Results for Some of the Projective Special Linear Groups

Rana Noori Majeed¹, Rasha Ibrahim Khalaf², Niran Sabah Jasim³

^{1,2, 3} Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad

Abstract: In this labor we compute the cyclic decomposition for the projective special linear groups $PSL(2,s^{\nu})$ where $\nu = 2$ and s = 3, 5 and 7.

Theorem 2.3: [2]

Keywords: General linear group, special linear group, projective special linear group, cyclic decomposition

1. Introduction

The projective special linear group denoted by PSL(*n*,F) get it by factor out the special linear group SL(*n*,F) by its center. This group consists two cases the first case where $F \equiv +1 \pmod{4}$ while the other case $F \equiv -1 \pmod{4}$.

In this labor we consider the case where $F = s^2$ and s = 3,5, and 7, so we count for the case $F \equiv +1 \pmod{4}$.

This labor consists two sections, in the first section some basic concept presented in it, while the cyclic decomposition calculate for the groups PSL(2,9), PSL(2,25) and PSL(2,49) in the next section.

2. Preliminaries

This section offers some notions needed it.

Theorem 2.1: [1]

(i) The group $PSL(2,s^v)$ is simple for $s^v > 3$.

(ii) $|PSL(2,s^{v})| = \begin{cases} (s^{v}+1)s^{v}(s^{v}-1) & if s = 2\\ \frac{1}{2}(s^{v}+1)s^{v}(s^{v}-1) & if s is a prime s \neq 2. \end{cases}$

Lemma 2.2: [1]

PSL(2, S^v) has exactly (2 S^v + 10) / 4 conjugacy classes C_{<>>} _g for <z> $g \in PSL(2, S^v)$. For S^v = +1 (mod 4):

<z>g</z>	Cg	C _g	C _G (g)
< <u>z</u> >	C <z></z>	1	sv (s ^{2v} - 1)/2
<z> c</z>	C _{<z> c</z>}	(s ^{2v} -1)/2	S^V
<z> d</z>	C_{d}	(s ^{2v} - 1)/2	s ^v
$<_{\mathbf{Z}} a^{\eta}$	$C_{} a^{\eta}$	$s^{v}(s^{v}+1)$	(s ^v -1)/2
$< z > a^{(s^v - 1)/4}$	$C < z > a^{(s^v - 1)/4}$	s ^v (s ^v + 1)/2	(s ^v - 1)
<z> b[®]</z>	C _{<z> b</z>} ^w	$s^{v}(s^{v}-1)$	(sv + 1)/2
1 < <	$\left(a^{V} - 5\right) \left(A - a^{V}\right)$	$1 \leq - \leq \langle \alpha^{V} \rangle$	1) / 4

where $1 \le \eta \le (s^v - 5)/4$ and $1 \le \omega \le (s^v - 1)/4$.

Let $\rho \in \mathbb{C}$ be a $(s^v - 1)$ -th root of oneness and $\sigma \in \mathbb{C}$ be a $(s^v + 1)$ -th root of oneness, where $i = 2, 4, 6, ..., (s^v - 5) / 2$, $j = 2, 4, 6, ..., (s^v - 1) / 2$, $1 \le \eta \le (s^v - 5) / 4$ and $1 \le \sigma \le (s^v - 1)/4$. Then for $s^v \equiv +1 \pmod{4}$ the ordinary character table of PSL(2, s^v), is:

	< <u>z</u> >	<z><i>c</i></z>	<z><i>d</i></z>	<z> a^ŋ</z>	$\langle z \rangle a^{\frac{s^v-1}{4}}$	<z> b ®</z>
$1_{\mathbf{G}}$	1	1	1	1	1	1
ψ	s^{v}	0	0	1	1	-1
Xi	s ^v + 1	1	1	$\rho^{i\eta} + \rho^{-i\eta}$	$\rho^{i\frac{s^{v}-1}{4}} + \rho^{-i\frac{s^{v}-1}{4}}$	0
₽į	s ^v - 1	-1	-1	0	0	$-(\sigma^{j\varpi}+\sigma^{-j\varpi})$
ξı	$\frac{s^v + 1}{2}$	$\frac{1+\sqrt{s^v}}{2}$	$\frac{1-\sqrt{s^v}}{2}$	(-1) 7	$(-1)^{\frac{s^v-1}{4}}$	0
ξ <u>2</u>	$\frac{s^v + 1}{2}$	$\frac{1-\sqrt{s^v}}{2}$	$\frac{1+\sqrt{s^v}}{2}$	(-1) 7	$(-1)^{\frac{s^v-1}{4}}$	0

