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The definitive screening design (DSD) and artificial neural network (ANN) were conducted
for modeling the biosorption of Co(II) by Pseudomonas alcaliphila NEWG-2. Factors
such as peptone, incubation time, pH, glycerol, glucose, K2HPO4, and initial cobalt had
a significant effect on the biosorption process. MgSO4 was the only insignificant factor.
The DSD model was invalid and could not forecast the prediction of Co(II) removal,
owing to the significant lack-of-fit (P < 0.0001). Decisively, the prediction ability of ANN
was accurate with a prominent response for training (R2

= 0.9779) and validation
(R2
= 0.9773) and lower errors. Applying the optimal levels of the tested variables

obtained by the ANN model led to 96.32 ± 2.1% of cobalt bioremoval. During the
biosorption process, Fourier transform infrared spectroscopy (FTIR), energy-dispersive
X-ray spectroscopy, and scanning electron microscopy confirmed the sorption of Co(II)
ions by P. alcaliphila. FTIR indicated the appearance of a new stretching vibration band
formed with Co(II) ions at wavenumbers of 562, 530, and 531 cm−1. The symmetric
amino (NH2) binding was also formed due to Co(II) sorption. Interestingly, throughout
the revision of publications so far, no attempt has been conducted to optimize the
biosorption of Co(II) by P. alcaliphila via DSD or ANN paradigm.

Keywords: cobalt, biosorption, Pseudomonas alcaliphila NEWG-2, definitive screening design, artificial neural
network

INTRODUCTION

The potentiality of industrial effluents containing heavy metal ions, such as copper, chromium,
lead, and nickel, toward the environment had been reported to be a cause of the virulent impact on
a variety of living organisms (i.e., plants, animals, and human beings) (Alotaibi et al., 2021). These
metals can accumulate in tissues of animals, and also in the human body (Alfadaly et al., 2021),
causing disruption of cell membranes, lipid peroxidation, inhibition of oxidative phosphorylation,
protein denaturation, and alteration of nucleic acids structures (Xie et al., 2016).
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Cobalt is one of these metals with consideration as a
carcinogenic agent, causing several types of cancer, including
lung cancer (Viegas et al., 2022). The emission of cobalt and
other metals into the environment could be associated with some
industries, e.g., alloy production, electroplating generations of
gas turbines, petrochemical industries, metal plating activities,
and mining processes (Soualili et al., 2008). Moreover, cobalt
could be produced from power-generating nuclear reactors,
e.g., pressurized light water reactors and pressurized heavy
water reactors. Co(II) is a major contributor to health threats
because it has a long half-life time (5.27 years) and high-
energy (1.17 and 1.33 MeV) (Raghu et al., 2008). Furthermore,
the clinical symptoms of cobalt-associated diseases include a
neurotoxicological disorder, carcinogenicity of the thyroid gland,
erythropoietic, and genotoxicity in human beings (Lison, 2022).
Cobalt was also found to be a cause of many serious diseases,
such as, nausea, vomiting, bone defects, blood pressure disorder,
and heart defects (Salmani et al., 2020). Additionally, the toxicity
of cobalt could be extended to plants causing a reduction
in shoot and root growth, chlorophyll content, uptake of
minerals, and antioxidant enzymes (Mahey et al., 2020; Banerjee
and Bhattacharya, 2021). Consequently, the industrial effluents
should not be exceeding 1.0 and/or 0.05 mg/L of Co(II) (Saad
et al., 2020). Wherein, the rules and regulations must be set up for
the discharge of contaminants to be a safeguard for the ecosystem.

Currently, the technical procedures of effluents remediation
are following the biosorption approach, which could be one
of the propitious technologies; these strategies are relatively
simple and inexpensive with an efficiency of sequestering the
toxicity of metals. The other physicochemical technologies
are either ineffective or use costly chemicals (Dharanguttikar,
2018; Ghoniem et al., 2020; Rashid et al., 2021). Overall,
microorganisms are effectively bioabsorptive and biodegrade
heavy metals and other pollutants (Sonune, 2021), further,
they are economic and eco-friendly. Therefore, numerous
investigating studies suggested a lot of bacteria, fungi, and
seaweeds for the sorption of metals and other environmental
contaminants (Meez and Kyzas, 2021).

The potentiality of the biosorption process involves the
accumulation of metal ions into the cell wall and chases into
the cell (Brar et al., 2006; Ozdemir et al., 2020). Additionally,
the management of the genetic and biochemical capacity
of microorganisms for the bioremediation process of heavy
metals has been investigated by Valls and De Lorenzo (2002),
who defined the advantages of biological procedures, i.e.,
specify suitability, and potentiality for the genetic upgrade.
The pertinence of living organisms and biopolymers has been
involved in a model of biosorption, where the biosorbents
could be viewed as natural ion-exchange agents that contain
weakly acidic and basic groups (Gutnick and Bach, 2000). For
example, species of seaweeds and marine bacteria were found to
accumulate and uptake relatively high metal concentrations (Iyer
et al., 2005; Hu et al., 2010; Jarvis and Bielmyer-Fraser, 2015).
Khraisheh et al. (2020) investigated the efficiency of Pseudomonas
putida in the remediation of cobalt from contaminated effluents,
by which some bacterial components, e.g., exopolysaccharides,

associated with Enterobacter cloaceae acted as a chelating agent
for cobalt, copper, and cadmium (Iyer et al., 2005).

Otherwise, to successfully achieve the optimized leaching
of heavy metals, the multivariate statistical optimizations were
adopted by developing an empirical experiment based on the
optimization model, where the interaction between dependent
and independent variables was identified (Kamalini et al.,
2018). The statistical procedures that could be preferred in the
optimization process for heavy metals management are response
surface methodology and the artificial intelligence-based black-
box model [artificial neural network (ANN)] (Shanmugaprakash
et al., 2018). The ANN approach was found to be widely
exhausted in the optimization of fermentation processes (Dziuba
and Nalepa, 2012) and was one of profoundly statistical analyses
with output dissimilar to the response surface methodology.
The prettiness of ANNs as empirical modeling is owing to
their capability to extract, accurate, and regardless of the degree
of nonlinearity breathing between independent and dependent
variables through the training of network as modeling for
predictive the optimized response value (Poirazi et al., 2007;
Nor et al., 2017).

Additionally, the ANN has emerged as an alternative tool
for the nonlinear multivariate modeling (Desai et al., 2005).
The aptitude of ANN is generic in structure and acquires the
skill to gain knowledge from historical data. Moreover, the
chief recompenses of ANN compared with other experimental
designs are (i) ANN does not require a previous description
of the suitable fitting function and (ii) ANN has entire
estimate capability, i.e., it can guess almost all sorts of
nonlinear functions, including quadratic one; it could be of
thought that the ANN requires a much greater number of
experimental trials to assemble an efficient model. ANN can
also perform thoroughly even with fairly fewer data. A few
case studies were investigated by response surface methodology
and ANN using the same experimental design, where the
ANN models have regularly functioned better than response
surface methodology (Baş and Boyaci, 2007; Saber et al.,
2021). Generally, the ANNs have been employed successfully
in a variety of biotechnological processes (Bingöl et al., 2012;
Ghritlahre and Prasad, 2018).

