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ABSTRACT
The injective topic is well known for its influential relevance in module theory
and scholars have worked hard to identify generalizations for it. One of these
generalizations is M-Mininjective and mininjective, so we extend these notions
to S-act theory as well, since act theory represents the generalization of module
theory. If every S-homomorphism from a simple M-cyclic subact of MS into NS
can be extended to MS, an S-act NS is called M-mininjective. An S-act MS is
referred to as mininjective, if for each simple right ideal A of S and every S-
homomorphism from A into MS can be extended to S-homomorphism from
S into MS. We looked at the properties and characterizations of S-act where
all subacts are M-cyclic and simple and all subacts are merely simple. These
topics are shown using examples. With the provided concepts, we were able to
accomplish improved results, obtaining novel characterizations of mininjective
acts in terms of duality conditions. Additionally, the conditions under which
subacts inherit the mininjective and M-mininjective properties are studied. The
connection between the act of maximal right ideals of S and the act of minimal
subact of TM is explicated. Finally, the conditions under which the classes of
M-mininjective acts and the classes of mininjective S-acts will coincide are
defined. Our work’s conclusions have been explained.
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1. Introduction

Theoretical computer science, the theory of differential equations and functional analysis are all
examples of direct applications of the theory of acts. The action of a semigroup in semigroup theory is a
generalization of group action in group theory, with the semigroup’s elements acting as transformations
of the set. S-systems, S-sets, S-operands, S- polygons, transition systems, and S-automata are only a few
of the names for S-acts [11]. We advise the reader to the references [2, 3, 5–7, 12, 13, 17–20] for further
information on injective acts generalizations.

Throughout this paper, unless otherwise stated, we assume that S is a monoid with zero element
and that every S-act is unitary right S-act with zero element � which is denoted by MS. A right S-
act MS with zero signifies a nonempty act with a function f : M×S−→M f(m,s)=ms such that the
following properties hold: (1) m1= m, (2) m(st)=(ms) t, for all m∈M and s, t∈S, 1 refers to the identity
element of S. A subact N of an S-act MS, is a nonempty subact of M such that xs∈N for all x∈N and
s∈S. An S-act AS is called a cyclic (or principal) act if it is generated by one element. It is denoted by
AS=< u > where u ∈AS, then AS =uS ([11], P. 63). Let g refer to a function from an S-act AS into
an S-act BS; then, g will be called an S-homomorphism; if for any a ∈AS and s ∈ S following which
we have g(as)=g(a)s [6]. An S-act BS is a retract subact of S-act AS if and only if there exists a subact
W of AS and S-epimorphism f : AS−→ W such that BS∼= W and f(w)=w for every w∈W ([11], P. 84).
A subact N of a right S-act MS is referred to as fully invariant if f(N)⊆N for every endomorphism f
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of MS and MS is called a duo act if every subact of MS is fully invariant [16]. An S-act MS is called
simple if it contains no subact other than MS itself; meanwhile, it is called �-simple if it contains
no subact other than MS and one element subact �S [11]. An S-act MS is referred to as principally
self-generator if every x ∈MS, there is an S-homomorphism f : MS −→ xS such that x = f(x1) for
x1∈MS [1]. An S-congruence ρ on a right S-act MS represents an equivalence relation on MS such that
whenever(a, b) ∈ ρ, then (as, bs) ∈ ρ for all s ∈ S [8]. The identity S- congruence on MS will be denoted
by IM such that (a, b) ∈IM if and only if a = b [4]. A right annihilator of an S-act MS is denoted by
γS(T) where T refers to a subact of MS and is equal to the act {(a, b) ∈ S × S|ta = tb, for all t ∈ T}.
If K is a subact of M × M, then γS(K) = {s ∈ S|as = bs, for all (a, b) ∈ K} is a right ideal of S
and a left annihilator of an S-act MS is denoted by �M(H), where H denotes a subact of S and it
is equal to the act {(m, n) ∈ M × M| mx = nx for all x ∈ H} but if J is a subact of S × S, then,
�M(J) = {a ∈ M| am = an for all (m, n) ∈ J} and, if �M(J) �= �, then, it is a subact of MS [10].

