasible solution x such that

f(x) ≤ f(x).

Let E : Rn → Rn be a given one-to-one and onto operator. Now, for the considered
E-differentiable multiobjective programming problem (MOP), we define its associated
differentiable vector optimization problem as follows:

minimize f(E(x)) = (f1(E(x)), ..., fq(E(x)))

subject to gj(E(x)) 5 0, j ∈ J = {1, ..., p} ,

hk(E(x)) = 0, k ∈ K = {1, ..., s} ,

x ∈ Rn.

(VPE)

Let
ΩE := {x ∈ Rn : gj(E(x)) 5 0, j ∈ J , hk(E(x)) = 0, k ∈ K}

be the set of all feasible solutions of (VPE).



92 N. Abdulaleem

Definition 3.3 A feasible point E(x) is said to be a weak E-Pareto (weakly E-efficient)
solution of (MOP) if and only if there is no other feasible solution E(x) such that

f(E(x)) < f(E(x)).

Definition 3.4 A feasible point E(x) is said to be an E-Pareto (E-efficient) solution of
(MOP) if and only if there is no other feasible solution E(x) such that

f(E(x)) ≤ f(E(x)).

Lemma 3.5 [5] Let E : Rn → Rn be a one-to-one and onto. Then E (ΩE) = Ω.

Lemma 3.6 [5] Let x ∈ Ω be a weak Pareto solution (Pareto solution) of the considered
multiobjective programming problem (MOP). Then, there exists z ∈ ΩE such that x = E (z)
and z is a weak Pareto (Pareto) solution of the E-vector optimization problem (VPE).

Lemma 3.7 [5] Let z ∈ ΩE be a weak Pareto (Pareto) solution of the E-vector opti-
mization problem (VPE). Then E (z) is a weak Pareto solution (Pareto solution) of the
considered multiobjective programming problem (MOP).

Theorem 3.8 [1] (E-Karush-Kuhn-Tucker necessary optimality conditions). Let x ∈ ΩE

be a weak Pareto solution of the problem (VPE) (and, thus, E (x) be a weak E-Pareto
solution of the problem (MOP)). Further, let f , g, h be E-differentiable at x and the E-
Guignard constraint qualification [1] be satisfied at x. Then there exist Lagrange multipliers
ξ ∈ Rq, ν ∈ Rp, µ ∈ Rs such that

q∑
i=1

ξi∇ (fi ◦ E) (x) +

p∑
j=1

νj∇ (gj ◦ E) (x) +

s∑
k=1

µk∇ (hk ◦ E) (x) = 0, (3.1)

νj (gj ◦ E) (x) = 0, j ∈ J (E (x)) , (3.2)

ξ ≥ 0, ν = 0. (3.3)

Definition 3.9
(
x, ξ, ν, µ

)
∈ ΩE × Rq × Rp × Rs is said to be a Karush-Kuhn-Tucker

point for the considered constrained E-vector optimization problem (VPE) if the Karush-
Kuhn-Tucker necessary optimality conditions (3.1)-(3.3) are satisfied at x with Lagrange
multiplier ξ, ν, µ.

Now, we prove the sufficient optimality conditions for a feasible solution to be a weak
Pareto solution (a Pareto solution) in the considered multiobjective programming prob-
lem (MOP) under the concepts of generalized V -E-invexity hypotheses, that is, under
assumption that constituting it are E-differentiable generalized V -E-invex at a feasible
point satisfying the E-Karush-Kuhn-Tucker necessary optimality conditions (3.1)-(3.3).
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Theorem 3.10 Let
(
x, ξ, ν, µ

)
∈ ΩE×Rq×Rp×Rs be a Karush-Kuhn-Tucker point of the

constrained E-vector optimization problem (VPE). Furthermore, assume that ξifi(E(·)),
i ∈ I, is αi-E-pseudo-invex with respect to η at x on ΩE, νjgj(E(·)), j ∈ J (E (x)), is βj-
E-quasi-invex with respect to η at x on ΩE, µkhk(E(·)), k = 1, ..., s, is γk-E-quasi-invex
with respect to η at x on ΩE . Then x is a weak Pareto solution of the problem (VPE) and,
thus, E (x) is a weak E-Pareto solution of the problem (MOP).