Definitive screening design (DSD) is a new statics procedure
that has been introduced lately in biological processing. It
could effectually estimate the main effects that are impartial
to any quadratic effects and two-factor interaction (Lin, 2015;
Tai et al., 2015). Therefore, the DSD could be afforded to go
along with experiments that seemed to be unnecessary in a lot
of circumstances, with avoiding the confusion of effects. It can
characterize factors having a nonlinear or curvilinear effect on the
response (Jones and Nachtsheim, 2011; Lin, 2015).

To the best of our knowledge, there are relatively few reported
cases that conquer the optimized biosorption process of cobalt,
especially by Pseudomonas spp. Therefore, our investigated
study has been designed to optimize the removal of Co(II) by
Pseudomonas alcaliphila NEWG-2 using the DSD and ANN,
with a determination of the biosorption process of Co(II) into
the bacterial cell.
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MATERIALS AND METHODS

Bacterium and Biosorption Medium
Pseudomonas alcaliphila NEWG-2 strain, previously identified
using (DDBJ/EMBL-Bank/Gen Bank database under the
accession number of MN025267) (El-Naggar et al., 2020), was
used throughout this investigation.

The biosorption medium of Atlas and Snyder (2006)
was used with some modifications. Unless otherwise stated,
the medium components were used at the central level as
reported in Table 1 without cobalt (CoSO4·7H2O, Aldrich) and
then sterilized at 121◦C for 15 min. Glucose was sterilized
separately by a membrane filter (0.22 µm) and was added to
the medium after sterilization. For preservation, the bacterial
strain was cultured on slants of the same medium supported
with 15 g agar and incubated at 28 ± 1◦C for 48 h.
The bacteria were sub-cultured periodically and conserved
at 4◦C.

Before the biosorption trials, the bacterium inoculum was
prepared freshly from 48 h aged culture after growing on the
broth medium of Atlas and Snyder (2006) under shaking at
100 rpm and 28± 1◦C for 48 h. The bacterial count was adjusted
to 108 cfu ml−1, using a hemocytometer.

Biosorption Procedure by Definitive
Screening Design
The liquid-state biosorption technique was applied for
constructing the DSD, assuming the lake of differences
among all studied criteria. The relative importance and
significance of medium components were investigated to
manage the cobalt bioleaching process. For DSD construction,
a total of 8 continuous independent variables of biosorption
conditions were tested at three numeric levels, namely, two
corner points (low (−1), and high (+1) levels) and one
center (0) level located at the midway between low and
high settings. The coded levels and actual values of the
matrix of the DSD are presented in Table 1. The relation
between the actual and the coded values of the tested
parameters was calculated using the following equation
(Abou Ayana et al., 2015):

xi = (Xi − X0) /1Xi

where Xi is the coded value of an independent factor, 1Xi is the
step change in the actual value of the variable i, X0 is the actual
value of an independent factor at the center point, and Xi is the
actual value of an independent factor.

Pseudomonas alcaliphila inoculum (10% v/v) was used
to inject 45 ml of broth medium in 250 ml Erlenmeyer
flasks. Following the various combinations of design reported
in the DSD matrix, the inoculated runs were incubated at
28 ± 1◦C in a shaker at 100 rpm. After the biosorption
process, bacterial cells were separated by centrifugation
(5,000 rpm for 20 min). The supernatant of the various
runs was examined for the residual cobalt (Xie, 2003)
using inductively coupled plasma (ICP) spectrometry
(model Ultima 2 JY Plasma, Horiba, France). The capacity

of P. alcaliphila as a cobalt biosorbent was determined as
follows:

Cobalt removal efficiency % =
C1− C2

C1
× 100

where C1 and C2 are the initial (control) and residual cobalt
concentrations, respectively.

Modeling of Cobalt Removal Using
Artificial Neural Network
The ANN model was fed with the data from the DSD matrix
(Table 1). A platform of connected neural networks was
established with a hidden layer that contained nodes with
the same (i.e., NTanH) hyperbolic tangent sigmoid activation
function. A multilayer perceptron algorithm that is fully
connected was used to create the prediction of the ANN
from the data obtained in the DSD matrix. Three data sets
were created after the randomization of the data. The first
was used for training (using 50 runs to minimize prediction
error and establish neural weights), the second was used for
validation (using 25 runs to stop ANN training and selection
of the best model, with a holdback propagation of 0.3333),
and the third used as an external data set to test for the
robustness of the ANN model, i.e., the final assessment of
prediction capabilities, which was then used in the final
evaluation and excluded from model selection. The design
ANN topology is composed of the input layer represented
by the eight independent factors, and the output layer that
has one neuron (cobalt bioremoval by P. alcaliphila NEWG-
2) in which both had a fixed number of independent and
response factors that were tested, respectively. Between the
two layers, another hidden layer(s) was constructed and tested;
this in-between layer(s) was examined using several neurons
(ranging from 3 to 10) at various learning rates. The ANN is
designated as 8-h-1.

Machine learning continued until obtaining the minimum
values of root mean square error (RMSE), mean absolute
deviation (MAD), and the sum of squared errors (SSE), with
the highest value of the coefficient of determination (R2), as
well as the predicted outputs closely matching the actual effect
of Co(II) biosorption. The fitness of the models generated by
the DSD and ANN was compared with the corresponding
experimental values.

Scanning Electron Microscopy
To evaluate the removal levels of Co2+ inside cells, scanning
electron microscopy (SEM) inspection was carried out by coating
the surface of the P. alcaliphila NEWG-2 with gold. Broth
medium containing the ANN-optimized conditions of 8.5 pH,
67.5 h of incubation time, 200 ppm of initial concentration
of CoSO4·7H2O, 1.5% glucose, 1.5% glycerol, 1.5% peptone,
0.2% K2HPO4, and 0.2% MgSO4.7H2O was used. Bacterial cells
were separated by centrifugation at 5,000 rpm for 20 min,
coated with gold, and examined at various magnifications
using SEM (JEOL TEM-2100) attached to a charge-coupled
device (CCD) camera under an accelerating voltage of 200 kV
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TABLE 1 | The definitive screening design (DSD) matrix of the independent factors, and the experimental data of Co (II) bioremoval by P. alcaliphila NEWG-2 as well as
the corresponding predicted and residual values obtained from DSD and artificial neural network (ANN) models.

