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Abstract: 

  In this paper, we present a multi-inventory with limited size model to clarify the basic idea of 

multi-inventory systems in order to understand the relationships between the main variables, 

and examine the inventory’s behaviour in a very broad range. In addition to the obvious 

applications in physical warehouses (such as electrical equipment, supplies, raw materials used 

in manufacturing, etc.), there are less predictable cases in which the multi-inventory model can 

be used. Such a model can be applied on the number of engineers and employees in a company, 

also on the number of students and professors in a university, as they constitute the processes 

of demand, hiring, and laying off which are types of compensation. Moreover, it may be useful 

at times not to look at physical goods as inventory as the prior examples are both types of 

inventory based on the space occupied as the available space can accommodate stored 

materials and is considered an inventory that must be compensated when depleted. The 

previous examples, in addition to many others, can be classified as inventory problems 

indicating the abundance of inventory models application, and the possibility of benefiting 

from the study of inventory theory in terms of clarifying the internal structure of the systems. 

In this study, we used the Neutrosophic logic to solve the problem of multi-inventory and 

limited size, depending on the fact that the optimal volume of materials to be stored is affected 

by the rate of demand for inventory. Moreover, this study is considered an expansion of one of 
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the known classical inventory models that depend on finite data and that is done by assigning 

a constant value to the inventory demand rate over the storage cycle time period, which does 

not correspond with the realistic application. 

The limited application of classical inventory models was the motivating factor for this study 

as it deals with all data, whether specified or not in the inventory management process. 

Moreover, it takes into account all cases that the demand for inventory can go through, ranging 

from the cessation of demand for some stored materials to demand that exceeds the values 

provided by the real study. 

Through this study, we developed mathematical relationships that we used to determine the 

necessary quantities of each of the materials to be stored based on the rate of demand and 

provide us with results that are more accurate. These results that can be utilized to store many 

materials in appropriate quantities and available volume, ensure that there is no shortage 

during the storage cycle period, and enables us to calculate all the necessary costs, which will 

achieve great profits. 

Keyword: Inventory Management, Inventory Management Models, Neutrosophic Logic, 
Multiple Storage of Finite Materials and Volumes 

1.. Introduction 

  Inventory theory has gone through different stages since it was founded in 1920. The models 

were initially very simple and used a limited number of variables to determine the main 

parameters that affect the storage process. These models became more complex after adding 

more variables as they were more detailed.  

One limitation was that it only dealt with one product. In contrast, the inventory that we 

encounter in the real word deals with different materials that are enormous and interactive to 

an extent that makes their management a complex problem and this led to the development of 

research to handle the new conditions of the inventory process. 

Neutrosophic logic, which is a new vision of modeling developed by American mathematician 

Florentine Smarandache and is designed to effectively address the uncertainties inherent in the 

real world, as it came to replace the binary logic that recognizes right and wrong by introducing 

a third neutral state which can be interpreted as undefined or unconfirmed [5,7,8,9,11]. 

Florentine Smarandache presented Neutrosophic logic in 1995 as a generalization of fuzzy logic 

and an extension of the theory of fuzzy categories presented by Lotfi Zadeh [4] in 1965. In 

addition to that, Ahmed A. Salama presented the theory of Neutrosophic classical categories 

as a generalization of the theory of classical categories [10, 18] and developed, introduced and 
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formulated new concepts in the fields of mathematics, statistics, computer science, and others 

by neutrosophic logic [15-17,20,27]. The neutrosophic logic has significantly grown in recent 

years through its application in measurement, collections, graphs, while in optimization 

especially the neutrosophic geometric programming was an unfathomable area until Huda E. 

Khalid et al put the basic neutrosophic mathematical concepts of it since 2014, as well as the 

concepts of relation equations and many other scientific and practical fields [6,12-14,19,21-

25,29-37]. 

In this paper, we shed the light to the application of neutrosophic logic to one of the inventory 

management models, which is the multi-inventory model for limited materials and volumes. 

This application will authorize dealing with inventory management models more accurately, 

contrary to what is known in the classical logic given that the demand for the stock of stored 

materials is not precisely defined. Rather, demand may fall within a range that includes all the 

cases that we can face, starting from the cessation of demand for some materials to the situation 

in which the demand for some materials exceeds the upper limit provided by the data and 

market study. 