Proof: By assumption,
(
x, ξ, ν, µ

)
∈ ΩE × Rq × Rp × Rs is a Karush-Kuhn-Tucker point

in the considered constrained E-vector optimization problem (VPE). Then, by Definition
3.9, the Karush-Kuhn-Tucker necessary optimality conditions (3.1)-(3.3) are satisfied at
x with Lagrange multipliers ξ ∈ Rq, ν ∈ Rp and µ ∈ Rs. We proceed by contradiction.
Suppose, contrary to the result, that x is not a weak Pareto solution in (VPE). Hence, by
Definition 3.3, there exists E(x′) ∈ Ω such that

fi(E(x′)) < fi (E (x)) , i ∈ I. (3.4)

Using αi(E(x′), E(x)) > 0, i ∈ I, we get

q∑
i=1

αi(E(x′), E(x))ξifi(E(x′)) <

q∑
i=1

αi(E(x′), E(x))ξifi (E (x)) . (3.5)

Since ξf(E(·)), is V -E-pseudo-invex with respect to η at x on ΩE , by Definition 2.5, the
inequality

q∑
i=1

ξi∇fi(E (x))η (E (x′) , E (x)) < 0 (3.6)

holds. Since E(x′) ∈ Ω, therefore, the E-Karush-Kuhn-Tucker necessary optimality con-
ditions (3.2) and (3.3) imply

gj(E (x′))− gj(E (x)) 5 0, j ∈ J (E (x)) .

Using βj(E(x′), E(x)) > 0, j ∈ J(E(x)), we get

p∑
j=1

βj(E(x′), E(x))νjgj(E (x′))−
p∑

j=1

βj(E(x′), E(x))νjgj(E (x)) 5 0.

Since νjgj(E(·)), j ∈ J (E (x)) , is V -E-quasi-invex with respect to η at x on ΩE , by
Definition 2.8, we get

p∑
j=1

νj∇gj (E (x)) η (E (x′) , E (x)) 5 0. (3.7)

From x′ ∈ ΩE , x ∈ ΩE , it follows that

hk(E (x′))− hk(E (x)) = 0. (3.8)



94 N. Abdulaleem

Using γk(E(x′), E(x)) > 0, k = 1, ..., s, we obtain

s∑
k=1

γk(E(x′), E(x))µkhk(E (x′))−
s∑

k=1

γk(E(x′), E(x))µkhk(E (x)) = 0. (3.9)

Since µkhk(E(·)), k = 1, ..., s, is V -E-quasi-invex with respect to η at x on ΩE , by Defini-
tion 2.8, we have

s∑
k=1

µk∇hk (E (x)) η (E (x′) , E (x)) 5 0. (3.10)

Combining (3.6), (3.7) and (3.10), we get that the following inequality[ q∑
i=1

ξi∇fi(E (x)) +

p∑
j=1

νj∇gj (E (x)) +

s∑
k=1

µk∇hk (E (x))

]
η (E (x′) , E (x)) < 0,

holds, which is a contradiction to the E-Karush-Kuhn-Tucker necessary optimality condi-
tion (3.1). By assumption, E : Rn → Rn is an one-to-one and onto operator. Since x is a
weak Pareto solution of the problem (VPE), by Lemma 3.7, E (x) is an E-Pareto solution
of the problem (MOP). Thus, the proof of this theorem is completed. 2

Theorem 3.11 Let
(
x, ξ, ν, µ

)
∈ ΩE×Rq×Rp×Rs be a Karush-Kuhn-Tucker point of the

constrained E-vector optimization problem (VPE). Furthermore, assume that ξifi(E(·)),
i ∈ I, is strictly αi-E-pseudo-invex with respect to η at x on ΩE, νjgj(E(·)), j ∈ J (E (x)),
is βj-E-quasi-invex with respect to η at x on ΩE, µkhk(E(·)), k = 1, ..., s, is γk-E-quasi-
invex with respect to η at x on ΩE . Then x is a Pareto solution of the problem (VPE) and,
thus, E (x) is an E-Pareto solution of the original multiobjective programming problem
(MOP).

