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The aim of this paper is to introduce the concept of regional exponential observability in connection
with the strategic sensors. Then, we give characterization of such sensors in order that regional
exponential observability can be achieved. The obtained results are applied to two-dimensional
systems, and various cases of sensors are considered. We also show that there exists a dynamical
system for diffusion system which is not exponentially observable in the usual sense but it may be
regionally exponentially observable.

1. Introduction

In system theory, the observability is related to the possibility of reconstruction of the state
from the knowledge of system dynamics and the output [1–4]. The notion of regional analysis
was extended by El Jai et al. [5, 6]. The study of this notion is motivated by certain concrete-
real problem, in thermic, mechanic environment [7–9]. If a system is defined on a domain Ω
and represented by the model as in (Figure 1), then we are interested in the regional state on
ω of the domain Ω.

The concept of regional asymptotic analysis was introduced recently by Al-Saphory
and El Jai in [10–12], consisting in studying the behaviour of the system not in all the domain
Ω but only on particular region ω of the domain.

The purpose of this paper is to give some results related to the link between regional
exponential observability and strategic sensors. We consider a class of distributed system and
we explore various results connected with the different types of measurements, domains, and
boundary conditions.

The paper is organized as follows. Section 2 devotes to the introduction of exponential
regional observability problem.We give the formulation problem and preliminaries. We need
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Sensor locations

ω

Ω

Figure 1: The domain of Ω, the subregion ω, and the sensors locations.

some notions concerning the exponential behaviour (ω-strategic sensor, ω-detectability, and
ω-observer). Section 3 is related to the characterization notion of ωE-observable by the use
of strategic sensors. In Section 4, we illustrate applications with many situations of sensor
locations.

2. Regional Exponential Observability

2.1. Problem Statement

Let Ω be an open bounded subset of Rn, with boundary ∂Ω and let [0, T], T > 0 be a time
measurement interval. Suppose that ω be a nonempty given subregion of Ω. We denote Θ =
Ω × (0,∞) and

∏
= ∂Ω × (0,∞). The considered distributed parameter systems is described

by the following parabolic systems:

∂x

∂t
(ξ, t) = Ax(ξ, t) + Bu(t) Θ

x(ξ, 0) = x◦(ξ) Ω

x
(
η, t
)
= 0

∏

(2.1)

augmented with the output function

y(·, t) = Cx(·, t), (2.2)

whereA is a second-order linear differential operator, which generates a strongly continuous
semigroup (SA(t))t≥0 on the Hilbert space X = L2(Ω) and is self-adjoint with compact
resolvent. The operators B ∈ L(Rp,X) and C ∈ L(Rq,X) depend on the structures of actuators
and sensors [13, 14]. The spacesX,U, andO are separable Hilbert spaces whereX is the state
space, U = L2(0,∞, Rp) is the control space, and O = L2(0,∞, Rq) is the observation space,
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where p and q are the numbers of actuators and sensors. Under the given assumption [15],
the system (2.1) has a unique solution:

x(ξ, t) = SA(t)x◦(ξ) +
∫ t

0
SA(t − τ)Bu(τ)dτ. (2.3)

The problem is that how to observe exponentially the current state in a given subregion
ω (see Figure 1), using convenient sensors and to give a sufficient condition for the existence
of a regional exponential observability.

2.2. ω-Strategic Sensor

The purpose of this subsection is to give the characterization for sensors in order that the
system (2.1) is regionally exponentially observable in ω.

(i) Sensors are any couple (Di, fi)1≤i≤q where Di denote closed subsets of Ω, which
is spatial supports of sensors and fi ∈ L2(Di) define the spatial distributions of
measurements on Di.

