Results for Some of the Projective Special Linear Groups

Rana Noori Majeed ${ }^{1}$, Rasha Ibrahim Khalaf ${ }^{\mathbf{2}}$, Niran Sabah Jasim ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, College of Education for Pure Science/ Ibn Al-Haitham, University of Baghdad

Abstract

In this labor we compute the cyclic decomposition for the projective special linear groups PSL(2,sv) where $v=2$ and $s=3,5$ and 7.

Keywords: General linear group, special linear group, projective special linear group, cyclic decomposition

1. Introduction

The projective special linear group denoted by $\operatorname{PSL}(n, \mathrm{~F})$ get it by factor out the special linear group $\operatorname{SL}(n, \mathrm{~F})$ by its center. This group consists two cases the first case where $\mathrm{F} \equiv+1$ $(\bmod 4)$ while the other case $F \equiv-1(\bmod 4)$.

In this labor we consider the case where $F=s^{2}$ and $s=3,5$, and 7 , so we count for the case $F \equiv+1(\bmod 4)$.

This labor consists two sections, in the first section some basic concept presented in it, while the cyclic decomposition calculate for the groups $\operatorname{PSL}(2,9), \operatorname{PSL}(2,25)$ and $\operatorname{PSL}(2,49)$ in the next section.

2. Preliminaries

This section offers some notions needed it.
Theorem 2.1: [1]
(i) The group $\operatorname{PSL}\left(2, \mathrm{~s}^{\mathrm{v}}\right)$ is simple for $\mathrm{s}^{\mathrm{v}}>3$.
(ii)

$$
\left|\operatorname{PSL}\left(2, \mathrm{~s}^{\mathrm{v}}\right)\right|= \begin{cases}\left(\mathrm{s}^{\mathrm{v}}+1\right) \mathrm{s}^{\mathrm{v}}\left(\mathrm{~s}^{v}-1\right) & \text { if } \mathrm{s}=2 \\ \frac{1}{2}\left(\mathrm{~s}^{\mathrm{v}}+1\right) \mathrm{s}^{\mathrm{v}}\left(\mathrm{~s}^{\mathrm{v}}-1\right) & \text { if } \mathrm{s} \text { is a prime } \mathrm{s} \neq 2 .\end{cases}
$$

Lemma 2.2: [1]
$\operatorname{PSL}\left(2, \mathrm{~s}^{\mathrm{v}}\right)$ has exactly $\left(2 \mathrm{~S}^{\mathrm{v}}+10\right) / 4$ conjugacy classes $\mathrm{C}_{\langle z\rangle}$ ${ }_{g}$ for $\langle z\rangle g \in \operatorname{PSL}\left(2, \mathrm{~s}^{\mathrm{v}}\right)$.
For $\mathrm{S}^{\mathrm{v}} \equiv+1(\bmod 4)$:

$<\mathrm{Z}>$ g	C_{g}	C_{g} \|	$\mathrm{C}_{\mathrm{G}}(\mathrm{g})$
<z>	$\mathrm{C}_{<2}$	1	$\mathrm{s}^{\mathrm{v}}\left(\mathrm{s}^{2 \mathrm{v}}-1\right) / 2$
$<\mathrm{z}>\mathrm{c}$	$\mathrm{C}_{<\gg c}$	$\left(\mathrm{s}^{2 \mathrm{v}}-1\right) / 2$	$\mathrm{s}^{\text {v }}$
$<\mathrm{z}>d$	$\mathrm{C}_{<\gg d}$	$\left(\mathrm{s}^{2 \mathrm{v}}-1\right) / 2$	s^{v}
$<\mathrm{z}>a^{\eta}$	$\mathrm{C}_{<\gg} a^{\eta}$	$\mathrm{s}^{\mathrm{v}}\left(\mathrm{s}^{\mathrm{v}}+1\right)$	$\left(\mathrm{s}^{\mathrm{v}}-1\right) / 2$
$<z>a^{\left(s^{v}-1\right) / 4}$	$\mathrm{C}<z>a^{\left(\mathrm{s}^{\mathrm{v}}-1\right) / 4}$	$\mathrm{s}^{\mathrm{v}}\left(\mathrm{s}^{\mathrm{v}}+1\right) / 2$	$\left(\mathrm{s}^{\mathrm{v}}-1\right)$
$<\mathrm{z}>b^{\text {w }}$	$\mathrm{C}_{<\geq 2}{ }^{\text {w }}$	$\mathrm{s}^{\mathrm{v}}\left(\mathrm{s}^{\mathrm{v}}-1\right)$	$\left(\mathrm{s}^{\mathrm{v}}+1\right) / 2$

where $1 \leq \eta \leq\left(\mathrm{s}^{\mathrm{v}}-5\right) / 4$ and $1 \leq \sigma \leq\left(\mathrm{s}^{\mathrm{v}}-1\right) / 4$.