Proof: By assumption,
(
x, ξ, ν, µ

)
∈ ΩE × Rq × Rp × Rs is a Karush-Kuhn-Tucker point

in the considered constrained E-vector optimization problem (VPE). Then, by Definition
3.9, the Karush-Kuhn-Tucker necessary optimality conditions (3.1)-(3.3) are satisfied at
x with Lagrange multipliers ξ ∈ Rq, ν ∈ Rp and µ ∈ Rs. We proceed by contradiction.
Suppose, contrary to the result, that x is not a Pareto solution of problem (VPE). Hence,
by Definition 3.4, there exists E(x′) ∈ Ω such that

fi(E(x′)) ≤ fi (E (x)) , i ∈ I. (3.11)

Using αi(E(x′), E(x)) > 0, i ∈ I, we get

q∑
i=1

αi(E(x′), E(x))ξifi(E(x′)) 5
q∑

i=1

αi(E(x′), E(x))ξifi (E (x)) . (3.12)

Since ξf(E(·)) is strictly V -E-pseudo-invex with respect to η at x on ΩE , by Definition
2.6, the inequality

q∑
i=1

ξi∇fi(E (x))η (E (x′) , E (x)) < 0 (3.13)
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holds. Since νjgj(E(·)), j ∈ J (E (x)) , µkhk(E(·)), k = 1, ..., s, are V -E-quasi-invex with
respect to η at x on ΩE , by Definition 2.8, the inequalities

p∑
j=1

νj∇gj (E (x)) η (E (x′) , E (x)) 5 0, (3.14)

s∑
k=1

µk∇hk (E (x)) η (E (x′) , E (x)) 5 0 (3.15)

hold, respectively. Combining (3.13), (3.14) and (3.15), we get that the following inequality[ q∑
i=1

ξi∇fi(E (x)) +

p∑
j=1

νj∇gj (E (x)) +

s∑
k=1

µk∇hk (E (x))

]
η (E (x′) , E (x)) < 0

holds, which is a contradiction to the E-Karush-Kuhn-Tucker necessary optimality condi-
tion (3.1). By assumption, E : Rn → Rn is an one-to-one and onto operator. Since x is
a Pareto solution of the problem (VPE), by Lemma 3.7, E (x) is an E-Pareto solution of
the problem (MOP). Thus, the proof of this theorem is completed. 2

Example 3.12 Consider the following nondifferentiable vector optimization problem

f(x) = (f1(x), f2(x)) =
(

3
√
x1e
− 3
√
x1 , 3
√
x2e
− 3
√
8x2

)
→ V - min

s.t. g1(x) = 1− e− 3
√
8x1 5 0,

g2(x) = 1− e− 3
√
8x2 5 0.

(MOP1)

Note that the set of all feasible solutions of the considered vector optimization problem
(MOP1) is Ω = {(x1, x2) ∈ R2 : 1−e− 3

√
8x1 5 0 ∧ 1−e− 3

√
8x2 5 0}. Further, note that the

functions constituting (MOP1) are nondifferentiable at (0, 0). Let E : R2 → R2 be an one-
to-one and onto mapping defined as follows E (x1, x2) =

(
x31, x

3
2

)
. Now, for the considered

multiobjective programming problem (MOP1), we define its associated constrained E-vector
optimization problem (VPE1) as follows

f(E(x)) = (f1(E(x)), f2(E(x))) =
(
x1e
−x1 , x2e

−2x2
)
→ V - min

s.t. g1(E(x)) = 1− e−2x1 5 0,

g2(E(x)) = 1− e−2x2 5 0.