In 1966, P. Berthiaume introduced the concept of injective S-act. An S-act MS is said to be injective
if, for any S-monomorphism h from S-act AS into BS and S-homomorphism f from AS into MS, there is
S-homomorphism g from BS into MS such that g ◦ h = f [6].

This paper is subdivided into three parts. Section two is focused on the mininjective (M-simple
injective) S-act. We obtained novel characterizations of this class. Certain classes of subacts that inherit
this property are considered. Examples are given to elucidate this concept. In section three character-
izations of M-mininjective S-act over monoids are investigated. The properties of M-mininjective S-
act over monoids are examined. The relationship between the M-mininjective S-acts and the classes
of mininjective S-acts is exhibited. As a result, the conditions for these classes to coincide have been
specified. In section four, we present the conclusions of our work.

2. M-Simple injective S-acts

Definition 2.1. Let MS and NS are S-acts. NS is called a minimal M-injective act (or M-simple
injective), if every S-homomorphism from simple subact A of MS to NS can be extended to S-
homomorphism from MS to NS. An S-act MS is called a minimal quasi-injective act if it is a minimal
M-injective.

The following Propositions 2.2 and 2.3 demonstrate the conditions under which subacts inherit the
property of the minimal M-injective:

Proposition 2.2. Retract of minimal M-injective (M-simple) S-act is minimal M-injective.

Proof. Let A be a retract subact of minimal M-injective S-act NS and B be a simple subact of MS.
Let f : B −→ A be an S-homomorphism. As NS is a minimal M-injective S-act, there exists an S-
homomorphism g : MS−→NS and g ◦ i=jA ◦ f, where i is the inclusion map of B into MS and jA
is the injection map of A into NS. Put h = πA ◦ g. Thus, h ◦ i = πA ◦ g ◦ i = πA ◦ jA ◦ f =IA ◦ f = f .
Therefore, A is minimal M-injective.

Proposition 2.3. Every fully invariant subact of minimal quasi-injective act is a minimal M- injective act.

Proof. Let MS be minimal quasi-injective act and N be fully invariant subact of MS and α be S-
homomorphism from simple subact A of MS to N. Since MS is a minimal M-injective, then there exists
S-homomorphism β : MS−→MS such that β ◦ iN ◦ iA =iN ◦α where iA;iN are the inclusion maps of A
into N and N into MS respectively. We get β(iN(N)) ⊆iN(N), thus β(N) ⊆ N. Therefore, N is minimal
M-injective.

Remarks and Examples 2.4. In [1], Abbas M.S. and the author gave the definition of principally quasi
injective as follows: an S-act MS is referred to as principally quasi injective if every S-homomorphism
from a principal subact of MS to MS extends to an S-endomorphism of MS (in short, PQ-injective act).
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(1) Every principal is simple, so every principally quasi injective is minimal M-injective but the converse
is not true in general; for example, Z with multiplication is a Z-act over itself, then Z is; minimal
Z-injective Z-act but not principally injective.

(2) Every semisimple S-act is minimal M-injective.
(3) Every simple S-act is minimal M-injective S-act.
(4) Every isomorphism of minimal M-injective S-act is minimal M-injective.

The next proposition is a generalization of Lemma 2.1.4, which exists in [17] (which also represents
a generalization of lemma 1.1 in [14]):

Proposition 2.5. Let MS be an S-act with T=End (MS). The following conditions are equivalent:

(1) Every S-homomorphism from a simple subact of MS to MS can be extended to S-endomorphism;
(2) �M(γS(mS)) = Tm, where mS is simple subact;
(3) If γS(mS) ⊆ γS(nS), then Tn ⊆ Tm where mS, nS are simple,
(4) If S-homomorphisms α, β : mS −→ MS are given where mS is a simple subact with β being monomor-

phism, there exists σ ∈ T such that σ ◦ β = α.