Theorem 2.4: [3]

Let G be a cyclic p–group. Then $K(G) = Z_p.$

Theorem 2.5: [3] Let G be a cyclic group of order p^n . Then

$$\mathbf{K}(\mathbf{G}) = \bigoplus_{i=1}^{n} \mathbf{Z} p^{i}$$

3. The Cyclic Decomposition for K(PSL(2,s²)) where s = 3, 5 and 7

As in [4] if the diagonalization of the matrix for the rational valued character table presume as

$\left(v_{1}\right)$	0	0	0	0)
0	$v_2 \\ 0$	0	0	$ \begin{array}{c} 0\\ 0\\ 0\\ \vdots\\ v_n \end{array} $
0	0	<i>v</i> ₃	0	0
1	÷	÷	·.	:
$ \begin{pmatrix} v_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} $	0	0	0	v_n

Volume 7 Issue 1, January 2018

<u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY Then the cyclic decomposition for the group K(SL(2,s²)) is: $K(PSL(2,s^2)) = Z_{v_1} \oplus Z_{v_2} \oplus Z_{v_3} \oplus ... \oplus Z_{v_n} ...(*)$

3.1 The Cyclic Decomposition for K(PSL(2,9))

|PSL(2,9)| = 360

i = 2, j = 2,4, η = 1, ϖ =1,2, ρ is the 8-th root of oneness and σ is the 10-th root of oneness, so the character table of PSL(2,9)

	<z></z>	<z> c</z>	<z> d</z>	<z> a</z>	$\langle z \rangle a^2$	<z> <i>b</i></z>	< z > b ²
C _g	1	40	40	90	45	72	72
C _G (g)	360	9	9	4	8	5	5
l _G	1	1	1	1	1	1	1
Ψ	9	0	0	1	1	-1	-1
X 2	10	1	1	0	-2	0	0
θ ₂	8	-1	-1	0	0	- 0.618	1.618
θ4	8	-1	-1	0	0	1.618	-0.618
ξ1	13	3	-2	-1	1	0	0
ξ2	13	-2	3	-1	1	0	0
							ALC: NOT THE REPORT OF

Compile θ_2 with θ_4 , we take out

(1	1	1	1	1	1	1	
9	0	0	1	1	-1	-1	
10	1	1	0	-2	0	0	
16	-2	-2	0	0	1	1	
5	2	-1	-1	1	0	0	
5	-1	2	-1	1	0	0)	

Removing one of the frequent columns we take out

(1	1	1	1	1 1 -2 0 1 1	1)
9	0	0	1	1	-1
10	1	1	0	-2	0
16	-2	-2	0	0	1
5	2	-1	-1	1	0
5	-1	2	-1	1	0)

The diagonalization of this matrix is

(360	0	0	0	0	0)
0	-6	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	-1	0
0	0	0	0	0	1)

Thus by (*), we take out

 $\mathbf{K}(\mathbf{PSL}(2,9)) = \mathbf{Z}_{360} \oplus \mathbf{Z}_6 \oplus \mathbf{Z}_1 \oplus \mathbf{Z}_1 \oplus \mathbf{Z}_1 \oplus \mathbf{Z}_1$

3.2 The Cyclic Decomposition for K(PSL(2,25)) |PSL(2,25)| = 7800

i = 2,4,6,8,10, j = 2,4,6,8,10,12, $1 \le \eta \le 5$, $1 \le \varpi \le 6$, ρ is the 24-th root of oneness and σ is the 26-th root of oneness, so the character table of PSL(2,25)