Coded level of the independent variable

in design matrix

Run Response of cobalt removal, %

Actual DSD ANN

X1 X2 X3 X4 X5 X6 X7 X8 Predicted Residual Predicted Residual

1 Validation 0 1 1 1 1 1 1 1 69.49 71.78 −2.30 69.65 −0.16

2 Training 0 −1 −1 −1 −1 −1 −1 −1 71.88 70.65 1.23 72.31 −0.43

3 Training 1 0 −1 −1 −1 −1 1 1 77.75 79.46 −1.71 77.72 0.03

4 Training −1 0 1 1 1 1 −1 −1 64.79 62.98 1.81 64.43 0.36

5 Training 1 −1 0 −1 1 1 −1 −1 59.90 62.10 −2.20 59.59 0.31

6 Validation −1 1 0 1 −1 −1 1 1 81.66 80.34 1.32 83.34 −1.68

7 Validation 1 −1 −1 0 1 1 1 1 65.66 63.38 2.28 66.43 −0.77

8 Training −1 1 1 0 −1 −1 −1 −1 77.82 79.06 −1.24 78.45 −0.63

9 Training 1 −1 1 1 0 −1 −1 1 82.57 81.28 1.29 82.24 0.33

10 Training −1 1 −1 −1 0 1 1 −1 58.72 61.16 −2.43 59.58 −0.85

11 Training 1 −1 1 1 −1 0 1 −1 62.23 65.54 −3.31 61.64 0.59

12 Validation −1 1 −1 −1 1 0 −1 1 77.31 76.89 0.42 76.72 0.59

13 Validation 1 1 −1 1 −1 1 0 −1 74.89 72.65 2.24 74.74 0.15

14 Training −1 −1 1 −1 1 −1 0 1 68.31 69.79 −1.48 69.10 −0.79

15 Validation 1 1 −1 1 1 −1 −1 0 96.69 100.28 −3.58 97.05 −0.35

16 Validation −1 −1 1 −1 −1 1 1 0 42.30 42.16 0.14 42.52 −0.23

17 Validation 1 1 1 −1 −1 1 −1 1 66.38 66.85 −0.47 66.49 −0.11

18 Validation −1 −1 −1 1 1 −1 1 −1 75.22 75.59 −0.36 75.56 −0.34

19 Training 1 1 1 −1 1 −1 1 −1 93.91 90.64 3.27 93.25 0.66

20 Validation −1 −1 −1 1 −1 1 −1 1 51.43 51.79 −0.36 50.03 1.40

21 Training 0 0 0 0 0 0 0 0 71.69 71.22 0.47 72.51 −0.83

22 Validation 0 0 0 0 0 0 0 0 73.90 71.22 2.68 72.51 1.39

23 Training 0 0 0 0 0 0 0 0 72.11 71.22 0.89 72.51 −0.40

24 Validation 0 0 0 0 0 0 0 0 73.32 71.22 2.11 72.51 0.81

25 Training 0 0 0 0 0 0 0 0 70.54 71.22 −0.68 72.51 −1.98

26 Training 0 1 1 1 1 1 1 1 68.49 71.78 −3.30 69.65 −1.16

27 Validation 0 −1 −1 −1 −1 −1 −1 −1 70.87 70.65 0.22 72.31 −1.44

28 Training 1 0 −1 −1 −1 −1 1 1 75.74 79.46 −3.72 77.72 −1.98

29 Training −1 0 1 1 1 1 −1 −1 63.79 62.98 0.81 64.43 −0.64

30 Validation 1 −1 0 −1 1 1 −1 −1 57.89 62.10 −4.21 59.59 −1.70

31 Training −1 1 0 1 −1 −1 1 1 84.66 80.34 4.32 83.34 1.32

32 Validation 1 −1 −1 0 1 1 1 1 64.66 63.38 1.28 66.43 −1.78

33 Training −1 1 1 0 −1 −1 −1 −1 79.82 79.06 0.76 78.45 1.37

34 Training 1 −1 1 1 0 −1 −1 1 80.50 81.28 −0.78 82.24 −1.74

35 Training −1 1 −1 −1 0 1 1 −1 57.72 61.16 −3.44 59.58 −1.86

36 Training 1 −1 1 1 −1 0 1 −1 60.24 65.54 −5.31 61.64 −1.41

37 Validation −1 1 −1 −1 1 0 −1 1 75.31 76.89 −1.59 76.72 −1.41

38 Training 1 1 −1 1 −1 1 0 −1 73.89 72.65 1.24 74.74 −0.86

39 Validation −1 −1 1 −1 1 −1 0 1 66.30 69.79 −3.49 69.10 −2.80

40 Training 1 1 −1 1 1 −1 −1 0 94.69 100.28 −5.59 97.05 −2.36

41 Training −1 −1 1 −1 −1 1 1 0 44.30 42.16 2.14 42.52 1.78

42 Training 1 1 1 −1 −1 1 −1 1 64.38 66.85 −2.47 66.49 −2.11

43 Training −1 −1 −1 1 1 −1 1 −1 74.22 75.59 −1.37 75.56 −1.35

44 Training 1 1 1 −1 1 −1 1 −1 90.90 90.64 0.26 93.25 −2.35

45 Training −1 −1 −1 1 −1 1 −1 1 49.43 51.79 −2.36 50.03 −0.60

46 Validation 0 0 0 0 0 0 0 0 69.68 71.22 −1.54 72.51 −2.83

47 Training 0 0 0 0 0 0 0 0 75.91 71.22 4.69 72.51 3.40

48 Training 0 0 0 0 0 0 0 0 70.11 71.22 −1.11 72.51 −2.40

49 Training 0 0 0 0 0 0 0 0 72.32 71.22 1.10 72.51 −0.19

50 Validation 0 0 0 0 0 0 0 0 69.53 71.22 −1.69 72.51 −2.98

(Continued)
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TABLE 1 | (Continued)