Proof. (1−→2) Let αm ∈ Tm where α ∈ T. For each s, t ∈ S with ms=mt, we have α(ms) = α(mt),
so αm ∈ �M(γS(m)). Thus, we obtain Tm ⊆ �M(γS(m)). Conversely, if n ∈ �M(γS(m))), then define
σ : mS −→MS by σ(ms) = ns; for s ∈ S. If ms=mt, for s, t ∈ S, then(s, t) ∈ γS(mS) ⊆ γS(nS); hence
ns=nt, so σ is well-defined. It is an easy matter to see that σ is an S- homomorphism. By (1), σ can
extend to σ̄ ∈ T. So n = σ(m) = σ̄ (m) ∈ Tm. Thus, we have �M(γS(m)) ⊆ Tm and this implies to
�M (γS (m)) = Tm

(2−→3) If γS(mS) ⊆ γS(nS), then n ∈ Tn = �M(γS(nS)) ⊆ �M(γS(mS)) = Tm, so n ∈ Tm and
henceTn ⊆ Tm.

(3−→4) Let (s, t) ∈ γS(β(mS)) for s, t ∈ S. Then β(ms) = β(mt). Since β is monomorphism,
ms=mt and α(m)s = α(m) t; hence(s, t) ∈ γS(α(mS)) Then, we have γS(β(mS)) ⊆ γS(α(mS)) By
using (3), we obtain αmS ∈ Tβ(mS). So there is σ ∈ T such that α(ms) = σβ(ms) and hence α = σβ .

(4−→1) Take β : mS −→MS to be the inclusion homomorphism in (4).

Proposition 2.6. Let M1 ∼= M2. If NS is minimal M1-injective (or M1-simple injective) act, then NS is
minimal M2-injective (or M2-simple injective).

Proof. Let A be a simple subact of S-act M2 and f be S-homomorphism from A to N. Let g be S-
isomorphism from M2 to M1. Put B = g(A), it is clear that B is a simple subact of M1. Define α : B −→ N
by α(g(a)) = f(a), where a ∈ A. It is obvious that α is well-defined. Since NS is a minimal M1-injective
ac t, there exists β : M1 −→ NS such that β ◦ i = α, then f(a) = α(g(a))= (β ◦ i) (g(a)) = β(i(g(a))) =
β(g(a))= (β ◦ g)(a). Hence, NS is minimal M2-injective.

Proposition 2.7. Let MS and NS be two S-acts and M1 be subacts of MS. If NS is a minimal M-injective
and then, NS is a minimal M1-injective.

Proof. Let A be a simple subact of M1 and f : A −→NS be S-homomorphism. As N is a minimal M-
injective act, there exists S-homomorphism g :MS −→ NS such that g ◦ iM1 ◦ iA= f , where iA, and iM1
are the inclusion maps of A into M1 and M1 into MS respectively. Define g1:M1−→NS by g1= g ◦ iM1 .
It is clear that g1 is S-homomorphism, so g1 ◦ iA = f and then NS is minimal M1-injective.

In [9], Harada defined a mininjective ring, which motivates us to generalize this concept to a monoid
as follows:



4 S. A. ABDUL-KAREEM

Definition 2.8. An S-act MS is called mininjective, if for each simple right ideal A of S and every S-
homomorphism from A into MS can be extended to S-homomorphism from S into MS. A monoid S is
mininjective; if SS is mininjective as a right S-act.

Characterizations of the mininjective monoid are clarified in the next proposition:

Proposition 2.9. The following conditions are equivalent for a commutative monoid S.

(1) S is a right mininjective;
(2) If aS is simple, a ∈ S; then, �SγS(a) = Sa;
(3) If bS is simple andγS(b) ⊆ γS(a), a, b ∈ S then, Sa ⊆ Sb;
(4) If aS is simple and α : aS −→ S is S-linear then, γS(a) ∈ Sa.