	1.46.3														
	<2>	<z> c</z>	<1> d	<z> a</z>	<z> a²</z>	<z> a³</z>	<z> a⁴</z>	<z> a⁵</z>	<z> a⁶</z>	<2> b	$\langle z \rangle b^2$	<z> b³</z>	<1> b ⁴	<z> b⁵</z>	<z> b⁶</z>
C _R	1	312	312	650	650	650	650	650	325	600	600	600	600	600	600
C _C (g)	7800	25	25	12	12	12	12	12	24	13	13	13	13	13	13
lc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ψ	25	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
X 2	26	1	1	1.732050806	1	0	-1	- 1.732050806	-2	0	0	0	0	0	0
Z 4	26	1	1	1	-1	-2	-1	1	2	0	0	0	0	0	0
X 6	26	1	1	0	-2	0	2	0	-2	0	0	0	0	0	0
Z 8	26	1	1	-1	-1	2	-1	-1	2	0	0	0	0	0	0
Z 10	26	1	1	- 1.732050806	1	0	-1	1.732050806	-2	0	0	0	0	0	0
θ2	24	-1	-1	0	0	0	0	0	0	- 1.77091205	- 1.13612948	- 0.24107336	0.709209774	1.497021496	1.941883634
θ4	24	-1	-1	0	0	0	0	0	0	- 1.13612948	0.709209774	1.941883634	1.497021496	- 0.24107336	- 1.77091205
θ6	24	-1	-1	0	0	0	0	0	0	- 0.24107336	1.941883634	0.709209774	- 1.77091205	- 1.13612948	1.497021496
θs	24	-1	-1	0	0	0	0	0	0	0.709209774	1.497021496	- 1.77091205	- 0.24107336	1.941883634	- 1.13612948
θ10	24	-1	-1	0	0	0	0	0	0	1.497021496	- 0.24107336	- 1.13612948	1.941883634	- 1.77091205	- 1.13612948
θ12	24	-1	-1	0	0	0	0	0	0	1.941883634	- 1.77091205	1.497021496	- 1.13612948	0.709209774	- 0.24107336
ξi	13	3	-2	-1	1	-1	1	-1	1	0	0	0	0	0	0
ξ ₂	13	-2	3	-1	1	-1	1	-1	1	0	0	0	0	0	0

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20179774

Compile χ_2 with χ_{10} and θ_2 with θ_4 , θ_6 , θ_8 , θ_{10} , θ_{12} , we take out

(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1)	
25	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	
52	2	2	0	2	0	-2	0	-4	0	0	0	0	0	0	
26	1	1	1	-1	-2	-1	1	2	0	0	0	0	0	0	
26	1	1	0	-2	0	2	0	-2	0	0	0	0	0	0	
26	1	1	-1	-1	2	-1	-1	2	0	0	0	0	0	0	
144	-6	-6	0	0	0	0	0	0	1	1	1	1	1	1	
13	3	-2	-1	1	-1	1	-1	2	0	0	0	0	0	0	
13	-2	3	-1	1	-1	1	-1	2	0	0	0	0	0	0)	
·															

Removing six of the frequent columns we take out

(1	1	1	1	1	1	1	1	1)	
25	0	0	1	1	1	1	1	-1	
52	2	2	0	2	0	-2	-4	0	
26	1	1	1	-1	-2	-1	2	0	
26	1	1	0	-2	0	2	-2	0	V
26	1	1	-1	-1	2	-1	2	0	
144	-6	-6	0	0	0	0	0	1	
13	3	-2	-1	1	-1	1	1	0	
13	-2	3	-1	1	-1	1	1	0)	

The diagonalization of this matrix is

(7800	0	0	0	0	0	0	0	0)
0	-1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	3	0	0	0	1	0
0	0	0	0	-4	0	0	0	0
0	0	0	0	0	-2	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1)

Thus by (*), we take out

 $K(PSL(2,25)) = Z_{7800} \oplus Z_1 Z_1 \oplus Z_3 \oplus Z_2 \oplus Z_4 \oplus Z_1 \oplus Z_1 \oplus Z_1$

3.3 The Cyclic Decomposition for K(PSL(2,49))

|PSL(2,49)| = 58800

$$\begin{split} i &= 2,4,6,\ldots,22, \, j = 2,4,6,\ldots,24, \, 1 \leq \eta \leq 11,, \, 1 \leq \varpi \leq 12, \, \rho \text{ is } \\ \text{the 48-th root of oneness and } \sigma \text{ is the 50-th root of oneness, } \\ \text{so the character table of PSL}(2,49) \end{split}$$