Coded level of the independent variable

in design matrix

Run Response of cobalt removal, %

Actual DSD ANN

X1 X2 X3 X4 X5 X6 X7 X8 Predicted Residual Predicted Residual

51 Training 0 1 1 1 1 1 1 1 70.49 71.78 −1.29 69.65 0.84
52 Training 0 −1 −1 −1 −1 −1 −1 −1 72.89 70.65 2.24 72.31 0.58
53 Training 1 0 −1 −1 −1 −1 1 1 79.75 79.46 0.29 77.72 2.03
54 Validation −1 0 1 1 1 1 −1 −1 65.79 62.98 2.81 64.43 1.36
55 Training 1 −1 0 −1 1 1 −1 −1 61.90 62.10 −0.20 59.59 2.31
56 Training −1 1 0 1 −1 −1 1 1 78.66 80.34 −1.68 83.34 −4.68
57 Training 1 −1 −1 0 1 1 1 1 66.66 63.38 3.28 66.43 0.23
58 Training −1 1 1 0 −1 −1 −1 −1 75.82 79.06 −3.24 78.45 −2.63
59 Training 1 −1 1 1 0 −1 −1 1 84.64 81.28 3.36 82.24 2.40
60 Validation −1 1 −1 −1 0 1 1 −1 59.73 61.16 −1.43 59.58 0.15
61 Training 1 −1 1 1 −1 0 1 −1 64.24 65.54 −1.30 61.64 2.60
62 Training −1 1 −1 −1 1 0 −1 1 79.31 76.89 2.42 76.72 2.59
63 Training 1 1 −1 1 −1 1 0 −1 75.90 72.65 3.25 74.74 1.16
64 Training −1 −1 1 −1 1 −1 0 1 70.32 69.79 0.53 69.10 1.22
65 Training 1 1 −1 1 1 −1 −1 0 98.69 100.28 −1.59 97.05 1.64
66 Training −1 −1 1 −1 −1 1 1 0 40.30 42.16 −1.86 42.52 −2.22
67 Training 1 1 1 −1 −1 1 −1 1 68.39 66.85 1.54 66.49 1.90
68 Training −1 −1 −1 1 1 −1 1 −1 76.23 75.59 0.64 75.56 0.67
69 Training 1 1 1 −1 1 −1 1 −1 96.92 90.64 6.28 93.25 3.67
70 Validation −1 −1 −1 1 −1 1 −1 1 53.44 51.79 1.65 50.03 3.41
71 Training 0 0 0 0 0 0 0 0 73.70 71.22 2.48 72.51 1.19
72 Validation 0 0 0 0 0 0 0 0 71.80 71.22 0.58 72.51 −0.71
73 Training 0 0 0 0 0 0 0 0 74.11 71.22 2.89 72.51 1.60
74 Validation 0 0 0 0 0 0 0 0 74.33 71.22 3.11 72.51 1.82
75 Validation 0 0 0 0 0 0 0 0 71.54 71.22 0.32 72.51 −0.97
Actual value of the independent variable X1, pH; X2, incubation time (h); X3, initial CoSO4·7H2O

(ppm); X4, glucose (%); X5, glycerol (%); X6, peptone (%); X7,
K2HPO4 (%); X8, MgSO4.7H2O (%).

Low (−1) 5.5 24 100 0.5 0.5 1.5 0.10 0.10
Center (0) 7.0 48 150 1.0 1.0 2.0 0.15 0.15
High (1) 8.5 72 200 1.5 1.5 2.5 0.20 0.20

at Central Laboratory, Electron Microscope Unit, Mansoura
University, Egypt.

Energy-Dispersive X-Ray Analysis
Energy-dispersive X-ray analysis was performed through SEM; a
JEOL TEM-2100 connected to a CCD camera at an accelerating
voltage of 30 kV was used to conduct an EDX analysis at
the Central Laboratory, Electron Microscope Unit, Mansoura
University, Egypt.

Fourier Transform Infrared Spectroscopy
Pseudomonas alcaliphila NEWG-2 cells were prepared
according to the same conditions for SEM inspection and
then analyzed before and after Co(II) removal using the Fourier
transform infrared spectroscopy (FTIR) spectroscopy and KBr
pellets to determine the active groups. The FTIR spectra of
P. alcaliphila NEWG-2 were predicted in the range, being
400 to 4,000 cm−1 using Thermo Fisher Nicolet IS10, United
States spectrophotometer, at Spectral Analyses Unit, Mansoura
University, Egypt.

Trial Design and Statistical Checkup
The package of JMP pro software, version 16.2 (JMP R©, SAS
Institute Inc., Cary, NC, United States), was used for the
construction of the DSD matrix and data analysis, as well
as, for establishing the ANN topology. By utilizing machine
learning with hidden neurons that train, validate, and test the
experimental data, 50 randomly selected runs were used for the
training of the ANN and 25 separate random runs were used
for checking up on the validity of the ANN model training
and to boost the accuracy of the ANN prediction. To boost
the forecast accuracy of the models, DSD experiments were
repeated three times.

RESULTS

Exploring the Medium Criteria Using the
Definitive Screening Design Paradigm
Eight independent factors as reminded in the DSD matrix were
investigated for their influence on the biosorption of Co(II)
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by P. alcaliphila NEWG-2. The experiments were performed,
following the matrix of the screening design, DSD (Table 1). The
paradigm of the design was based on the null hypothesis (H0)
that assumed an equal effect of the tested independent factors
and without correlation between the variables and biosorption of
Co(II). The experimental results reveal apparent variation among
the 75 runs of cobalt biosorption percentages.

The values obtained experimentally from several DSD
combinations were statistically checked to determine the factors
that significantly affect Co(II) biosorption. The predicted
value percentage of Co(II) sorption was comparable with
the experimental ones. Moreover, the residual values from
the differences between experimental and predicted values
were also small.

Figure 1 is generated to determine and interpret the
contribution of the independent variable(s) to the variability
of Co(II) sorption. The LogWorth value and P-value of the
tried factors are figured in the descending order. All the tested
factors surpassed the edge of significance level (P < 0.05), except
MgSO4.7H2O. Among the significant factors, peptone had a
superiority, whereas the initial cobalt concentration was inferior.

For extra evaluation of the null hypothesis, the coefficients
and analysis of variance (ANOVA) of Co(II) sorption data were
estimated (Table 2). The values of the regression coefficients for
each of the tested parameters were calculated and found to vary
from positive to negative values. The threshold of the significant
influence of the tested variables was set at P < 0.05, meaning that
variable(s) having P less than 0.05 is considered significant.

The ANOVA showed that the overall model term is statistically
significant (P < 0.0001). The next procedure was, therefore,
to figure out the association between cobalt bioremoval data
by P. alcaliphila and each factor in the design by comparing
with the P-value of each term. All tested parameters have
a statistically significant association with cobalt bioremoval;
MgSO4 was the only exception. However, as specified by the
regression coefficient, MgSO4 had an insignificant positive effect,
whereas the initial CoSO4 concentration, peptone (%), and
K2HPO4 (%) had a significant negative impact, and the other
factors had significant positive ones.

Certain statistics were estimated for further assessing the
aptness of the DSD model. The standard deviation was 12.241.
The values of R2, adjusted-R2, and predicted-R2 show high
values, being 0.9563, 0.9510, and 0.9424, respectively. The
values of the corrected Akaike’s information criterion (AIC), the
Bayesian information criterion (BIC), and the predicted residual
error sum of squares (PRESS) are relatively small, being 368.199,
387.936, and 574.570, correspondingly.

Opposite to the above-mentioned statics, the lack-of-fit error
showed to be significant (P < 0.0001) behavior, which did not
support the model aptness. Therefore, the residuals’ analysis
was checked to verify the forecasting ability of the model.
The adequacy of the assumptions of the analysis of DSD data
was checked by employing the residual analysis. Plotting the
frequency of the residual vs. predicted (Figure 2A) values, as
well as the standardized residual vs. raw number (Figure 2B),
indicates that the residuals are distributed randomly but evenly
along the two 0-axis sides, but there were three extreme outlier

points (highlighted in red, No. 36, 40, and 69) that had
high residual values. These points are considered weak points
in the DSD model.