2. Discussion: 

There are many reasons to keep inventory, including time efficiency and avoiding the cost and 

inconvenience caused by the continuous and infrequent compensation which requires much 

inventory and available space. This aids warehouse managers in production facilities or 

enterprises to determine the appropriate and optimal volume of inventory of each material, to 

secure the demand in a certain time, and to take advantage of the available space in a way that 

ensures securing materials throughout the duration of the storage cycle at the lowest possible 

cost. 

Through the classic study of static inventory models, we found that the rate of demand for 

inventory is subject to a uniform probability distribution. Therefore, when the rate of demand 

for inventory is known indefinitely (not specified) during one time, we use the Neutrosophic 

uniform probability distribution that was previously studied [20]. 

This paper is a continuation of our previous study on inventory management [28].  

Firstly, a summary of the studying problem according to classical logic will be presented. 

The problem according to classical logic: [1] 
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Suppose that a production facility stores and sells an 𝑚𝑚 items and the size of the storage 

warehouse is limited and equals to 𝐵𝐵 unit. If one unit of the material 𝑖𝑖 where 𝑖𝑖 = 1,2 … ,𝑚𝑚 

occupies  𝑆𝑆𝑖𝑖 from the volume of the repository. The requirement is determining the optimal 

amount of various inventory materials so that the production facility ensures the availability 

of that materials during the period of the storage cycle and at the lowest cost. To solve this 

problem, we build the appropriate mathematical model by setting the following appropriate 

hypotheses: 

1. The rate of demand for an item 𝑖𝑖  is constant and equal to 𝜆𝜆𝑖𝑖 in a unit of time. 

2. The available initial quantity of the item 𝑖𝑖 at the beginning of the storage cycle is equal 

to 𝒬𝒬𝑖𝑖. 

3. Whenever the storage level of the item 𝑖𝑖 reaches to zero, it will be compensated with 

the same quantity 𝒬𝒬𝑖𝑖. 

4. The price of one unit of  item 𝑖𝑖 is equal to 𝐶𝐶𝑖𝑖. 

5. There is a fixed cost  𝐾𝐾𝑖𝑖 of preparing each demand of item 𝑖𝑖. 

6. The cost of storing  item 𝑖𝑖 in the time unit is equal to ℎ𝑖𝑖, and that each of these items is 

ordered at different times and independently of each other. 

Mathematical model: to find 

𝑀𝑀𝑖𝑖𝑀𝑀   𝐶𝐶(𝒬𝒬𝑖𝑖) = �(
𝜆𝜆𝑖𝑖 .𝐾𝐾𝑖𝑖
𝑄𝑄𝑖𝑖

+
ℎ𝑖𝑖 .𝑄𝑄𝑖𝑖

2
+ 𝜆𝜆𝑖𝑖 .𝐶𝐶𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 

Subject to: 

𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 ≤ B 
𝑄𝑄𝑖𝑖 ≥ 0   ; 𝑖𝑖 = 1,2, … ,𝑚𝑚 

The mathematical model is a nonlinear model used to find the optimal solution. To solve this 

model by one of the nonlinear programming methods, the method of Lagrange factors has been 

nominated by the authors. So, the following Lagrange function will be used: [1,2,3] 

𝐿𝐿(𝑄𝑄𝑖𝑖 , 𝜇𝜇) = �(
𝜆𝜆𝑖𝑖 .𝐾𝐾𝑖𝑖
𝑄𝑄𝑖𝑖

+
ℎ𝑖𝑖 .𝑄𝑄𝑖𝑖

2
+ 𝜆𝜆𝑖𝑖 .𝐶𝐶𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

+ 𝜇𝜇(𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 +⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 −B) 

 
The optimal solution is given by the following relationship 

 

𝑄𝑄𝑖𝑖∗ = �
2𝜆𝜆𝑖𝑖 .𝐾𝐾𝑖𝑖

ℎ𝑖𝑖 + 2𝜇𝜇∗. 𝑆𝑆𝑖𝑖
   ; 𝑖𝑖 = 1,2, … ,𝑚𝑚                                                  (1) 

The optimal value of 𝜇𝜇∗ let to get the optimal value of 𝑄𝑄𝑖𝑖∗ satisfying the equality of the 
constrain 𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 ≤ B, that mean, 𝑆𝑆1𝑄𝑄𝑖𝑖∗ + 𝑆𝑆2𝑄𝑄2∗ + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚∗ = 𝐵𝐵 
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From the relationship between the stored quantity and the rate of demand for stock, we must 

store quantities 𝑄𝑄𝑖𝑖
∗ that meet demand, and at the same time, the space needed to store them 

does not exceed the warehouse space. 