(VPE1)

Note that the set of all feasible solutions of the considered E-vector optimization problem
(VPE1) is ΩE = {(x1, x2) ∈ R2 : x1 = 0 ∧ x2 = 0} and x = (0, 0) is a feasible solution
of the problem (VPE1). Let η be defined by η(E(x), E(u)) = (−x1ex1 ,−x2 − 1) and,
moreover,
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α1(E(x), E(u)) =

{
ex1+u1 if x 5 u,

0 if x > u.
, α2(E(x), E(u)) =

{
e2x2+2u2 if x 5 u,

0 if x > u.
,

β1(E(x), E(u)) =

{
e−2x1 if x = u,

0 if x < u.
, β2(E(x), E(u)) =

{
e−2x2 if x = u,

0 if x < u.
.

Further, note that all functions constituting the considered vector optimization problem
(MOP1) are E-differentiable at (0, 0). Then, by Definition 2.5, it can be shown that the
objective function f is V -E-pseudo-invex at x on ΩE. Moreover, by Definition 2.8, it can
be shown that the constraint function g1, g2 are V -E-quasi-invex at x on ΩE. Thus, all
hypotheses of Theorem 3.10 are fulfilled and, therefore, we conclude that x = (0, 0) is a
weak Pareto solution of the E-vector optimization problem (VPE1) and, thus, E(x) is a
weak E-Pareto solution of the considered multiobjective programming problem (MOP1).
Further, note that the functions constituting (VPE1) are not E-invex at x on ΩE (see,
Abdulaleem [1]). Therefore, it is not possible to prove that x is a weak E-Pareto solution
of (MOP1) using the sufficient conditions under E-invexity hypotheses [1].

4 Mond-Weir E-duality

In this section, for the considered E-differentiable vector optimization problem (MOP), we
give the definition of its Mond-Weir vector E-dual problem (MWVDE). Then, we prove
several E-duality results between vector optimization problems (MOP) and (MWVDE)
under appropriate generalized V -E-invexity hypotheses. Let E : Rn → Rn be a given
one-to-one and onto operator. We define the following vector dual problem in the sense of
Mond-Weir related for the differentiable multicriteria E-optimization problem (VPE) as
follows:

(f ◦ E)(y) = (f1(E(y)), ..., fq(E(y)))→ V −max

s.t.
∑q

i=1 ξi∇ (fi ◦ E) (y) +
∑p

j=1 νj∇ (gj ◦ E) (y) +
∑s

k=1 µk∇ (hk ◦ E) (y) = 0,∑p
j=1 νj (gj ◦ E) (y) +

∑s
k=1 µk (hk ◦ E) (y) = 0, (MWVDE)

ξ ∈ Rq, ξ ≥ 0 , ν ∈ Rp, ν = 0, µ ∈ Rs,

where all functions are defined in the similar way as for the considered E-vector optimiza-
tion problem (VPE). Further, let

ΓE =

{
(y, ξ, ν, µ) ∈ Rn ×Rq ×Rp ×Rs :∑q

i=1 ξi∇ (fi ◦ E) (y) +
∑p

j=1 νj∇(gj ◦ E)(y) +
∑s

k=1 µk∇(hk ◦ E)(y) = 0,∑p
j=1 νj (gj ◦ E) (y) +

∑s
k=1 µk (hk ◦ E) (y) = 0, ξ ≥ 0, ν = 0

}
be the set of all feasible solutions of the problem (MWVDE). Let us denote, YE = {y ∈
Rn : (y, ξ, ν, µ) ∈ ΓE}.
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Theorem 4.1 (Mond-Weir weak duality between (VPE) and (MWVDE)). Let x and
(y, ξ, ν, µ) be any feasible solutions of the problems (VPE) and (MWVDE), respectively.
Further, assume that the following hypotheses are fulfilled:

a) each function ξi (fi ◦ E) (·), i = 1, ..., q, is αi-E-pseudo-invex with respect to η at y
on ΩE ∪ YE,

b) νj (gj ◦ E) (·), j = 1, ..., p, is βj-E-quasi-invex with respect to η at y on ΩE ∪ YE,

c) µk (hk ◦ E) (·), k = 1, ..., s, is γk-E-quasi-invex with respect to η at y on ΩE ∪ YE.