Nevertheless, the (H0) was rejected, and the alternative
hypothesis (H1) was accepted since seven of the eight parameters
showed a significant effect; hence, data were used for model
generation. Accordingly, the regression equation in coded units
is generated as follows:

Cobalt bioremoval(%)

= 71.218+ 4.579(X1)+ 19.17(X2)− 1.208(X3)+ 2.362

(X4)+ 3.607(X5)− 9.569(X6)− 1.213(X7)+ 0.066(X8)

where X1; pH, X2; incubation time (h), X3; initial CoSO4·7H2O
(ppm), X4; glucose (%), X5; glycerol (%), X6; peptone (%), X7;
K2HPO4 (%), and X8; MgSO4.7H2O (%).

Depending upon the data analysis of the DSD matrix, the
operating conditions of bioremoval of cobalt involve seven
significant independent variables, whereas MgSO4.7H2O was
insignificant. Unfortunately, the performance of the DSD model
was invalid for forecasting the prediction of cobalt removal,
where the behavior of the lack of fit showed to be significant,
whereby the previous equation could not be valid for the
prediction of cobalt removal efficiently. Consequently, the design
matrix of DSD and its data were further modeled using
the ANN paradigm.

Modeling Cobalt Bioremoval by Artificial
Neural Network
The responded data of the DSD design (Table 1) was used
for machine learning and emerging the predictive ANN model,
constructing a multilayer feed-forward fully connected neural
network ANN architecture platform to model bioremoval of
cobalt by P. alcaliphila. Numerous hidden layers and neurons
were utilized to determine the best architectural structure by
testing various combinations of ANN-specific parameters such
as the learning rate with each node sharing the same NTanH.
Machine learning was used to validate the constructed ANN
using the holdback procedure at a proportion of 0.3333. The trial
and error continued until the maximal R2 was reached.

The best ANN combination was generated (one hidden
layer with 5 neurons) using several trials of 100 tours at a
learning rate of 0.1, using the method of squared penalty. The
ANN topology (Figure 3) was assigned as 8-5-1 with an input
layer comprising of 8 neurons for each tested independent
factor and a single output layer for cobalt bioremoval. The
optimal performance for the hidden layer was using 5 neurons,
NTanH(5). These conditions are accompanied by the ANN’s
ability to predict outputs that could be comparable with the
experimental response value.

Definitive screening design and ANN predicted values (at each
experimental point) were calculated and are shown in Table 1.
The ANN-predicted values were much closer to the experimental
values when compared with the DSD-predicted values.
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FIGURE 1 | The relative importance of each of the tested independent variables on the bioremoval of cobalt by P. alcaliphila. X1, pH; X2, incubation time (h); X3,
initial CoSO4.7H2O (ppm); X4, glucose (%); X5, glycerol (%); X6, peptone (%); X7, K2HPO4 (%); X8, MgSO4.7H2O (%).

TABLE 2 | Regression coefficient (coded units) and analysis of variance of the DSD experimental Co (II) bioremoval data by P. alcaliphila NEWG-2.

Source Coefficient Freedom degree Sum of squares Mean square F ratio Prob > F*

Model 71.218 8 9535.00 1191.88 180.64 < .0001

Error Lack-of-Fit – 12 246.71 20.56 5.88 <0.0001

Pure error – 54 188.76 3.50 – -

Total – 66 435.47 6.60 – -

Corrected Total – 74 9970.48 – – -

Linear X1 4.579 1 1131.97 1131.97 171.56 <0.0001

X2 6.521 1 2296.06 2296.06 347.99 <0.0001

X3 −1.208 1 78.83 78.83 11.95 0.001

X4 2.362 1 301.36 301.36 45.67 <0.0001

X5 3.607 1 702.51 702.51 106.47 <0.0001

X6 −9.569 1 4944.63 4944.63 749.41 <0.0001

X7 −1.213 1 79.40 79.40 12.03 0.0009

X8 0.066 1 0.24 0.24 0.04 0.8503

The goodness-of-fit statistics of the DSD model

Standard deviation 12.241

Coefficient of determination (R2) 0.9563

Adjusted-R2 0.9510

Predicted-R2 0.9424

Akaike’s information criterion 368.199

Bayesian information criterion 387.936

Predicted residual error sum of squares 574.570

X1, pH; X2, incubation time (h); X3, initial CoSO4.7H2O (ppm); X4, glucose (%); X5, glycerol (%); X6, peptone (%); X7, K2HPO4 (%); X8, MgSO4.7H2O (%). *Significant
level threshold was at P < 0.05.

Comparison of Definitive Screening
Design and Artificial Neural Network
Models
Definitive screening design and ANN models’ performance
was compared based on their accuracy in predicting cobalt
bioremoval. The accuracy of training and validation of both
models were measured and compared based on statistical
parameters (Table 3). The ANN model had higher R2

values for training and validation compared with the DSD
model, while RMSE and MAD recorded lower values. This
trend was consistent across the dataset. The predicted values
of both DSD and ANN models were plotted against the

experimental values. ANN showed a higher predictive capacity
than DSD (Figure 4).

Experimental Validation of Both Models
The optimal mixture of the tested variables and the
corresponding maximum response of cobalt bioremoval by
P. alcaliphila were determined. The tested variables were
estimated to be 8.5 pH, 67.5 h of incubation time, 200 ppm of
initial CoSO4·7H2O, 1.5% glucose, 1.5% glycerol, 1.5% peptone,
0.2% K2HPO4, and 0.2% MgSO4.7H2O. These estimates were
evaluated under laboratory conditions to check the forecast
capacity of both models. The theoretical cobalt removal % by
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FIGURE 2 | The plots of residual vs. predicted values (A) and the standardized residual vs. raw number (B) of the definitive screening design (DSD) data of Co (II)
removal by P. alcaliphila NEWG-2.

FIGURE 3 | The general layout of the proposed artificial neural network for cobalt bioremoval by P. alcaliphila shows an input layer with eight neurons, a hidden layer
with five neurons, and an output layer with one neuron. X1, pH; X2, incubation time (h); X3, initial CoSO4.7H2O (ppm); X4, glucose (%); X5, glycerol (%); X6, peptone
(%); X7, K2HPO4 (%); and X8, MgSO4.7H2O (%).

the DSD model displayed an unusual value (303.0%). The ANN,
in contrast, achieved an effective and meaningful predicted
removal percentage of cobalt, being 97.41%. These values were
validated under laboratory conditions, and the experimental
value obtained was 96.32 ± 2.1%, which was in line with
estimated values by the ANN model. However, Figure 5 shows

the array of every single factor while keeping the other seven
factors constant.