According to the choice of the parametersDi and fi, we have various types of sensors.
These sensors may be types of zones when Di ⊂ Ω. The output function (2.2) can be written
in the form

y(·, t) = Cx(·, t) =
∫

Di

x(ξ, t)fi(ξ)dξ. (2.4)

Sensors may also be pointwise when Di = {bi} and fi = δbi(x − bi) where δbi is Dirac mass
concentrated in bi. Then, the output function (2.2) can be given by the form

y(·, t) = Cx(·, t) =
∫

Ω
x(ξ, t)δbi(ξ − bi)dξ. (2.5)

In the case of internal pointwise sensors, the operator C is unbounded and some precaution
must be taken in [13, 14]. In the case when (2.1) is autonomous system, (2.3) allows to give
the following equation:

x(ξ, t) = SA(t)x◦(ξ). (2.6)

(ii) Define the operator K : X → O,

x −→ CSA(·)x (2.7)

which is in the case of internal zone sensors is linear and bounded [16]. The adjoint
operator K∗ of K is defined by

K∗y =
∫ t

0
S∗
A(s)C

∗y(s)ds. (2.8)
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(iii) For the region ω of the domain Ω, the operator χω is defined by

χω : L2(Ω) −→ L2(ω)

x −→ χωx = x|ω,
(2.9)

where x|ω is the restriction of x to ω.

(iv) An autonomous system associated to (2.1)-(2.2) is exactly (resp., weakly)ω-observ-
able if

ImχωK
∗ = L2(ω)

(
resp. ImχωK∗(·) = L2(ω)

)
. (2.10)

(v) A sequence of sensors (Di, fi)1≤i≤q is ω-strategic if the system (2.1)-(2.2) is weakly
ω-observable [5].

The concept of ω-strategic has been extended to the regional boundary case as in [17].
Assume that the set (ϕnj ) of eigenfunctions of L

2(Ω) orthonormal in L2(ω) is associated with
eigenvalues λn of multiplicity rn and suppose that the system (2.1) has J unstable modes.
Then, we have the following result.

Proposition 2.1. The sequence of sensors (Di, fi)1≤i≤q is ω-strategic if and only if

(1) q ≥ r,

(2) rank Gn = rn, for all n, n = 1, . . . , J with

Gn = (Gn)ij =

⎧
⎨

⎩

〈
ϕnj , fi(·)

〉
L2(DI)

, in the zone case,

ϕnj(bi), in the pointwise case,
(2.11)

where sup rn = r and J = 1, . . . , rn.

Proof. The proof of this proposition is similar to the rank condition in [16]; the main difference
is that the rank condition is as follows

rank Gn = rn, ∀n. (2.12)

For Proposition 2.1., we need only to hold for rank Gn = rn, for all n, n = 1, . . . , J .

2.3. ωE-Observability

Regional exponential observability characterization needs some notions which are related to
the exponential behaviour (stability, detectability, and observer). The concept of exponential
behaviour has been extended recently by Al-Saphory and El Jai as in [12].

Definition 2.2. A semigroup is exponentially regionally stable in L2(ω) (or ωE-stable) if, for
every initial state x◦(·) ∈ L2(Ω), the solution of the autonomous system associated with (2.1)
converges exponentially to zero when t → ∞.
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Definition 2.3. The system (2.1) is said to be exponentially stable on ω (or ωE-stable) if the
operatorA generates a semigroup which is exponentially stable in L2(ω). It is easy to see that
the system (2.1) is ωE-stable if and only if, for some positive constants Mω and αω,

∥
∥χωSA(·)

∥
∥
L2(ω) ≤ Mωe

−αωt t ≥ 0. (2.13)

If (SA(t))t≥0 is ωE-stable, then, for all x◦(·) ∈ L2(Ω), the solution of autonomous system
associated with (2.1) satisfies

‖x◦(t)‖L2(ω) =
∥
∥χωSA(·)x◦

∥
∥
L2(ω) ≤ Mωe

−αωt‖x◦‖L2(ω) (2.14)

and then

lim
t→∞

‖x(t)‖L2(ω) = 0. (2.15)

Definition 2.4. The system (2.1) together with output (2.2) is said to be exponentially
detectable on ω (or ωE-detectable) if there exists an operator Hω : Rq → L2(ω) such that
(A −HωC) generates a strongly continuous semigroup (SHω(t))t≥0 which is ωE-stable.