Theorem 2.3: [2]

Let $\rho \in \mathbb{C}$ be a $\left(\mathrm{S}^{\mathrm{v}}-1\right)$-th root of oneness and $\sigma \in \mathbb{C}$ be a $\left(\mathrm{s}^{\vee}+1\right)$-th root of oneness, where $i=2,4,6, \ldots,\left(\mathrm{~s}^{\vee}-5\right) /$ $2, j=2,4,6, \ldots,\left(\mathrm{~s}^{\mathrm{v}}-1\right) / 2,1 \leq \eta \leq\left(\mathrm{s}^{\mathrm{v}}-5\right) / 4$ and $1 \leq \pi \leq\left(\mathrm{s}^{\mathrm{v}}-1\right) / 4$. Then for $\mathrm{s}^{\mathrm{v}} \equiv+1(\bmod 4)$ the ordinary character table of $\operatorname{PSL}\left(2, \mathrm{~s}^{\mathrm{v}}\right)$, is:

	< $\mathbf{>} \times$	< $\mathbf{z} \times$ c	$<\mathrm{z}>$ d	$<\mathbf{z}>\boldsymbol{a}^{7}$	$\mathrm{c}^{\frac{s^{v}-1}{4}}$	$<\mathbf{z}>\boldsymbol{b}^{\text {w }}$
$\mathbf{1}_{\mathrm{G}}$	1	1	1	1	1	1
ψ	s^{v}	0	0	1	1	-1
χ_{i}	$\mathrm{s}^{\mathrm{v}}+1$	1	1	$\rho^{i \eta}+\rho^{-i \eta}$	$\rho^{i \frac{s^{v}-1}{4}}+\rho^{-i^{\frac{s^{v}-1}{4}}}$	0
θ_{j}	$\mathrm{s}^{\mathrm{v}}-1$	-1	-1	0	0	$-\left(\sigma^{j \omega}+\sigma^{-j w}\right)$
ξ_{1}	$\frac{\mathrm{s}^{\mathrm{v}}+1}{2}$	$\frac{1+\sqrt{\mathrm{s}^{\mathrm{v}}}}{2}$	$\frac{1-\sqrt{\mathrm{s}^{v}}}{2}$	$(-1)^{7}$	$(-1)^{\frac{s^{v}-1}{4}}$	0
ξ_{2}	$\frac{s^{\mathrm{v}}+1}{2}$	$\frac{1-\sqrt{\mathrm{s}^{\mathrm{v}}}}{2}$	$\frac{1+\sqrt{s^{v}}}{2}$	$(-1)^{7}$	$(-1)^{\frac{s^{v}-1}{4}}$	0

Theorem 2.4: [3]
Let G be a cyclic p -group. Then

$$
\mathrm{K}(\mathrm{G})=\mathrm{Z}_{\mathrm{p}} .
$$

Theorem 2.5: [3]
Let G be a cyclic group of order p^{n}. Then

$$
\mathrm{K}(\mathrm{G})=\oplus_{i=1}^{n} \mathrm{Z} p^{i}
$$

3. The Cyclic Decomposition for $\operatorname{K}\left(\operatorname{PSL}\left(2, \mathbf{s}^{\mathbf{2}}\right)\right.$) where $s=3,5$ and 7

As in [4] if the diagonalization of the matrix for the rational valued character table presume as

$$
\left(\begin{array}{lllll}
v_{1} & 0 & 0 & 0 & 0 \\
0 & v_{2} & 0 & 0 & 0 \\
0 & 0 & v_{3} & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & v_{n}
\end{array}\right)
$$