 

 

3. A Case Study: [1]  

 A factory stores and sells three raw materials 𝐴𝐴,𝐵𝐵,𝐶𝐶 in its warehouse, which has an 

area of 700 𝑚𝑚2 only. The data for these materials are as follows: 

 
 
𝐶𝐶 

 
𝐵𝐵 

 
𝐴𝐴  

material 
 indicator  

10000 2000 5000 The rate of demand for the material 𝑖𝑖 𝜆𝜆𝑖𝑖 

200 300 500 The cost of preparing the order of the material 𝑖𝑖 𝐾𝐾𝑖𝑖 

5 15 10 Storage cost per unit of material 𝑖𝑖 ℎ𝑖𝑖 

0.40 0.80 0.70 The space required for one unit in 𝑚𝑚2 𝑆𝑆𝑖𝑖 

 

The Required: 

 Determine the optimal stock quantity of the three materials, so that the factory ensures 

the availability of materials during the storage cycle period and at the lowest cost. 

Solution: 

 From studying data, we notice that the rate of inventory demand is given by specific 

values, therefore we must find the optimal quantities for the orders of these materials that 

correspond to the demand rate and are appropriate for the warehouse space. We will use the 

relationship (1) that gives us the optimal quantity that we have got from the above previous 

theoretical studying: 

  𝑄𝑄𝑖𝑖∗ = � 2𝜆𝜆𝑖𝑖.𝐾𝐾𝑖𝑖
ℎ𝑖𝑖+2𝜇𝜇∗.𝑆𝑆𝑖𝑖

   ; 𝑖𝑖 = 1,2, … ,𝑚𝑚 

By giving the qualitative values of the Lagrange factorial 𝜇𝜇, from μ = 0 then  μ = 3,  μ = 5 , μ =

8  to  μ = 10, it seems that 𝜇𝜇 = 10 is the value at which the conditions of the problem are fulfilled 

and given the following optimal solution: 
   

𝑄𝑄1 = �
2𝜆𝜆1.𝐾𝐾1

ℎ1 + 2𝜇𝜇. 𝑆𝑆1
= �

(2). (5000). (500)
10 + (2). (10). (0.7)

= 456.54 ≅ 457 
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𝑄𝑄2 = �
2𝜆𝜆2.𝐾𝐾2

ℎ2 + 2𝜇𝜇. 𝑆𝑆2
= �

(2). (2000). (300)
15 + (2). (10). (0.8)

= 196.75 ≅ 197 

𝑄𝑄3 = �
2𝜆𝜆3.𝐾𝐾3

ℎ3 + 2𝜇𝜇. 𝑆𝑆3
= �

(2). (10000). (200)
5 + (2). (10). (0.4)

= 554.7 ≅ 5555 

𝐵𝐵 = (0.7). (456.54) + (0.8). (196.75) + (0.4). (554.7) = 699.5 

The above area is approximately equal to the warehouse space 700𝑚𝑚2, and thus we have 

reached the optimal solution that gives us the optimal quantities for orders from the three 

materials, which are: 𝑄𝑄1∗ = 457,𝑄𝑄2∗ = 197,𝑄𝑄3∗ = 555 

These quantities meet the demand for materials during the storage cycle and make the cost of 

storage as low as possible and occupy the space allocated for storage in the warehouse. 

However, it does not take into account fluctuations in the market and applies only to the 

specific case with the data contained in the text of the problem. Thus, it was necessary to find 

a study that gives results in which a margin of freedom takes into account the fluctuations of 

the market and takes the problem out of the frame of restriction and limitation. 

Therefore, in this paper, we will address the previous problem according to the Neutrosophic 

logic that takes into account all definite and indefinite cases, through which we will be able to 

address market fluctuations resulting from the rate of demand for materials. 