Proof. (1−→2) Let � �= b ∈�SγS(a). Define α : aS −→ S by α(as) = bs. If as=at, for s, t ∈ S, then
(s, t) ∈ γS(a) ⊆ γS(b); hence, bs=bt, which shows that α is well-defined. As S is mininjective by (1),
then there exists β : S −→ S such that β ◦ i = α, where i is the inclusion map of aS into S. Thus,
bs = α(as) = (β ◦ i)(as) = β(i(as)) = β(as) = β(s)a ∈ Sa and �SγS(a) ⊆ Sa. For the other direction,
let αa ∈ Sa. Now, for each s, t ∈ S with as=at, we have α (as) = α (at), so αa ∈ �SγS(a)

(2−→3) Assume that γs(b) ⊆ γs(a), then �SγS(a) ⊆ �SγS(b), since a ∈ Sa, so a ∈�SγS(a) = Sa by (2),
then a ∈ Sb. Thus, we obtain Sa ⊆ Sb.

(3−→4) Let (s, t) ∈ γS(α(a)) for s, t ∈ S. Then α(as) = α(at). Since α is monomorphism, then as=at
and β(a)s = β (a) t for β ∈ S, hence (s, t) ∈ γS(β(a)). Then, γS(α(a)) ⊆ γS(β(a). By using (3), we have
βa ∈ Sα(a). So there is σ ∈ S such that β(a) = (σ ◦ α)(a) and hence β = σ ◦ α.

(4−→1) Take α : aS −→SS to be the inclusion homomorphism in (4).

Definition 2.10. Let MS be a right S-act with T=End (MS). The dual hom (MS, S) of MS is a left S-act.
If s ∈ S and α ∈ hom (MS, S), then the map sα is defined by (sα)(m) = s(α(m)) for all m ∈ MS.

Lemma 2.11. If M=mS be a cyclic S-act and A = γS (m), then hom (MS, S) ∼= lM (A) ∼= lMγS (m).

Proof. For any x ∈ �M(A), let αx: MS−→ S by αx(ms) =xs. Then, we obtain that αx is well-
defined S-homomorphism. Then, define β : �M(A) −→ hom (MS, S) by β(x) =αx. Thus, β is a left
S-isomorphism.

The next theorem affords a significant characterization of the mininjective monoid in terms of duality
(also it is considered a generalization of Proposition 2.2 in [15]):

Theorem 2.12. The following conditions are equivalent for a monoid S

(1) S is right mininjective monoid;
(2) Hom (MS, S) is a simple left S-act for all simple right S-act MS;
(3) �M(A) is a simple left S-act for all maximal right ideals A of S.

Proof. (1−→2) Let αβ ∈ Hom(MS, S), where MS is simple, and assume that α �= �. Then, β ◦ α−1 :
α(M) −→ S is homomorphism. Since α(M) is simple, β ◦ α−1 can be extended to an endomorphism
σ of S by (1). Thus β = σ ◦ α.

(2−→3) Let MS =mS (m ∈ M) be cyclic S-act and then take A =γS(m). Thus �M(A) ∼= Hom (MS, S)

by Lemma 2.11, which implies that �M(A) is simple by (2). (3−→1) Let α : mS −→ S be an
S-homomorphism, where mS is simple and let i : mS −→ S be the inclusion map. Put A =γS(m).
Then, A is the maximal right ideal of S, so �M(A) ∼= Hom (mS, S) by Lemma 2.11. Hence (mS,S) is
simple whence α = β ◦ i for some β ∈ S.
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Definition 2.13. An S-act MS is called Kasch if �M(A × A) �= � for any maximal right ideal A of S.

Important properties of a minimal injective Kasch act are given in the next theorem:

Theorem 2.14. Let MS be a right mininjective S-act that is right Kasch with T=End (MS). Then, map
α : A −→ lM(A × A) from the act of all maximal right ideals A of S to the act of all minimal subacts of
TM. Then:

(1) α is one-to-one.
(2) α is bijection if and only if �MγS(B) = B for all minimal subacts B of TM. In this case α−1: B −→

γS(B).

Proof. (1) Let A be maximal right ideal. Then, we have �M(A × A) �= � (since MS is Kasch). Thus
�M(A × A) is simple by Theorem 2.12. Since A × A ⊆ γS�M(A × A) �= S × S, so A × A =γS�M
(A × A) , because A is maximal.