ISSN (Online): 2319-7064

Then the cyclic decomposition for the group $\mathrm{K}\left(\operatorname{SL}\left(2, \mathrm{~s}^{2}\right)\right.$) is:
$K\left(\operatorname{PSL}\left(2, \mathrm{~s}^{2}\right)\right)=\mathrm{Z}_{\mathrm{v}_{1}} \oplus \mathrm{Z}_{\mathrm{v}_{2}} \oplus \mathrm{Z}_{\mathrm{v}_{3}} \oplus \ldots \oplus \mathrm{Z}_{\mathrm{v}_{\mathrm{n}}}$

3.1 The Cyclic Decomposition for K(PSL(2,9))

$|\operatorname{PSL}(2,9)|=360$
$i=2, j=2,4, \eta=1, \omega=1,2, \rho$ is the 8 -th root of oneness and σ is the 10 -th root of oneness, so the character table of PSL $(2,9)$

	$\langle\mathbf{z}\rangle$	$\langle\mathbf{z}\rangle \boldsymbol{c}$	$\langle\mathbf{z}\rangle \boldsymbol{d}$	$\langle\mathbf{z}\rangle \boldsymbol{a}$	$\langle\mathbf{z}\rangle \boldsymbol{a}^{\mathbf{2}}$	$\langle\mathbf{z}\rangle \boldsymbol{b}$	$\langle\mathbf{z}\rangle \boldsymbol{b}^{\mathbf{2}}$
$\left\|\mathbf{C}_{\mathbf{g}}\right\|$	$\mathbf{1}$	$\mathbf{4 0}$	$\mathbf{4 0}$	$\mathbf{9 0}$	$\mathbf{4 5}$	$\mathbf{7 2}$	$\mathbf{7 2}$
$\mid \mathbf{C}_{\mathbf{G}}(\boldsymbol{g})$	$\mathbf{3 6 0}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{5}$
$\mathbf{1}_{\mathbf{G}}$	1	1	1	1	1	1	1
$\boldsymbol{\psi}$	9	0	0	1	1	-1	-1
$\boldsymbol{\chi}_{\mathbf{2}}$	10	1	1	0	-2	0	0
$\boldsymbol{\theta}_{\mathbf{2}}$	8	-1	-1	0	0	-0.618	1.618
$\boldsymbol{\theta}_{\mathbf{4}}$	8	-1	-1	0	0	1.618	-0.618
$\boldsymbol{\xi}_{\mathbf{1}}$	13	3	-2	-1	1	0	0
$\boldsymbol{\xi}_{\mathbf{2}}$	13	-2	3	-1	1	0	0

Compile θ_{2} with θ_{4}, we take out

$$
\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
9 & 0 & 0 & 1 & 1 & -1 & -1 \\
10 & 1 & 1 & 0 & -2 & 0 & 0 \\
16 & -2 & -2 & 0 & 0 & 1 & 1 \\
5 & 2 & -1 & -1 & 1 & 0 & 0 \\
5 & -1 & 2 & -1 & 1 & 0 & 0
\end{array}\right)
$$

Removing one of the frequent columns we take out
$\left(\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ 9 & 0 & 0 & 1 & 1 & -1 \\ 10 & 1 & 1 & 0 & -2 & 0 \\ 16 & -2 & -2 & 0 & 0 & 1 \\ 5 & 2 & -1 & -1 & 1 & 0 \\ 5 & -1 & 2 & -1 & 1 & 0\end{array}\right)$

The diagonalization of this matrix is

$$
\left(\begin{array}{cccccc}
360 & 0 & 0 & 0 & 0 & 0 \\
0 & -6 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Thus by (*), we take out
$\mathrm{K}(\mathrm{PSL}(2,9))=\mathrm{Z}_{360} \oplus \mathrm{Z}_{6} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{1}$

3.2 The Cyclic Decomposition for $\operatorname{K}(\operatorname{PSL}(2,25))$

$|\operatorname{PSL}(2,25)|=7800$
$\mathrm{i}=2,4,6,8,10, \mathrm{j}=2,4,6,8,10,12,1 \leq \eta \leq 5,, 1 \leq \pi \leq 6, \rho$ is the 24 -th root of oneness and σ is the 26 -th root of oneness, so the character table of $\operatorname{PSL}(2,25)$