Surface Morphology Analysis
To summarize, the acclimatization of bacteria by Co(II) ions as
shown in Figures 6A,B, was investigated via the photography of
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TABLE 3 | Comparison statistics of the model operation established by DSD and
ANN for Co (II) bioremoval by P. alcaliphila.

Training statistics

Model R2 RMSE MAD Frequency

DSD 0.9528 2.5729 2.1433 50

ANN 0.9779 1.7607 1.4640 50

Validation statistics

DSD 0.9617 2.0444 1.6868 25

ANN 0.9773 1.5728 1.2543 25

Overall model performance

Statistics DSD ANN Frequency

R2 0.9563 0.9783 75

RMSE 2.4096 1.7004 75

MAD 1.9911 1.3941 75

SSE 435.262 216.759 75

RMSE, root mean squared error; MAD, mean absolute deviation; SSE, the sum
of squares error.

the bacterial surface by SEM, which indicated that the irregular
surface of P. alcaliphila NEWG-2, with swelling of the cells,
appeared after adsorption of Co(II) ions, whereas the normal
surface of bacterial cells was of regular shape, before Co(II) ions
adsorption. This illustrates the surface morphology changes and
effects of Co(II) on the bacterial cells.

EDX Evaluation
The EDX analysis was conducted to determine the insertion
of Co(II) into the cell wall of P. alcaliphila NEWG-2 as
the biosorption of Co(II) ions; the data are described in
Figures 7A,B). Depicted data as shown in Figure 7 indicated the
presence of extra peaks after the biosorption course.

Fourier Transform Infrared Spectroscopy
Examination
The FTIR spectra of the dry biomass of P. alcaliphila NEWG-
2 were monitored before and after Co (II) biosorption. The
variation in the content could be due to the attachment of Co(II)
with functional groups of the cell wall of P. alcaliphila NEWG-
2. The results referred to the characteristic frequencies, and the
interpreted functional groups are publicized in Figure 8 and
Table 4. The interaction of Co (II) ions with the P. alcaliphila
NEWG-2 surface led to a change in the morphological features
and surface properties. Generally, the infrared (IR) spectral
analyses were employed to scrutinize the characteristic functional
groups of P. alcaliphila NEWG-2 and investigate the changes
associated with the frequencies of the functional groups before
and after biosorption of Co (II) ions as a result of forming
bonds between them, which led to the creation of new bonds
or the diffraction of some group frequencies. Whereby, the
IR spectra of two samples, e.g., P. alcaliphila NEWG (control)
and P. alcaliphila NEWG-2 treated with cobalt ions, were
investigated. The magnitude of the recorded frequencies analysis

was expressed as the wavenumber in the range of 400–
4,000 cm−1.

Data of the IR spectral analyses prohibited that the absorption
band at ν= 3,423–3,445 cm−1 is attributed to the strong or broad
stretching vibration of hydroxyl “O-H” groups. The absorption
bands in the range of ν = 2,923–2,960 cm−1 are assigned to
the vibrations of a strong, broad N-H stretching group. The
absorption bands at ν = 2,923–2,925 cm−1 are assigned for
medium stretching C-H groups with a slight shift in values (+1
and +2) of the P. alcaliphila NEWG-2 treated with cobalt ions.
The absorption bands at ν = 2,852–2,856 cm−1 are identified
for medium stretching C-H of aldehyde groups for the two
samples. Interestingly, a new absorption band was recorded at
ν = 2,232 cm−1 owing to a weak stretching C≡N group “nitrile”
in the analysis of P. alcaliphila NEWG-2 treated with cobalt ions.

The values of the frequencies within the range ν = 1,637–
1,024 cm−1 in the spectral IR analysis were characterized for eight
groups in all samples without any appearance or disappearance
of the absorption bands along with slightly shifted values. Thus,
the absorption bands due to strong stretching (C = O, amide),
medium C = C, strong S = O, medium C-H bending, strong
C-O, strong C-O stretching “secondary alcohol”, strong C-O
stretching “primary alcohol,” and strong stretching S = O or
Si-O-Si groups were identified at ν = 1,634–1,638, 1,561–1,562,
1,414–1,416, 1,347–1,349, 1,160–1,162, 1,109–1,114, 1,052–1,059,
and 1,023–1,024 cm−1, respectively.

The results of the IR spectral analysis of P. alcaliphila NEWG-
2 demonstrated no absorption bands appeared in the range of
ν = 935–980 cm−1, and the IR spectra of the other samples
recorded absorption bands in this range owing to strong C-H
bending groups. It also found that the values are recorded at
ν = 772–880 cm−1 that is attributed to strong C-H bending;
“1,2,3-trisubstituted” did not include any appearance of the
disappearance of the absorption bands, but these values were
slightly shifted than their value in the IR spectrum of the
control sample. No absorption band was recorded in the range
of ν= 683–687 cm−1 in the analysis of the control sample, while
new absorption bands were recorded in the treated samples with
cobalt ions owing to the absorption bands of symmetric amino
(NH2) binding. The values of frequencies at ν = 582–586 and
624–646 cm−1 are attributed to the stretching vibration bands of
C-halogen groups or aromatic rings. Furthermore, the IR spectra
of P. alcaliphila NEWG-2 (control) indicated an absorption band
at ν = 530 cm−1 due to a strong stretching vibration of halogen
linked to the ligand, while the values at ν = 562, 530, and
531 cm−1 are attributed to the strong stretching vibration of the
new bond formed with cobalt ions.

DISCUSSION

Environmental pollution could be correlated with an improper
discharge of urban and industrial effluents, in addition to
a lack of sanitation procedures. Industrial effluents usually
contain some of the heavy metals that cause disturbance of
the ecosystem creatures, such as aquatic plants, algae, and
invertebrates (Stubblefield et al., 2020). However, at present,
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FIGURE 4 | Actual by the predicted plot for cobalt bioremoval by P. alcaliphila.

FIGURE 5 | The estimated values of the tested parameters based on DSD and artificial neural network (ANN) models and the corresponding predicted cobalt
bioremoval by P. alcaliphila. X1, pH; X2, incubation time (h); X3, initial CoSO4.7H2O (ppm); X4, glucose (%); X5, glycerol (%); X6, peptone (%); X7, K2HPO4 (%); and
X8, MgSO4.7H2O (%).

it is crucial to restore the balance of the ecosystem through
perspective plans, with the creation of technical procedures for
the restoration of such a natural ecosystem (Abhilash, 2021).
The bioremediation process is one of the favorable techniques,
by which the process is performed using microorganisms, with
advantages of efficiency, adequate, and having inherent capacity
to remove and/or minimize these pollutants (Cajthaml, 2015).

Wherein, this investigation has been designed to attain a
comparative study of the optimization process of biosorption of
Co(II) by P. alcaliphila using DSD and ANN models.