(2) If α is onto and B is a minimal subact of TM, where B =�M(A × A), where A is the maximal right
ideal of S and A × A ⊆ S × S, then, �MγS(B) =�MγS�M(A × A) =�M(A × A) = B. Conversely,
assume that �MγS (B) = B for all minimal subacts B of TM, so the proof is complete when we establish
the following claims:

Claim (1): γS (B) is a maximal right ideal of S for all minimal subacts B of TM.

Proof. Let A be maximal right ideal of S and γS(B) ⊆ A × A . Then, � �= �M(A × A) ⊆ �MγS(B) = B
(since MS is Kasch). As B is minimal, so B =�M(A × A). Thus, γS(B) = γS�M(A × A) ⊇ A × A and
then γS(B) = A × A.

Claim (2): �M(A × A) is a minimal subact of TMfor all maximal ideals A of S.

Proof. Let A be maximal ideal of S. As MS is Kasch S-act, so �M(A × A) �= �. Thus, there exists
m ∈ �M(A × A) which implies that A =γS(m) and hence �M(A × A) =�MγS(m) = Tm by Proposi-
tion 2.5. By Theorem 2.12 Tm is a minimal subact of TM. It implies that �M(A × A) is minimal.

Proposition 2.15. If MS is an S-act that contains a simple S-subact essential in MS, then MS is mininjective.

Proof. It is obvious so it is omitted.

The next proposition illustrates under which condition on minimal M-injective act to be principally
quasi injective:

Lemma 2.16. [16] Over a monoid S, the following statement holds: a right S-system MS is duo if and only
if for each endomorphism f of MS and for each element a of MS, f (a) = as for some s ∈ S. In particular, if
S is commutative and MS is duo right S-system, then End (MS) is a commutative monoid.

Proposition 2.17. Let MS be a multiplication S-act. If MS is minimal M-injective S-act, then MS is PQ-
injective.

Proof. Assume that MS is minimal M-injective and multiplication S-act. Let N be S-subact of MS and
f be S-homomorphism from N into MS. Since MS is multiplication system, so N=MI for some right
ideal I of S. Since, every multiplication act is duo, so by using Lemma 2.16 and since every principal
is simple, then by the minimalist property of the injective, we have for each endomorphism g of MS
and each element a of MS, g (a)=as for some s ∈ S. Now, for each n ∈ N and s ∈ S, we have ns ∈ N
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(since N=MI); thus, ns =f(n) =g(n), which means that g is an extension of f and MS is principally quasi
injective.

3. M-mininjective S-acts

Definition 3.1. Let MS and NS be S-act, NS is called M-mininjective, if for every S- homomorphism
from a simple M-cyclic subact of MS into NS can be extended to MS. A monoid S is a right mininjective
if and only SS is minimal injective as S-act.

Proposition 3.2. Let A be a simple M-cyclic subact of MS. If A is an M-mininjective act, then A is a retract
subact of MS.

Proof. Let IA: A −→ A be the identity map. Since A is M-mininjective, there exists S-homomorphism
f : MS −→A such that fi =IA, where i is the inclusion map of A into MS. This means that i has left
inverse, so A is retract of MS.

Proposition 3.3. Let N = ⊕i∈INi where Ni|i ∈ I and I is finite index act be a family of S-acts. Then, N is
M-mininjective if and only if Ni is M-mininjective.

Proof. Assume that NS= ⊕i∈I Ni is M-mininjective. Let X be a simple M-cyclic subact of MS
and f be S-homomorphism from X into Ni. Since NS is M-mininjective S-act, there exists S-
homomorphism g : MS−→NS such that g ◦ iX= j ◦ f , where iX is the inclusion map of X into MS,
and j is the injection map of Ni into NS. Define h : MS −→Ni such that h =πi ◦ g, where πi is
the projection map of NS onto Ni, then h ◦ iX= πi ◦ g ◦ iX= πi ◦ j ◦ f = f . That is for all a ∈ X,
h(a) = h(iX(a)) = πi(g(a)) =πi(g(iX(a))) =πi(j(f(a))) = (πi ◦ j)(f(a)) = f(a). Figure 1 explains that:

Hence Ni is M-mininjective S-act. Conversely, assume that Ni is M-mininjective for each i ∈ I and
f is S-homomorphism from a simple M-cyclic subact X of MS into NS. Since Ni is M-mininjective, S-
homomorphism βi: MS−→Ni exists such that βi ◦ iX=πi ◦ f , where πi is the natural projection of NS
onto Ni. So there exists S-homomorphism β : MS−→NS such that βi=πi ◦β . We claim that β ◦ iX= f .
For this since βi ◦ iX =πi ◦β ◦ iX, then πi ◦ f = πi ◦β ◦ iX, so we obtain f = β ◦ iX. Figure 2 illustrates
that:

Therefore, N is M-mininjective.

Corollary 3.4. The retraction subact of M-mininjective S-act is M-mininjective.

The following theorem elucidates characterizations of the M-mininjective act:

Theorem 3.5. Let MS be an S-act with T= End (MS). The following conditions are equivalent.

Figure 1. Illustrates that NS is M-mininjective S-act.
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Figure 2. Explains that Ni is M-mininjective act.

(1) MS is M-mininjective;
(2) For all α ∈ T if α (M) is simple then, �T(kerα) = Tα;
(3) Kerα ⊆ Ker β implies that Tβ ⊆ Tα for any α, β ∈ T and β �= �, where α(M) is simple;
(4) For all α ∈ T, if α (M) is simple and β : α (M) −→ MS is an S-homomorphism, then βα ∈ Tα.
(5) �T((β(M) × β(M))

⋂
kerα) =�T(β(M) × β(M))

⋃
Tα, for each α, β ∈ T with α(M) is simple.

Proof. (1−→2) Let β ∈ Tα, then β = σα for some σ ∈ T. For each s, t ∈ S with ms=mt, we have
β (ms)= β(mt), so β ∈ �T(kerα). Conversely, let β ∈ �T(kerα), then define σ : α (MS) −→MS
by σ(α(m)) = β(m) for some m ∈MS. It is clear that σ is a well-defined S-homomorphism with
Kerα ⊆ Kerβ . In fact, if α(m1) = α(m2), then (m1, m2) ∈ kerα ⊆ kerβ . So (m1, m2) ∈ kerβ and
then β(m1) = β(m2). Therefore σ(α(m1)) = σ(α(m2)). Since MS is M-mininjective, there exists an
S-homomorphism f : MS−→MS such that f ◦ i = σ , where i is the inclusion map of α(MS) into
MS. Thus, β(m) = σ(α(m)) = fi(α(m)) = f(α(m)) = (fα)(m), where m ∈MS. Hence, β ∈ Tα and
�T(kerα) ⊆ Tα. Then, we have Tα = �T(kerα).

(2−→3) Assume that Kerα ⊆ Kerβ , then �T(Kerβ) ⊆ �T(Kerα). Hence, we have Tβ ⊆ Tα for any
α, β ∈ T.

(3−→4) Define β : α(M) −→MS by β(α(m)) = σ(m), for each m ∈ MS, then, it is clear that β is
well-defined since Kerα ⊆ Kerσ . Since, σ ∈ Tσ , by (3) we have σ ∈ Tα and hence βα ∈ Tα.

(4−→5) Let σ ∈�T(β(MS) × β(MS)
⋂

kerα) . We claim that Kerαβ ⊆ Kerσβ , for this let
(m1, m2) ∈ Kerαβ , so α(β(m1)) = α(β(m2)). This implies that (β(m1), β(m2)) ∈ (β(MS) × β(MS)⋂

Kerα) , then σ(β(m1)) = σ(β(m2)). Thus, we have (m1, m2) ∈ Kerσβ . By (4), we have Tσβ ⊆
Tαβ , and σ ◦ β = u ◦ α ◦ β for some u ∈ T, and therefore, there is u ∈ T such that σ ◦ β = u ◦ α

◦ β for each α, β ∈ T, in particular σ = u ◦ α. Thus, σ ∈ �T(β (MS)×β (MS) ). This means that
σ ∈ �T(β (MS) ×β (MS) )

⋃
T.