	<2>	<t>c	$<1>d$	$<2>a$	$\leqslant x>a^{2}$	$<2>a^{3}$	$\leqslant 2>a^{4}$	< $2>a^{5}$	$\left\langle\boldsymbol{z} a^{6}\right.$	$<2>b$	$\leqslant 2>b^{2}$	$\leqslant 2>b^{3}$	<2> b^{4}	< $2>b^{5}$	$\leqslant 2\rangle b^{6}$
C_{z} \|	1	312	312	650	650	650	650	650	325	600	600	600	600	600	600
$\left\|\mathrm{C}_{6}(\mathrm{~g})\right\|$	7800	25	25	12	12	12	12	12	24	13	13	13	13	13	13
1_{6}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ψ	25	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
Z_{2}	26	1	1	1.732050806	1	0	-1	- 1.732050806	-2	0	0	0	0	0	0
Z4	26	1	1	1	-1	-2	-1	1	2	0	0	0	0	0	0
Z ${ }_{6}$	26	1	1	0	-2	0	2	0	-2	0	0	0	0	0	0
Z^{8}	26	1	1	-1	-1	2	-1	-1	2	0	0	0	0	0	0
\mathbf{Z}_{10}	26	1	1	-1.732050806	1	0	-1	1.732050806	-2	0	0	0	0	0	0
θ_{2}	24	-1	-1	0	0	0	0	0	0	-1.77091205	-1.13612948	-0.24107336	0.709209774	1.497021496	1.941883634
θ_{4}	24	-1	-1	0	0	0	0	0	0	-1.13612948	0.709209774	1.941883634	1.497021496	-0.24107336	-1.77091205
θ_{6}	24	-1	-1	0	0	0	0	0	0	-0.24107336	1.941883634	0.709209774	-1.77091205	-1.13612948	1.497021496
θ_{3}	24	-1	-1	0	0	0	0	0	0	0.709209774	1.497021496	-1.77091205	-0.24107336	1.941883634	-1.13612948
θ_{10}	24	-1	-1	0	0	0	0	0	0	1.497021496	-0.24107336	-1.13612948	1.941883634	-1.77091205	-1.13612948
θ_{12}	24	-1	-1	0	0	0	0	0	0	1.941883634	-1.77091205	1.497021496	-1.13612948	0.709209774	-0.24107336
ξ_{1}	13	3	-2	-1	1	-1	1	-1	1	0	0	0	0	0	0
ξ_{2}	13	-2	3	-1	1	-1	1	-1	1	0	0	0	0	0	0

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 | Impact Factor (2015): 6.391
Compile χ_{2} with χ_{10} and θ_{2} with $\theta_{4}, \theta_{6}, \theta_{8}, \theta_{10}, \theta_{12}$, we take out
$\left(\begin{array}{ccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 25 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 52 & 2 & 2 & 0 & 2 & 0 & -2 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 26 & 1 & 1 & 1 & -1 & -2 & -1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 26 & 1 & 1 & 0 & -2 & 0 & 2 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 26 & 1 & 1 & -1 & -1 & 2 & -1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 144 & -6 & -6 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 13 & 3 & -2 & -1 & 1 & -1 & 1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 13 & -2 & 3 & -1 & 1 & -1 & 1 & -1 & 2 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{ccccccccc}7800 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Thus by (*), we take out
$\mathrm{K}(\mathrm{PSL}(2,25))=\mathrm{Z}_{7800} \oplus \mathrm{Z}_{1} \mathrm{Z}_{1} \oplus \mathrm{Z}_{3} \oplus \mathrm{Z}_{2} \oplus \mathrm{Z}_{4} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{1}$

3.3 The Cyclic Decomposition for $\operatorname{K}(\operatorname{PSL}(2,49))$

$|\operatorname{PSL}(2,49)|=58800$
$\mathrm{i}=2,4,6, \ldots, 22, \mathrm{j}=2,4,6, \ldots, 24,1 \leq \eta \leq 11,1 \leq \omega \leq 12, \rho$ is the 48 -th root of oneness and σ is the 50 -th root of oneness, so the character table of $\operatorname{PSL}(2,49)$