	Þ	<2> c	<2> d	<z> a</z>	<2> a ²	<z> a³</z>	<2> a*	<z> a^s</z>	<2> a ⁶	<z> a7</z>	<z> a⁸</z>	<z> a²</z>	<z> a¹⁰</z>	<z> a¹¹</z>	<z> a¹¹</z>
C _c	1	1200	1200	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	1225
$ C_{G}(g) $	58800	49	49	24	24	24	24	24	24	24	24	24	24	24	48
1 _G	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
¥	49	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Z:	50	1	1	1.931851652	1.732050806	1.414213562	1	0.51763809	0	- 0.51763809	-1	-1.414213562	-1.732050806	-1.931851652	-2
Z4	50	1	1	1.732050806	1	0	-1	-1.732050806	- 2	-1.732050806	-1	0	1	1.732050806	2
Z¢	50	1	1	1.414213562	0	-1.414213562	- 2	-1.414213562	0	1.414213562	2	1.414213562	0	-1.414213562	-2
Z	50	1	1	1	- 1	- 2	-1	1	2	1	-1	- 2	0	1	2
Z 10	50	1	1	0.51763809	-1.732050806	-1.414213562	1	1.931851652	0	-1.931851652	-1	1.414213562	1.732050806	- 0.51763809	-2
Z12	50	1	1	0	- 2	0	2	0	- 2	0	2	0	- 2	0	2
Z14	50	1	1	- 0.51763809	-1.732050806	1.414213562	1	-1.931851652	0	1.931851652	-1	-1.414213562	1.732050806	0.51763809	-2
Z 16	50	1	1	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2
Z18	50	1	1	-1.414213562	0	1.414213562	- 2	1.414213562	0	-1.414213562	2	-1.414213562	0	1.414213562	-2
Z 20	50	1	1	-1.732050806	1	0	-1	1.732050806	- 2	1.732050806	-1	0	1	-1.732050806	2
Zn	50	1	1	-1.931851652	1.732050806	-1.414213562	1	- 0.51763809	0	0.51763809	-1	1.414213562	-1.732050806	1.931851652	-2
θ2	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ4	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θε	48	- 1	- 1	0	0	0	0	0	0	0	0	0	0	0	0
θs	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ10	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ12	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ14	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ16	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ18	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ20	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ22	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ ₂₄	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
ξı	25	4	- 3	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
ξ:	25	- 3	4	-1	1	- 1	1	-1	1	-1	1	- 1	1	- 1	1

Volume 7 Issue 1, January 2018

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391

<z> b</z>	<z> b²</z>	<z> b³</z>	<z> b*</z>	<2> b ⁵	<z> b⁶</z>	<z> b⁷</z>	<2> b ⁵	<z> b⁹</z>	<z> b¹⁰</z>	<z> b¹¹</z>	<z> b¹¹</z>
2352	2352	2352	2352	2352	2352	2352	2352	2352	2352	2352	2352
25	25	25	25	25	25	25	25	25	25	25	25
1	1	1	1	1	1	1	1	1	1	1	1
- 1	-1	-1	-1	-1	-1	-1	-1	-1	- 1	-1	-1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1.937166322	-1.75261336	-1.457937254	-1.07165359	- 0.618033988	- 0.125581038	0.374762628	0.851558582	1.274847978	1.61833988	1.85955297	1.984229402
-1.75261336	-1.07165359	-0.125581038	0.851558582	1.61833988	1.984229402	1.85955297	1.274847978	0.374762628	- 0.618033988	-1.457937254	-1.93716632
-1.457937254	-0.125581038	1.274847978	1.984229402	1.61833988	0.374762628	-1.07165359	-1.937166322	-1.75261336	- 0.618033988	0.851558582	1.85955297
-1.07165359	0.851558582	1.984229402	1.274847978	- 0.618033988	-1.937166322	-1.937166322	0.374762628	1.85955297	1.61833988	-0.125581038	-1.7526133
- 0.618033988	1.61833988	1.61833988	- 0.618033988	- 2	- 0.618033988	1.61833988	1.61833988	- 0.618033988	- 2	- 0.618033988	1.61833988
-0.125581038	1.984229402	0.374762628	-1.937166322	- 0.618033988	1.85955297	0.851558582	-1.75261336	-1.07165359	1.61833988	1.274847978	-1.45793725
0.374762628	1.85955297	-1.75261336	-1.457937254	1.61833988	0.851558582	-1.937166322	-0.125581038	1.984229402	- 0.618033988	- 1.75261336	1.27484797
0.851558582	1.274847978	-1.937166322	0.374762628	1.61833988	-1.75261336	-0.125581038	1.85955297	-1.457937254	- 0.618033988	1.984229402	-1.07165359
1.274847978	0.374762628	-1.75261336	-0.125581038	- 0.618033988	-1.07165359	1.984229402	-1.457937254	-0.125581038	1.61833988	-1.937166322	0.851558582
1.61833988	- 0.618033988	- 0.618033988	1.61833988	-2	1.61833988	- 0.618033988	- 0.618033988	1.61833988	- 2	1.61833988	- 0.6180339
1.85955297	-1.457937254	0.851558582	-0.125581038	- 0.618033988	1.274847978	-1.75261336	1.984229402	-1.937166322	1.61833988	-1.07165359	0.37476262
1.984229402	-1.937166322	1.85955297	-1.75261336	1.61833988	-1.457937254	1.274847978	-1.07165359	0.851558582	- 0.618033988	0.374762628	- 0.12558103
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