Then

(f ◦ E) (x) ≮ (f ◦ E) (y). (4.1)

Proof: Let x and (y, ξ, ν, µ) be any feasible solutions of the problems (VPE) and (WMVDE),
respectively. We proceed by contradiction. Suppose, contrary to the result, that the in-
equality

(f ◦ E) (x) < (f ◦ E) (y) (4.2)

holds. By the feasibility (y, ξ, ν, µ) in (WMVDE), the above inequality yields

q∑
i=1

ξi (fi ◦ E) (x) <

q∑
i=1

ξi (fi ◦ E) (y). (4.3)

Using αi(E(x), E(y)) > 0, i ∈ I, we obtain that the inequality

q∑
i=1

αi(E(x), E(y))ξi (fi ◦ E) (x) <

q∑
i=1

αi(E(x), E(y))ξi (fi ◦ E) (y) (4.4)

holds. Since the function ξ (f ◦ E) (·) is V -E-pseudo-invex at y on ΩE ∪ YE , by (4.4) and
Definition 2.5, the inequality

q∑
i=1

ξi∇ (fi ◦ E) (y)η (E (x) , E (y)) < 0 (4.5)

holds. Since νj (gj ◦ E) (·), µk (hk ◦ E) (·), are V -E-quasi-invex at y on ΩE ∪ YE , by Defi-
nition 2.8 implies that the inequalities

p∑
j=1

νj∇ (gj ◦ E) (y)η (E (x) , E (y)) 5 0, (4.6)

s∑
k=1

µk∇ (hk ◦ E) (y)η (E (x) , E (y)) 5 0 (4.7)
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hold, respectively. Combining (4.5), (4.6) and (4.7), we get that the inequality q∑
i=1

ξi∇fi(E (y)) +

p∑
j=1

νj∇gj(E (y)) +

s∑
k=1

µk∇hk(E (y))

 η (E (x) , E (y)) < 0 (4.8)

holds, contradicting the first constraint of the vector Mond-Weir E-dual problem (MWVDE).
This means that the proof of the Mond-Weir weak duality theorem between the E-vector
optimization problems (VPE) and (MWVDE) is completed. 2

Theorem 4.2 (Mond-Weir weak E-duality between (MOP) and (MWVDE)). Let E (x)
and (y, ξ, ν, µ) be a feasible solutions of the problems (MOP) and (MWVDE), respectively.
Further, assume that all hypotheses of Theorem 4.1 are fulfilled. Then, Mond-Weir weak
E-duality between (MOP) and (MWVDE) holds, that is,

(f ◦ E) (x) ≮ (f ◦ E) (y).

Proof: Let E (x) and (y, ξ, ν, µ) be any feasible solutions of the problems (MOP) and
(MWVDE), respectively. Then, by Lemma 3.5. it follows that x is any feasible solution of
(VPE). Since all hypotheses of Theorem 4.1 are fulfilled, the Mond-Weir weak E-duality
theorem between the problems (MOP) and (MWVDE) follows directly from Theorem 4.1.
2

If some stronger V -E-invexity hypotheses are imposed on the functions constituting
the considered E-differentiable multiobjective programming problem, then the following
result is true.