The diagonalization of this matrix is

	4 $2>$	42>c	$\leqslant 2>d$		$48>a^{2}$	$4>a^{3}$	$127 a^{4}$	$42>a^{5}$	czi a^{6}	$4>a^{7}$	$42>a^{5}$	$42>a^{9}$	$42 a^{10}$	$42>a^{11}$	$42>a^{12}$
$\left\|\mathrm{C}_{2}\right\|$	1	1200	1200	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	1225
$\left\|\mathrm{C}_{\sigma}(\mathrm{g})\right\|$	58800	49	49	24	24	24	24	24	24	24	24	24	24	24	48
$1{ }_{G}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ψ	49	0	0	1	1	1	1	1	1	1	1	1	1	1	1
\underline{L}	50	1	1	1.931851652	1.732050506	1.414213562	1	0.51763509	0	-0.51763909	-1	-1.414213862	-1.732050506	-1.931851652	-2
z ${ }^{\text {+ }}$	50	1	1	1.732050806	1	0	-1	-1.732050806	-2	-1.732050806	-1	0	1	1.732050506	2
$\underline{2} 6$	50	1	1	1.414213562	0	-1.414213862	-2	-1.414213862	0	1.414213862	2	1.414213562	0	-1.414213862	-2
z_{8}	50	1	1	1	-1	-2	-1	1	2	1	-1	-2	0	1	2
\mathbf{Z}^{10}	50	1	1	0.51763809	-1.732050506	-1.414213862	1	1.931851652	0	-1.931851652	-1	1.414213562	1.732050506	-0.51763s09	-2
\mathbf{L}_{12}	50	1	1	0	-2	0	2	0	-2	0	2	0	-2	0	2
\mathbf{Z}^{14}	50	1	1	-0.51763809	-1.732050506	1.414213862	1	-1.931851652	0	1.931851652	-1	-1.414213862	1.732050506	0.51763809	-2
\mathbf{Z}^{16}	50	1	1	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2
Z ${ }_{18}$	50	1	1	-1.414213562	0	1.414213562	-2	1.414213862	0	-1.414213562	2	-1.414213862	0	1.414213562	-2
2:0	50	1	1	-1.732050506	1	0	-1	1.732050506	-2	1.732050506	-1	0	1	-1.732050506	2
$\mathbf{Z}=$	50	1	1	-1.931851652	1.732050506	-1.414213862	1	-0.51763909	0	0.51763909	-1	1.414213562	-1.732050506	1931851652	-2
θ_{2}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{4}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{6}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{8}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{10}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{12}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{14}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{16}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{18}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{20}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{22}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
θ_{24}	48	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0
ζ_{1}	25	4	-3	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
$5:$	25	-3	4	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1

ISSN (Online): 2319-7064

Index Copernicus Value (2015): 79.57 Impact Factor (2015): 6.391

$\langle<2>b$	<z> b^{2}	<2> b^{2}	$42>b^{4}$	<z> b^{5}	$42>b^{6}$	$\langle 2\rangle b^{7}$	$\langle 2\rangle b^{\text {a }}$	<2> b^{3}	$\langle 2\rangle b^{10}$	$\langle 2\rangle b^{11}$	$\langle 2\rangle b^{12}$
2352	2352	2352	2352	2352	2352	2352	2352	2352	2352	2352	2352
25	25	25	25	25	25	25	25	25	25	25	25
1	1	1	1	1	1	1	1	1	1	1	1
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1937166322	-1.75261336	-1.457937254	-1.07165359	-0.618033988	-0.125581038	0.374762628	0.851558582	1.274847978	1.61833988	1.85955297	1.984229402
-1.75261336	-1.07165359	-0.125581038	0.851558582	1.61833988	1.984229402	1.85955297	1.274847978	0.374762628	-0.618033988	-1.457937254	-1.937166322
-1.457937254	-0.125581038	1.274847978	1.984229402	1.61833988	0.374762628	-1.07165359	-1.937166322	-1.75261336	-0.618033988	0.851558582	1.85955297
-1.07165359	0.851558582	1.984229402	1.274847978	-0.618033988	-1.937166322	-1.937166322	0.374762628	1.85955297	1.61833988	-0.125581038	-1.75261336
-0.618033988	1.61833988	1.61833988	-0.618033988	-2	-0.618033988	1.61833988	1.61833988	-0.618033988	-2	-0.618033988	1.61833988
-0.125581038	1.984229402	0.374762628	-1.937166322	-0.618033988	1.85955297	0.851558582	-1.75261336	-1.07165359	1.61833988	1.274847978	-1.457937254
0.374762628	1.85955297	-1.75261336	-1.457937254	1.61833988	0.851558582	-1.937166322	-0.125581038	1.984229402	-0.618033988	-1.75261336	1.274847978
0.851558582	1274847978	-1.937166322	0.374762628	1.61833988	-1.75261336	-0.125581038	1.85955297	-1.457937254	-0.618033988	1.984229402	-1.07165359
1.274847978	0.374762628	-1.75261336	-0.125581038	-0.618033988	-1.07165359	1.984229402	-1.457937254	-0.125581038	1.61833988	-1937166322	0.851558582
1.61833988	-0.618033988	-0.618033988	1.61833988	-2	1.61833988	-0.618033988	-0.618033988	1.61833988	-2	1.61833988	-0.618033988
1.85955297	-1.457937254	0.851558582	-0.125581038	-0.618033988	1.274847978	-1.75261336	1.984229402	-1.937166322	1.61833988	-1.07165359	0.37476262B
1.984229402	-1.937166322	1.85955297	-1.75261336	1.61833988	-1.457937254	1.274847978	-1.07165359	0.851558582	-0.618033988	0.374762628	-0.125581038
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