-	1	1	1	-	1	-	1	1	-	1	1	-	-	-	-	-	1	-	1	1	1	-	-	1	1	-	
49	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
400	8	8	0	2	0	-2	0	-4	0	-2	0	-2	0	-8	0	0	0	0	0	0	0	0	0	0	0	0	
50	1	1	1	-1	-2	-1	1	2	1	-1	-2	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	
50	1	1	0	-2	0	-2	0	-2	0	-2	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	
50	1	1	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	0	0	0	0	0	0	0	0	0	0	0	0	
576	-12	-12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	
25	4	-3	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	
25	-3	4	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0)	
							Ľ	ς,	$\frac{1}{r}$	11	-			0	3	ß	Č,										
												and the second se															

									1	101: L~								
Removing	g the	frequ	ent co	olum	ns w	ve tal	ke ou	ıt		(58800	0	0	0	0	0	0	0	0)
(1	1	1	1	1	1	1	1	1			0			0	0	õ	
	49	0	0	1	1	1	1	1	-1	0	3	0	0	0	0	0	0	0
	400	8	8	2	0	-2	-4	-8	0	0	0	-1	0	0	0	0	0	0
	50	1	1	-1	-2	-1	2	2	0	0	0	0	1	0	0	0	0	0
	50	1	1	-2	0	-2	-2	2	0	0	0	Δ	Δ	6	Δ	Δ	Δ	
	50	1	1	-1	2	-1	2	2	0		0	0	0	6	0	0	0	0
	576	-12	-12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	25	4	-3	1	-1	1	1	1	0	0	0	0	0	0	0	2	0	0
(25	-3	4	1	-1	1	1	1	0	0	0	0	0	0	0	0	1	0
The diago	naliz	ation	of th	is m	atrix	is				0	0	0	0	0	0	0	0	1

The diagonalization of this matrix is

Thus by (*), we take out

 $K(PSL(2,49)) = Z_{58800} \oplus Z_3 \ Z_1 \ Z_1 \oplus Z_6 \oplus Z_1 \oplus Z_2 \oplus Z_1 \oplus Z_1$

Volume 7 Issue 1, January 2018

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20179774

References

- [1] K.E.Gehles, "Ordinary Characters of Finite Special Linear Groups," M.Sc. Dissertation, University of ST. Andrews, 2002.
- [2] H.Behravesh, "Quasi-Permutation Representations of SL(2,q) and PSL(2,q)," Glasgows Math.Journal, Vol.41, 393-408, 1999.
- [3] M.S.Kirdar, "The Factor Group of the Z-Valued Class Function Module The Group of the Generalized Characters," Ph.D. Thesis, University of Birmingham, 1982.
- [4] N.S.Jasim, "The cyclic Decomoposition of PSL(2,p) where p = 5,7,11,13,17 and 19," Journal of College of Education/ Al-Mustansiriya University, Vol.2, No.1, 446-459, 2011.

DOI: 10.21275/ART20179774