Theorem 4.3 (Mond-Weir weak duality between (VPE) and (MWVDE)). Let x and
(y, ξ, ν, µ) be any feasible solutions of the problems (VPE) and (MWVDE), respectively.
Further, assume that the following hypotheses are fulfilled:

a) each function ξi (fi ◦ E) (·), i = 1, ..., q, is strictly αi-E-pseudo-invex with respect to
η at y on ΩE ∪ YE,

b) νj (gj ◦ E) (·), j = 1, ..., p, is βj-E-quasi-invex with respect to η at y on ΩE ∪ YE,

c) µk (hk ◦ E) (·), k = 1, ..., s, is γk-E-quasi-invex with respect to η at y on ΩE ∪ YE.

Then
(f ◦ E) (x) � (f ◦ E) (y).

Proof: Let x and (y, ξ, ν, µ) be any feasible solutions of the problems (VPE) and (WMVDE),
respectively. We proceed by contradiction. Suppose, contrary to the result, that the in-
equality

(f ◦ E) (x) 6 (f ◦ E) (y) (4.9)
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holds. By the feasibility (y, ξ, ν, µ) in (WMVDE), the above inequality yields

q∑
i=1

ξi (fi ◦ E) (x) 5
q∑

i=1

ξi (fi ◦ E) (y). (4.10)

Using αi(E(x), E(y)) > 0, i ∈ I, we obtain

q∑
i=1

αi(E(x), E(y))ξi (fi ◦ E) (x) 5
q∑

i=1

αi(E(x), E(y))ξi (fi ◦ E) (y) (4.11)

holds. Since each function ξi (fi ◦ E) (·), i = 1, ..., q, is strictly αi-E-pseudo-invex at y on
ΩE ∪ YE , by Definition 2.6 and (4.11), the inequality

q∑
i=1

ξi∇ (fi ◦ E) (y)η (E (x) , E (y)) < 0 (4.12)

holds. Since νj (gj ◦ E) (·), j = 1, ..., p, µk (hk ◦ E) (·), k = 1, ..., p, are V -E-quasi-invex at
y on ΩE ∪ YE , by Definition 2.8 and (4.12) implies that the inequalities

p∑
j=1

νj∇ (gj ◦ E) (y)η (E (x) , E (y)) 5 0, (4.13)

s∑
k=1

µk∇ (hk ◦ E) (y)η (E (x) , E (y)) 5 0 (4.14)

hold, respectively. Combining (4.12), (4.13) and (4.14), we get that the inequality q∑
i=1

ξi∇fi(E (y)) +

p∑
j=1

νj∇gj(E (y)) +

s∑
k=1

µk∇hk(E (y))

 η (E (x) , E (y)) < 0 (4.15)

holds, contradicting the first constraint of the vector Mond-Weir E-dual problem (MWVDE).
This means that the proof of the Mond-Weir weak duality theorem between the E-vector
optimization problems (VPE) and (MWVDE) is completed. 2

Theorem 4.4 (Mond-Weir weak E-duality between (MOP) and (MWVDE)). Let E (x)
and (y, ξ, ν, µ) be any feasible solutions of the problems (MOP) and (MWVDE), respec-
tively. Further, assume that all hypotheses of Theorem 4.3 are fulfilled. Then, weak E-
duality between (MOP) and (VMVDE) holds, that is,

(f ◦ E) (x) � (f ◦ E) (y).
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Proof: Let E (x) and (y, ξ, ν, µ) be any feasible solutions of the problems (MOP) and
(MWVDE), respectively. Then, by Lemma 3.5. it follows that x is any feasible solution of
(VPE). Since all hypotheses of Theorem 4.3 are fulfilled, the Mond-Weir weak E-duality
theorem between the problems (MOP) and (MWVDE) follows directly from Theorem 4.3.
2