Definition 2.5. Consider the system (2.1)-(2.2) together with the dynamical system

∂z

∂t
(ξ, t) = Fωx(ξ, t) +Gωu(t) +Hωy(t) Θ

z(ξ, 0) = z◦(ξ) Ω

z
(
η, t
)
= 0

∏
,

(2.16)

where Fω generates a strongly continuous semigroup (SFω(t))t≥0 which is stable on Hilbert
space Z,Gω ∈ L(Rp,Z) and Hω ∈ L(Rq,Z). The system (2.16) defines an ωE-estimator for
χωTx(ξ, t) if

(1) limt→∞‖z(·, t) − χωTx(·, t)‖L2(ω) = 0,

(2) χωT maps D(A) in D(Fω) where z(ξ, t) is the solution of the system (2.16).

Definition 2.6. The system (2.16) specifies an ωE-observer for the system (2.1)-(2.2) if the
following conditions hold:

(1) there exist Mω ∈ L(Rq, L2(ω)) and Nω ∈ L(L2(ω)) such that

MωC +NωχωT = Iω, (2.17)

(2) χωTA + FωχωT = GωC and Hω = χωTB,

(3) the system (2.16) defines an ωE-observer.
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Definition 2.7. The system (2.16) is said to be ωE-observer for the system (2.1)-(2.2) if X = Z
and χωT = Iω. In this case, we have Fω = A − GωC and Hω = B. Then, the dynamical system
(2.16) becomes

∂z

∂t
(ξ, t) = Az(ξ, t) + Bu(t) −Gω

(
Cz(ξ, t) − y(·, t)) Θ

z(ξ, 0) = 0 Ω

z
(
η, t
)
= 0

∏
.

(2.18)

Definition 2.8. The system (2.1)-(2.2) is ωE-observable if there exists a dynamical system
which is exponential ωE-observer, for the original system. Now, the approach which is
observed is that the current state x(ξ, t) exponentially is given by the following result.

3. Strategic Sensors and ωE-Observability

In this section, we give an approach which allows to construct anωE-estimator of x(ξ, t). This
method avoids the consideration of initial state [6]; it enables to observe exponentially the
current state in ω without needing the effect of the initial state of the considered system.

Theorem 3.1. Suppose that the sequence of sensors (Di, fi)1≤i≤q is ω-strategic and the spectrum ofA
contain J eigenvalues with nonnegative real parts. Then, the system (2.1)-(2.2) is ωE-observable by
the following dynamical system:

∂z

∂t
(ξ, t) = Az(ξ, t) + Bu(t) −GωC

(
z(ξ, t) − y(·, t)) Θ

z(ξ, 0) = z◦(ξ) Ω

z
(
η, t
)
= 0

∏
.

(3.1)

Proof. The proof is limited to the case of zone sensors in the following steps.

Step 1. Under the assumptions of Section 2.1, the system (2.1) can be decomposed by the
projections P and I − P on two parts, unstable and stable. The state vector may be given by
x(ξ, t) = [x1(ξ, t) + x2(ξ, t)]

tr where x1(ξ, t) is the state component of the unstable part of the
system (2.1) and may be written in the form

∂x1

∂t
(ξ, t) = A1x1(ξ, t) + PBu(t) Θ

x1(ξ, 0) = x◦1(ξ) Ω

x1
(
η, t
)
= 0

∏

(3.2)
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and x2(ξ, t) is the component state of the part of the system (2.1) given by

∂x2

∂t
(ξ, t) = A2x2(ξ, t) + (I − P)Bu(t) Θ

x2(ξ, 0) = x◦2(ξ) Ω

x2
(
η, t
)
= 0

∏
.