Concerning the DSD paradigm, the optimization process
of biosorption medium with eight independent variables, i.e.,
peptone, pH, incubation periods, thresholds of Co(II), MgSO4,
K2HPO4, glucose, and glycerol, was conducted. The relative
analysis of ANOVA of DSD selected seven of eight tested variables
that were significant for bioremoval of Co(II). The P-value < 0.05
of the overall design means the DSD model is significant, and this
is approved by the goodness-of-fit measurements. Additionally,
it had been shown that from the DSD model, the predicted values
of cobalt removal percentage were comparable with experimental

ones. The R2, adjusted R2, and predicted R2 were in rationally
high values, being 0.9563, 0.9510, and 0.9424, respectively.
The standard deviation was 12.241. The residual values as the
difference among experimental and predicted values showed to
be comparable as well. The AIC, BIC, and PRESS statics are also
the goodness-of-fit statistics with relatively small values, being
368.199, 387.936, and 574.570, respectively, which confirm the
aptness of the DSD model. Moreover, among the interactions
between independent variables and removal percentage of Co(II),
peptone came up with a significant superiority during removing
percentage, followed by an incubation period, pH, glycerol, and
glucose, respectively, whereas the initial thresholds of Co(II) have
significant inferiority of bioremoval percentage. Furthermore,
the MgSO4 showed to have a negative impact on biosorption
removal of Co(II).

Peptone is the proteinaceous compound that is necessary for
bacterial growth since it is required for RNA synthesis, shifting
bacterial cells from lag to exponential phase, source of amino
acids for energy transduction, and repairing the DNA damage
during oxidative stress (Rolfe et al., 2012). Furthermore, there
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FIGURE 6 | Micrograph of scanning electron microscopy, viewing the normal cells of P. alcaliphila NEWG-2 (A) before and (B) after biosorption process of Co (II).

is a correlation between intracellular protein satisfaction and
biosorption of heavy metals, indicating some protein fragments
are key molecules to binding heavy metals (Bhatia et al., 2011),
as well as, the biosorption of the heavy metal was influenced
by the type of amino acids, i.e., basic and acidic amino acids
(Kim et al., 2007).

The KH2PO4 had a significant effect as the main source of
the essential inorganic phosphate mineral, which is a common
component of nucleotides, membranes, and phospholipids, as
well as several phosphorylation events within the bacterial
cell (Clements et al., 2002). The transmission of phosphate in
most species of bacteria is due to induced transcription of the
phosphate uptake genes (Bruna et al., 2022).

Otherwise, MgSO4 salt had a negative impact on the
biosorption process. Although, the metals play a crucial

role as a fundamental for central metabolic processes
(Hobman et al., 2005). Metal salts are necessary for
homeostasis and the prevention of metal toxicity in the cell
(Giedroc and Arunkumar, 2007). Magnesium and sodium were
found to be at maximal concentrations in the mid-exponential
phase of bacteria; the MgtA genes are discovered in the lag phase,
which could be responsible for increasing magnesium during the
exponential phase (Rolfe et al., 2012).

The uptake of metals, i.e., Co, Cu, Pb, Ni, Mn, Zn, and Cr was
influenced by incubation temperature, pH, and incubation time
(Kim et al., 2007). The investigated biosorption of Co(II) ions
by P. aeruginosa, as influenced by pH values, incubation periods,
and thresholds of Co(II), has been investigated (Dharanguttikar,
2018). The biosorption process could be dependent upon ion
exchange, where the sodium ion was found to take part in the
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FIGURE 7 | Analysis of electron dispersive spectroscopy of P. alcaliphila NEWG-2 presents the normal cell element before (A) treatment in comparison with the
emerging peak of Co (II) ions after (B) the biosorption process.

uptake of cobalt into P. aeruginosa (Dharanguttikar, 2018). The
pH value has a crucial role during the Co(II) biosorption, in
which the upregulating pH can increase the adsorption of Co(II).
Contrarily, low pH causes low adsorption due to competition
between metal cations and protons to the active site. As well, the
electrostatic repulsion between positively charged surface sites
and positive metal cations causes the reduction of adsorption of
cobalt (Khajavian et al., 2020). The efficiency of the biosorption
process of lead, cobalt, and chromium could be due to the alginate
content of Pseudomonas spp. and culture conditions (Conti et al.,
1994; Khraisheh et al., 2020; Meena et al., 2020).

Both glucose and glycerol are crucial for energy and fatty acids
for the growth of microorganisms, with the shortage of glucose or
other sugars the organism obligately searching alternative ones,
such as protein or fat, for using it as a source of carbon, so the
occurrence of glucose or other sugars is necessary for metabolic
process, e.g., glycolysis cycle.

Meena et al. (2020) investigated the productivity of alginic acid
(exopolysaccharide), a factor chelating metals of Pseudomonas
stutzeri during the medium containing sucrose with other
components. Although the fitness of the aforementioned
parameters of the analysis, there are exceptional defects
apparently from depicting the residual vs. the DSD predicted, as
well as, the standardized residual vs. run number values, which

showed unusual points scattered away from the centerline (0-
axis), including unidentified values, causing the poorness of the
predictive ability of the DSD model.

Additionally, the lack-of-fit error was shown with a significant
value. The theoretical value of the Co(II) removal percentage was
peculiar, being 303.0%; consequently, the model aptness could
not be enhanced. Furthermore, this model was assumed to be
invalid, with improbability to deduce the predicted equation.
However, this model showed potentiality in distinguishing
significant factors. Other reported studies indicated the
availability of the DSD model for determination of the significant
factor, estimating the main effect, and studying the interaction
between the two factors (Jones and Nachtsheim, 2011; Lin, 2015).

Regarding the ANN paradigm, its construction is depending
upon feedback from the dataset of DSD; among the data analysis
by ANOVA, the coefficient of determination (R2) was shown at a
reasonable value (0.9779). The lack of fit was significant.

The data analysis also showed that the value between the actual
and predicted ANN is close, which signifies the nonlinear fitting
effects of the good model. Additionally, the values of RSME,
MAD, and SSE are small compared with those of the DSD model.
Besides, the reasonable value of R2 and the lower value of RSME
of the ANN model confirmed the accuracy of the model (Gurney,
2018). The predicted value of Co2+ removal was found in the
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FIGURE 8 | Variation in bands between the untreated (A) and treated (B) cells as a result of Co (II) ions, as detected by the Fourier transform infrared spectroscopy
analysis of P. alcaliphila NEWG-2.

appreciable value of 97.41%. Whereby, the ANN is valid with
the capability to predict the equation prediction, due to extended
predictive capacity with accuracy in studying the nonlinearity
system (Ram Talib et al., 2019; Saber et al., 2021).

However, the ANN model could not deduce the relation
between inputted and outputted factors, so the model utilizes the
overall factors under study (Shafi et al., 2018; Saber et al., 2021).