Theorem 4.5 (Mond-Weir strong duality between (VPE) and (MWVDE) and also Mond-
Weir strong E-duality between (MOP) and (MWVDE)). Let x ∈ ΩE be a weak Pareto
solution (a Pareto solution) of the E-vector optimization problem (VPE) (and, thus, E(x)
be a weak E-Pareto solution (an E-Pareto solution) of the E-vector optimization problem
(MOP)). Further, assume that the E-constraint qualification [1] is satisfied at x. Then,
there exist ξ ∈ Rq, ν ∈ Rp, ν = 0, µ ∈ Rs such that

(
x, ξ, ν, µ

)
is feasible for (MWVDE)

and the objective functions of (VPE) and (MWVDE) are equal at these points. If also
all hypotheses of the Mond-Weir weak duality (Theorem 4.1 (Theorem 4.3)) are satisfied,
then

(
x, ξ, ν, µ

)
is a weak efficient solution (an efficient solution) of a maximum type in

(MWVDE).
In other words, if E(x) ∈ Ω is a (weak) E-Pareto solution of the multiobjective program-
ming problem (MOP), then

(
x, ξ, ν, µ

)
is a (weak) efficient solution of a maximum type

in the vector E-dual problem (MWVDE) in the sense of Mond-Weir. This means that the
Mond-Weir strong E-duality holds between the problems (MOP) and (MWVDE).

Proof: Since x ∈ ΩE is a (weak) Pareto solution of the problem (VPE) and the E-constraint
qualification [1] is satisfied at x, by Theorem 3.8, there exist ξ ∈ Rq, ν ∈ Rp, ν = 0, µ ∈ Rs

such that the following conditions are satisfied

q∑
i=1

ξi∇ (fi ◦ E) (x) +

p∑
j=1

νj∇ (gj ◦ E) (x) +

s∑
k=1

µk∇ (hk ◦ E) (x) = 0,

νj (gj ◦ E) (x) = 0, j ∈ J (E (x)) ,

ξ ≥ 0, ν = 0.

Thus,
(
x, ξ, ν, µ

)
is a feasible solution of the problem (MWVDE). This means that the

objective functions of (VPE) and (MWVDE) are equal. If we assume that all hypotheses
of the Mond-Weir weak duality (Theorem 4.1 (Theorem 4.3)) are fulfilled,

(
x, ξ, ν, µ

)
is a

(weak) efficient solution of a maximum type for the vector E-dual problem (MWVDE) in
the sense of Mond-Weir.

Moreover, we have, by Lemma 3.5, that E (x) ∈ Ω. Since x ∈ ΩE is a weak Pareto
solution of the problem (VPE), by Lemma 3.7, it follows that E (x) is a weak E-Pareto
solution in the problem (MOP). Then, by the Mond-Weir strong duality between (VPE)
and (MWVDE), we conclude that also the Mond-Weir strong E-duality holds between
the problems (MOP) and (MWVDE). This means that if E (x) ∈ Ω is a weak E-Pareto
solution of the problem (MOP), there exist ξ ∈ Rq, ν ∈ Rp, ν = 0, µ ∈ Rs such that
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(
x, ξ, ν, µ

)
is a weakly efficient solution of a maximum type in the Mond-Weir dual problem

(MWVDE). 2

Theorem 4.6 (Mond-Weir converse duality between (VPE) and (MWVDE)). Let
(
x, ξ, ν, µ

)
be a (weakly) efficient solution of a maximum type in Mond-Weir dual problem (MWVDE)
such that x ∈ ΩE. Moreover, assume that:

a) each function ξi (fi ◦ E) (·), i = 1, ..., q, is strictly αi-E-pseudo-invex with respect to
η at x on ΩE ∪ YE,

b) νj (gj ◦ E) (·), j = 1, ..., p, is βj-E-quasi-invex with respect to η at x on ΩE ∪ YE,

c) µk (hk ◦ E) (·), k = 1, ..., s, is γk-E-quasi-invex with respect to η at x on ΩE ∪ YE.

Then x is a (weak) Pareto solution of the problem (VPE).