(3.3)

The operator A1 is represented by matrix of order (
∑J

n=1 rn,
∑J

n=1 rn) given by

A1 = diag
⌊
λ1, . . . , λ1, λ2, . . . , λ2, . . . , λj, . . . , λj

⌋
,

PB =
[
Gtr

1 , G
tr
2 , . . . , G

tr
J

]
.

(3.4)

Step 2. Since the sequence suite of sensors (Di, fi)1≤i≤q is ω-strategic for the unstable part of
the system (2.1). The subsystem (3.2) is weakly ω-observable [5], and since it is of finite
dimensional, it is exactly ω-observable [2]. Therefore, it is ωE-detectable and hence there
exists an operator H1

ω such that A1 − H1
ωC which satisfies the following: ∃M1

ω, α
1
ω > 0 such

that ‖e(A1−H1
ωC)t‖ ≤ M1

ωe
−α1

ωt and, then, we have

‖x1(·, t)‖L2(ω) ≤ M1
ωe

−α1
ωt‖Px◦‖L2(ω). (3.5)

Since the semigroup generated by the operator A2 is ωE-stable, there exists M2
ω, α

2
ω > 0 such

that

‖x2(·, t)‖L2(ω) ≤ M1
ωe

−α1
ω‖(I − P)x◦2(·)‖L2(ω) +

∫ t

0
M2

ωe
−α2

ω(t−τ)‖(I − P)x◦2(·)‖L2(ω)‖u(τ)‖dτ
(3.6)

and therefore ‖x(ξ, t)‖L2(ω) → 0 when t → ∞. Finally, the system (2.1)-(2.2) is ωE-detectable.

Step 3. Let e(ξ, t) = x(ξ, t) − z(ξ, t) where z(ξ, t) is solution of the system (3.1). Driving the
above equation and using (2.1) and (3.1), we obtain

∂e

∂t
(ξ, t) =

∂x

∂t
(ξ, t) − ∂z

∂t
(ξ, t)

= Ax(ξ, t) + Bu(t) −Az(ξ, t) − Bu(t) +HωC(z(ξ, t) − x(·, t))
= (A −HωC)e(ξ, t).

(3.7)

Since the system (2.1)-(2.2) is ωE-detectable, there exists an operator Hω ∈
L(Rq, L2(ω)), such that the operator (A − HωC) generates exponentially regionally stable,
strongly continuous semigroup (SHω(t))t≥0 on L2(ω)which satisfies the following relations:

∃Mω,αω > 0 such that
∥
∥χωSHω(t)

∥
∥
L2(ω) ≤ Mωe

−αωt. (3.8)
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Finally, we have

‖e(·, t)‖L2(ω) ≤
∥
∥χωSHω(t)

∥
∥
L2(ω)‖e◦(·)‖ ≤ Mωe

−αωt‖e◦(·)‖ (3.9)

with e◦(·) = x◦(·)−z◦(·) and therefore e(ξ, t) converges exponentially to zero as t → ∞. Thus,
the dynamical system (3.1) observes exponentially the regional state x(ξ, t) of the system
original system and (2.1)-(2.2) is ωE-observable.

Remark 3.2. We can deduce that

(1) a system which is exactly ω-observable is exponentially ω-observable,

(2) a system which is exponentially observable is exponentially ω-observable,

(3) a system which is exponentially ω-observable is exponentially ω1-observable, in
every subset ω1 of ω, but the converse is not true. This may be proven in the
following example.