Eventually, our data indicated that the DSD was not
credited comparatively with ANN, in addition to the
availability of ANN for studying the optimization for such
as these biosorption processes. However, both DSD and

ANN have success in modeling biomolecules, i.e., citric
acid productivity by Trichoderma sp. (Elsayed et al., 2021).
Commonly, in comparison with the DSD model, the
ANN paradigm has a more generalization capacity; this
could be due to its universal ability to approximate the
nonlinearity of the system. Additionally, the ANN paradigm
can inherently capture almost any form of nonlinearity,
since it effortlessly overcomes the above-conferred restriction
of DSD.

Whereby, in the case of ANN, the generous search space
could be preferred, even if the correlation in that space is more
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TABLE 4 | Fourier transform infrared spectroscopy (FTIR) spectral analysis for P. alcaliphila NEWG-2 before and after biosorption of Co (II) ions.

Pseudomonas alcaliphila (Control) Pseudomonas alcaliphila + Cobalt

Wave no. (cm−1) Functional groups Wave no. (cm−1) Functional groups

3,427 Strong, broad O-H stretching 3,445, 3,423 Strong, broad O-H stretching

2,959 Strong, broad N-H stretching 2,962 Strong, broad N-H stretching

2,923 Medium C-H stretching 2,924 Medium C-H stretching

2,852 Medium C-H stretching, aldehyde 2,853 Medium C-H stretching, aldehyde

1,637 Strong C = O stretching, amide 1,638 Strong C = O stretching, amide

1,561 Medium C = C stretching 1,561 Medium C = C stretching

1,415 Strong S = O stretching 1,414 Strong S = O stretching

1,347 Medium C-H bending 1,347 Medium C-H bending

1,162 Strong C-O stretching 1,160 Strong C-O stretching

1,112 Strong C-O stretching, secondary alcohol 1,109 Strong C-O stretching, secondary alcohol

1,056 Strong C-O stretching, primary alcohol 1,052 Strong C-O stretching, primary alcohol

1,024 Strong S = O or Si-O-Si stretching 1,023 Strong S = O or Si-O-Si stretching

979 Strong C-H bending, 1,2-disubstituted

799, 772 Strong C-H bending, 1,2,3-trisubstituted 797 Strong C-H bending, 1,2,3-trisubstituted

716 Strong C-H bending, monosubstituted 772, 712 Strong C-H bending, monosubstituted

687 Symmetric NH2 bending

646, 586 Strong C-X stretching or aromatic ring 646, 586 Strong C-X stretching or aromatic ring

530 Strong L-X stretching 562, 530 Strong L-Co stretching

convoluted than quadratic (Desai et al., 2008). Overall, the ANN
model includes the choice of architecture network, hidden layer
determination, number of neurons, learning, training, validation,
and verification of the data (Gurney, 2018). Other studies pointed
out the consistency of the ANN model for optimized leaching
of Cr ions (Ram Talib et al., 2019; Saber et al., 2021). The
exhausting ANN model has been successfully applied in the
biosorption of some heavy metal ions (Geyikçi et al., 2012;
Ghosh and Sinha, 2015).

Concerning surface characteristics of P. alcaliphila NEWG-
2, the photography as shown by SEM illustrated the irregular
cell surface after absorption of Co(II) ions, with an enlarged
and swelling size of the cell, while the surface of cells showed
to be regular, with the normal size before Co(II) treatment.
This phenomenon of the morphological characteristics was in
harmony with the investigation of Kim et al. (2007), who pointed
out that heavy metals were distributed among cell wall and cell
membrane fractions, causing alterations in the cell morphology.
However, it is worthy to mention that the morphology is not
significantly changed, that observation can be explained based
on the ability of the current bacterium to absorb and tolerate
high concentration of Co(II) ions, thus leading to or resulting
in the bacterial ability to stand against significant alteration
in the morphology.

Furthermore, the EDX analysis is generally used to explore the
elemental content of the biosorbent, such as Co(II) ion during
the biosorption process by bacterial cells (Dmytryk et al., 2014).
The depicted data indicated the additional column of Co(II)
ions appeared during the biosorption process by P. alcaliphila
NEWG-2. Similarly, another study reported the capability of
P. alcaliphila in the biosorption of Cr6+ during the EDX analysis
(Saber et al., 2021). Moreover, the FTIR analysis of dried cells of
P. alcaliphila was determined, and the analysis has been carried

out at the wavenumber range of 400–4,000 cm−1. Commonly,
the biosorption process has been associated with a change in
morphological and cell surface features, in addition to the change
in frequencies of functional groups, with the creation of new
bonds. The functional groups, i.e., nitrile, hydroxyl, amino, S-O,
and aldehyde groups, were detected during the analysis of dried
cells of P. alcaliphila NEWG-2. Similarly, the previous study
by Dharanguttikar (2018) investigated the functional group that
binds with cobalt in P. aeruginosa; the amine, hydroxyl, carboxyl,
and phosphate esters play a crucial role in the binding of cobalt.
Additionally, the functional groups, e.g., hydroxyl, carboxylate,
phosphate, and amino groups, were active in binding some of the
metal ions (Javanbakht et al., 2014).

CONCLUSION

In this work, the optimization of Co(II) biosorption using
P. alcaliphila NEWG-2 was conducted during the two
consecutive paradigms, namely, DSD and ANN. Throughout
the DSD model, peptone has superiority over other ones of
biosorption medium. Along with ANOVA analysis of the DSD
paradigm, the R2 was in reasonable values, but the lack-of-fit
error showed significant behavior, so the DSD showed to be
invalid and could not be applied for the forecasting of the
predicted equation of Co(II) removal. Contrarily, the ANN
paradigm showed high prediction ability with lower values of
errors (i.e., RMSE, MAD, and SSE) compared to the DSD model.
Consequently, the ANN model was comparatively valid for the
optimization of the bioremoval process. The SEM and EDX
investigations confirmed the ability of P. alcaliphila NEWG-2
in biosorption of Co(II). The functional groups of P. alcaliphila
NEWG-2 showed to be hydroxyl, nitrile, amino, S-O, and
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aldehyde groups. Depending upon this study, and with aid
of artificial intelligence, P. alcaliphila NEWG-2 exhibits strong
potentiality as a candidate for the biosorption of Co(II) ions from
wastewater and the environment.

Finally, the optimum estimated levels of the tested variables
by ANN were 8.5 pH, 67.5 h of incubation time, 200 ppm
of initial concentrations of CoSO4·7H2O, 1.5% glucose, 1.5%
glycerol, 1.5% peptone, 0.2% K2HPO4, and 0.2% MgSO4.7H2O.
These levels were checked under laboratory conditions, and
the experimental bioremoval of cobalt was maximized to be
96.32 ± 2.1%. So far, this is the first attempt to optimize the
biosorption of Co(II) by P. alcaliphila via DSD and artificial
intelligence paradigms.
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