Proof: Let
(
x, ξ, ν, µ

)
be a (weakly) efficient solution of a maximum type in Mond-Weir

dual problem (MWVDE) such that x ∈ ΩE . By means of contradiction, we suppose that
there exists x′ ∈ ΩE such that the inequality

(f ◦ E) (x′) < (f ◦ E) (x) (4.16)

holds. By the feasibility of
(
x, ξ, ν, µ

)
in the problem (MWVDE), the above inequality

yields
q∑

i=1

ξifi(E(x′)) <

q∑
i=1

ξifi(E((x)). (4.17)

Thus,
q∑

i=1

αi(E(x′), E(x))ξifi(E(x′)) <

q∑
i=1

αi(E(x′), E(x))ξifi (E (x)) . (4.18)

Since each function ξi (fi ◦ E) (·), i = 1, ..., q, is αi-E-pseudo-invex with respect to η at x
on ΩE ∪ YE , by Definition 2.5 and (4.18), the inequality[

q∑
i=1

ξi∇fi(E (x))

]
η (E (x′) , E (x)) < 0 (4.19)

holds. Since νj (gj ◦ E) (·), j = 1, ..., p, µk (hk ◦ E) (·), k = 1, ..., p, are V -E-quasi-invex at
x on ΩE ∪ YE , by Definition 2.8 and (4.19) implies that the inequalities

p∑
j=1

νj∇ (gj ◦ E) (x)η (E (x′) , E (x)) 5 0, (4.20)

s∑
k=1

µk∇ (hk ◦ E) (x)η (E (x′) , E (x)) 5 0 (4.21)
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hold, respectively. Combining (4.19), (4.20) and (4.21), we get that the inequality[ q∑
i=1

ξi∇ (fi ◦ E) (x) +

p∑
j=1

νj∇gj (E (x)) +

s∑
k=1

µk∇hk (E (x))

]
η (E (x′) , E (x)) < 0

holds, which is a contradiction to the first constraint of (MWVDE). This means that the
proof of the converse duality theorem between the E-vector optimization problems (VPE)
and (MWVDE) is completed. 2

Theorem 4.7 (Mond-Weir converse E-duality between (MOP) and (MWVDE)). Let(
x, ξ, ν, µ

)
be a (weakly) efficient solution of a maximum type in Mond-Weir dual problem

(MWVDE). Further, assume that all hypotheses of Theorem 4.6 are fulfilled. Then E(x) ∈
Ω is a (weak) E-Pareto solution of the problem (MOP).

Proof: Let E(x) and
(
x, ξ, ν, µ

)
be any feasible solutions of the problems (MOP) and

(MWVDE), respectively. Then, by Lemma 3.5. it follows that x is any feasible solution
of (VPE). Since all hypotheses of Theorem 4.6 are fulfilled, the Mond-Weir converse
E-duality between (MOP) and (MWVDE) follows directly from Theorem 4.6. 2

5 Concluding remarks

This paper represents E-duality results and optimality conditions for E-differentiable mul-
tiobjective programming problems with both inequality and equality constraints. We have
established the sufficiency of the so-called E-Karush-Kuhn-Tucker optimality conditions
for the considered E-differentiable vector optimization problems with both inequality and
equality constraints under generalized V -E-invexity hypotheses. Further, the so-called
vector Mond-Weir E-dual problems have been formulated for such E-differentiable multi-
objective programming problems. Then, various E-duality theorems between the consid-
ered E-differentiable vector optimization problem and its Mond-Weir vector dual problem
have been proved under generalized V -E-invexity hypotheses. It is pointed out that our
sufficiency of the so-called E-Karush-Kuhn-Tucker optimality conditions and E-duality
results of generalized V -E-invexity hypotheses are more general than the classical ones
found for instance in [1, 15, 17, 20, 26].

However, some interesting topics for further research remain. It would be of interest to
investigate whether it is possible to prove similar results for other classes of E-differentiable
vector optimization problems. We shall investigate these questions in subsequent papers.
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