Example 3.3. Consider the system

∂x

∂t
(ξ, t) = Δx(ξ, t) + x(ξ, t) Θ

x(ξ, 0) = x◦(ξ) Ω

z
(
η, t
)
= 0

∏

(3.10)

augmented with the output function

y(t) =
∫

Ω
x(ξ, t)δ(ξ − bi)dξ, (3.11)

where Ω = (0, 1) and bi ∈ Ω are the location of sensors (bi, δbi) as in (Figure 2). The operator
A = (Δ + 1) generates a strongly continuous semigroup (SA(t))t≥0 on the Hilbert space L2(ω)
[15]. Consider the dynamical system

∂z

∂t
(ξ, t) = Δz(ξ, t) + z(ξ, t) −HC(z(ξ, t) − x(ξ, t)) (0, 1), t > 0,

z(ξ, 0) = z◦(ξ) (0, 1),

z(0, t) = z(1, t) = 0 t > 0,

(3.12)

where H ∈ L(Rq,Z), Z is the Hilbert space, and C : Z → Rq is linear operator. If bi ∈ Q,
then the sensors (bi, δbi) are not strategic for the unstable subsystem (3.10) [1] and therefore
the system (3.10)-(3.11) is not exponentially detectable inΩ [14]. Then, the dynamical system
(3.12) is not observer and then (3.10)-(3.11) is not exponentially observable [16].
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0 β

ω

bi

Ω 1

· · ·

Figure 2: The domain Ω, the subregion ω, and locations bi of internal pointwise sensors.

Now, we consider the region ω = [0, β] ⊂ (0, 1) and the dynamical system

∂z

∂t
(ξ, t) = Δz(ξ, t) + z(ξ, t) −HωC(z(ξ, t) − x(ξ, t)) (0, 1), t > 0,

z(ξ, 0) = z◦(ξ) (0, 1),

z(0, t) = z(1, t) = 0 t > 0,

(3.13)

whereHω ∈ L(Rq, L2(ω)). If bi/β /∈ Q, then the sensors (bi, δbi) areω-strategic for the unstable
subsystem of (3.10) [7] and then the system (3.10)-(3.11) is ωE-detectable. Therefore, the
system (3.10)-(3.11) is ωE-observable by ωE-observer [12].

4. Application to Sensor Location

In this section, we present an application of the above results to a two-dimensional system
defined on Ω = (0, 1) × (0, 1) by the form

∂x

∂t
(ξ1, ξ2, t) = Δx(ξ1, ξ2t) + Bu(t) Θ

x(ξ1, ξ2, 0) = x◦(ξ1, ξ2) Ω

x
(
η1, η2, t

)
= 0

∏

(4.1)

together with output function by (2.4), (2.5). Letω = (α1, β1)×(α2, β2) be the considered region
which is subset of (0,1)× (0,1). In this case, the eigenfunctions of system (4.1) are given by

ϕij(ξ1, ξ2) =
2

√(
β1 − α1

)(
β2 − α2

) sin iπ
(
ξ1 − α1

β1 − α1

)

sin jπ
(
ξ2 − α2

β2 − α2

)

(4.2)

associated with eigenvalues

λij = −
(

i2
(
β1 − α1

)2 +
j2

(
β2 − α2

)2

)

. (4.3)

The following results give information on the location of internal zone or pointwise
ω-strategic sensors.
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4.1. Internal Zone Sensor

Consider the system (4.1) together with output function (2.2) where the sensor supports D
are located in Ω. The output (2.2) can be written by the form

y(t) =
∫

D

x(ξ1, ξ2, t)f(ξ1, ξ2)dξ1dξ2, (4.4)

whereD ⊂ Ω is location of zone sensor and f ∈ L2(D). In this case of Figure 3, the eigenfunc-
tions and the eigenvalues are given by (4.2) and (4.3). However, if we suppose that

(
β1 − α1

)2

(
β2 − α2

)2 /∈ Q, (4.5)

then r = 1 and one sensor may be sufficient to achieve ωE-observability [18]. In this case, the
dynamical system (3.1) is given by

∂z

∂t
(ξ1, ξ2, t) = Δz(ξ1, ξ2, t) + z(ξ1, ξ2, t) + Bu(t) −Hω < x(·, t), fi(·) > −Cz(ξ, t) Θ

z(ξ1, ξ2, 0) = z◦(ξ1, ξ2) Ω

z
(
η1, η2, t

)
= 0

∏
.