Conversely, let σ ∈ �T(β (MS)×β (MS) )
⋃

Tα, so this means σ ∈ �T(β(MS) × β(MS)) or σ = u ◦
α for some u ∈ T. If σ ∈ �T(β (MS)×β (MS) ), this means σ(β(m1)) = σ(β(m2)), ∀ m1, m2 ∈
MS. Now, for each m1, m2 ∈ MS, we have (m1m2) ∈ (kerα ∩ β (MS) ×β (MS) ), which implies that
α(m1) = α(m2) and β(m1) = β(m2). Since u is well-defined, so u ◦ α (m1) = u ◦ α (m2). If
σ = u ◦ α, then this implies that σ(m1) = σ(m2). Thus, we have σ ∈ �T(β(MS) × β(MS)

⋂
Kerα).

If σ ∈�T(β (MS)×β (MS) ), then we have σβ (m1) = σβ (m2). Hence, we have σ ∈�T(β(MS) ×
β(MS)

⋂
Kerα).

(5−→2) By taking β =IM, identity map of MS.
(4−→2) Let β ∈�T(kerα). Then, we obtain Kerα ⊆ Kerβ . Define σ : α (MS) −→MS by

σ(α(m)) = β(m) for some m ∈MS. It is clear that σ is a well-defined S-homomorphism. In fact, if
α(m1) = α(m2), then (m1m2) ∈ kerα ⊆ kerβ . So (m1m2) ∈ kerβ and then β(m1) = β(m2). There-
fore, σ(α(m1)) = σ(α(m2)). By using (4), we have σα ∈ Tα, again by using(4),β ∈ Tα. Therefore, we
have �T(kerα) ⊆ Tα. On the other hand α ∈ Tα, then α ∈�T(kerα). Hence, Tα ⊆ �T(kerα)and then
Tα = �T(kerα).

(3−→1) Let N be an MS-cyclic subact of S-act MS, so there exists S-epimorphism α : MS−→ N
such that α(MS) = N. Let ϕ be S-homomorphism from N into MS and i be the inclusion map of
N into MS. It is clear that ϕα is S-endomorphism of MS. Since Kerα ⊆ Kerϕα, whence for each
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(x, y) ∈ Kerα implies α(x) = α(y) and since ϕ is well-defined, so ϕ(α(x)) = ϕ(α(y)). Thus, we have
(x, y) ∈ Ker(ϕ ◦ α). By (3), we have Tϕα ⊆ Tα. Thus, ϕ ◦ α ∈ Tα and so ϕ ◦ α = σ ◦ α for some
σ ∈ T. This shows that MS is M-mininjective S-act.

Definition 3.6. An S-act MS is called uniserial; if its subacts are linearly ordered by inclusion. A monoid
S is called a uniserial monoid if it is uniserial as an S-act.

Proposition 3.7. Let MS be a uniserial S-act and T=End (MS). If MS is M-mininjective, then T is left
uniserial monoid.

Proof. Let N and H be left ideals of T. Assume that H �⊆ N. To prove N ⊆ H. Let α ∈ N, β ∈ H and
β /∈ N. If ker α ⊆ ker β , then Tβ ⊆ Tα, by Theorem 3.5 and hence β ∈ Tα ⊆ N which is a contradic-
tion. Since MS is uniserial, it follows that Kerβ ⊆ Kerα and therefore Tα ⊆ Tβ by Theorem 3.5, this
implies that N ⊆ H. Therefore, T is left uniserial monoid.

M-mininjective S-act coincided with minimal M-injective (or M-simple injective) S-act by using
some conditions, and this will be clarified in the next proposition:

Proposition 3.8. Let MS be principal self-generator S-act. Then, MS is minimal M-injective S-act if and
only if MS is M-mininjective.

For the future work, this article can be generalized for the notion of almost min-quasi-injective act
and this is satisfied when for any simple subact mS of S-act MS, there exists subact Xm of MS such that
�MγS(m) = Tm

⋃̇
Xm.
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