Compile χ_{2} with $\chi_{4}, \chi_{6}, \chi_{10}, \chi_{14}, \chi_{18}, \chi_{20}, \chi_{22}$ and θ_{2} with $\theta_{4}, \theta_{6}, \theta_{8}, \theta_{10}, \theta_{12}, \theta_{14}, \theta_{16}, \theta_{18}, \theta_{20}, \theta_{22}$ and θ_{24} we take out

(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$1)$
49	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
400	8	8	0	2	0	-2	0	-4	0	-2	0	-2	0	-8	0	0	0	0	0	0	0	0	0	0	0	0
50	1	1	1	-1	-2	-1	1	2	1	-1	-2	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0
50	1	1	0	-2	0	-2	0	-2	0	-2	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0
50	1	1	-1	-1	2	-1	-1	2	-1	-1	2	-1	-1	2	0	0	0	0	0	0	0	0	0	0	0	0
576	-12	-12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0
25	4	-3	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0
25	-3	4	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0)

Removing the frequent columns we take out

$$
\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
49 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & -1 \\
400 & 8 & 8 & 2 & 0 & -2 & -4 & -8 & 0 \\
50 & 1 & 1 & -1 & -2 & -1 & 2 & 2 & 0 \\
50 & 1 & 1 & -2 & 0 & -2 & -2 & 2 & 0 \\
50 & 1 & 1 & -1 & 2 & -1 & 2 & 2 & 0 \\
576 & -12 & -12 & 0 & 0 & 0 & 0 & 0 & 0 \\
25 & 4 & -3 & 1 & -1 & 1 & 1 & 1 & 0 \\
25 & -3 & 4 & 1 & -1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

The diagonalization of this matrix is
$\left(\begin{array}{ccccccccc}58800 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Thus by (*), we take out
$\mathrm{K}(\mathrm{PSL}(2,49))=\mathrm{Z}_{58800} \oplus \mathrm{Z}_{3} \mathrm{Z}_{1} \quad \mathrm{Z}_{1} \oplus \mathrm{Z}_{6} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{2} \oplus \mathrm{Z}_{1} \oplus \mathrm{Z}_{1}$

Volume 7 Issue 1, January 2018 www.ijsr.net

References

[1] K.E.Gehles, "Ordinary Characters of Finite Special Linear Groups," M.Sc. Dissertation, University of ST. Andrews, 2002.
[2] H.Behravesh, "Quasi-Permutation Representations of SL($2, q$) and PSL(2,q)," Glasgows Math.Journal, Vol.41, 393-408, 1999.
[3] M.S.Kirdar, "The Factor Group of the Z-Valued Class Function Module The Group of the Generalized Characters," Ph.D. Thesis, University of Birmingham, 1982.
[4] N.S.Jasim, "The cyclic Decomoposition of PSL(2,p) where $\mathrm{p}=5,7,11,13,17$ and 19," Journal of College of Education/ Al-Mustansiriya University, Vol.2, No.1, 446-459, 2011.