(4.6)

Let the measurement support be rectangular with

D = [ξ1 − l1, ξ1 + l2] × [ξ2 − l2, ξ2 + l2] ∈ Ω, (4.7)

then we have the following result.

Corollary 4.1. If f1 is symmetric about ξ1 = ξ◦1 and f2 is symmetric about ξ2 = ξ◦2 , then the system
(4.1)–(4.4) is ωE-observable by the dynamical system (4.6) if

i(ξ◦1 − α1)
(
β1 − α1

) ,
i(ξ◦2 − α2)
(
β2 − α2

) /∈ N for some i = 1, 2, . . . , J. (4.8)

4.2. Internal Pointwise Sensor

Let us consider the case of pointwise sensor located inside ofΩ. The system (4.1) is augment-
ed with the following output function:

y(t) =
∫

x(ξ1, ξ2, t)δ(ξ1 − b1, ξ2 − b2)dξ1dξ2, (4.9)

where b = (b1, b2) is the location of pointwise sensor as defined in Figure 4.



ISRN Applied Mathematics 11

D

α1 β1

1

0

β2

α2

1

ω

Ω

ξ◦1

ξ◦2

Figure 3: Domain Ω, subregion ω, and location D of internal zone sensor.

1

b1

b2

α1 β10

β2

α2

1

ω

Ω

b

Figure 4: Rectangular domain Ω, region ω, and location b of internal pointwise sensor.

If (β1 − α1)/(β2 − α2) /∈Q, then m = 1 and one sensor (b, δb) may be sufficient for
ωE-observability. Then, the dynamical system is given by

∂z

∂t
(ξ1, ξ2, t) = Δz(ξ1, ξ2, t) + z(ξ1, ξ2, t) + Bu(t) +Hω

(
x(b1, b2, t) − y(t)

)
Θ

z(ξ1, ξ2, 0) = z◦(ξ1, ξ2) Ω

z
(
η1, η2, t

)
= 0

∏
.

(4.10)

Thus, we obtain the following.
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1

b1

b2α1 β10

β2

α2

1

ω

Ω

σ

Figure 5: Rectangular domain and location σ of internal filament sensors.

Corollary 4.2. The system (4.1)–(4.9) is not ωE-observable by the dynamical system (4.10) if i(b1 −
α1)/(β1 − α1) and i(b2 − α2)/(β2 − α2) ∈ N, for every i, 1 ≤ i ≤ J .

4.3. Internal Filament Sensor

Consider the case of the observation on the curve σ = Im(γ) with γ ∈ C1(0, 1) (see Figure 5),
then we have the following.

Corollary 4.3. If the observation recovered by filament sensor (σ, δσ) such that it is symmetric with
respect to the line ξ = ξ◦, then the system (4.1)–(4.9) is notωE-observable by (4.10) if i(ξ◦1−α1)/(β1−
α1) and i(ξ◦2 − α2)/(β2 − α2) ∈ N for all i = 1, ..., q.

Remark 4.4. These results can be extended to the following:

(1) case of Neumann or mixed boundary conditions [1, 2],

(2) case of disc domain Ω = (D, 1) and ω = (0, rω) where ω ⊂ Ω and 0 < rω < 1 [10],

(3) case of boundary sensors where C /∈ L(X,Rq); we refer to see [13, 14].

5. Conclusion

The concept developed in this paper is related to the regional exponential observability in
connection with the strategic sensors. It permits us to avoid some “bad” sensor locations.
Various interesting results concerning the choice of sensors structure are given and illustrated
in specific situations. Many questions still opened. This is the case of, for example, the
problem of finding the optimal sensor location ensuring such an objective. The dual result
of regional controllability concept is under consideration.
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