 

4. Reformulate the Above Case Study from a Neutrosophically perspective: 

We assume that a certain facility stores and sells m  material and that the volume of the storage 

warehouse is limited and equal to 𝐵𝐵 unit, if one unit of the material 𝑖𝑖, where 𝑖𝑖 = 1,2, … ,𝑚𝑚 , 

occupies a place 𝑆𝑆𝑖𝑖 equal to the volume of the warehouse. 

The Required:  

To determine the optimal stock quantity of different materials, so that the factory ensures the 

availability of materials during the storage cycle period and at the lowest cost. It also takes into 

account that the rate of demand is indefinite. Thus, to solve this problem, we build the 

appropriate mathematical model by setting the following appropriate hypotheses: 

1. The rate of demand for an item 𝑖𝑖 is equal to 𝜆𝜆𝑖𝑖𝑖𝑖 (indefinite) so that 𝜆𝜆𝑖𝑖𝑖𝑖 = [𝜆𝜆𝑖𝑖2, 𝜆𝜆𝑖𝑖2] is an 

interval or   𝜆𝜆𝑖𝑖𝑖𝑖 = {𝜆𝜆𝑖𝑖2, 𝜆𝜆𝑖𝑖2} is a set…etc. 

2. The available initial quantity of the item 𝑖𝑖 at the beginning of the storage cycle is equal 

to 𝑄𝑄𝑖𝑖 . 

3. Whenever the storage level of the item 𝑖𝑖 reaches to zero, it will be compensated with 

the same quantity 𝑄𝑄𝑖𝑖 . 
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4. The price of one unit of the item 𝑖𝑖 is equals to 𝐶𝐶𝑖𝑖. 

5. There is a fixed cost  𝐾𝐾𝑖𝑖 of preparing each order of the item 𝑖𝑖. 

6. The cost of storing item 𝑖𝑖 in the time unit is equal to ℎ𝑖𝑖 , and that each of these items is 

ordered at different times and independently of each other. 

 
 

5. Building the Mathematical Model: 

Notice from the given problem that the main variable in the storage amount is the rate of 
demand in the condition that it does not exceed the volume of the warehouse. Therefore, we 
take 𝜆𝜆𝑖𝑖𝑖𝑖 (indefinite) where 𝜆𝜆𝑖𝑖𝑖𝑖 = [0, 𝜆𝜆𝑖𝑖2]. 
We denote the total cost of storage for material 𝑖𝑖 by 𝐶𝐶𝑖𝑖(𝑄𝑄𝑖𝑖) where we find 

 
𝐶𝐶𝑖𝑖(𝒬𝒬𝑖𝑖) = 𝜆𝜆𝑖𝑖𝑖𝑖.𝐾𝐾𝑖𝑖

𝑄𝑄𝑖𝑖
+ ℎ𝑖𝑖.𝑄𝑄𝑖𝑖

2
+ 𝜆𝜆𝑖𝑖𝑖𝑖 .𝐶𝐶𝑖𝑖             where  𝑖𝑖 = 1,2, … ,𝑚𝑚 

In which 𝐶𝐶(𝒬𝒬𝑖𝑖) is the total cost of storage and gives the following formula: 
 

𝐶𝐶(𝒬𝒬𝑖𝑖) = �(
𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
𝑄𝑄𝑖𝑖

+
ℎ𝑖𝑖 .𝑄𝑄𝑖𝑖

2
+ 𝜆𝜆𝑖𝑖𝑖𝑖 .𝐶𝐶𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 

 
In order for the amount of storage does not exceed the volume 𝐵𝐵 of the warehouse, it must 
meet the following requirement:  
𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 ≤ B 
 
From that we attain the following neutrosophic mathematical model: 
 

𝑀𝑀𝑖𝑖𝑀𝑀   𝐶𝐶(𝒬𝒬𝑖𝑖) = �(
𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
𝑄𝑄𝑖𝑖

+
ℎ𝑖𝑖 .𝑄𝑄𝑖𝑖

2
+ 𝜆𝜆𝑖𝑖𝑖𝑖 .𝐶𝐶𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 

Subject to 
 

𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 ≤ B 
𝑄𝑄𝑖𝑖 ≥ 0   ; 𝑖𝑖 = 1,2, … ,𝑚𝑚 

The mathematical model is a nonlinear model used to find the optimal solution. We will use 

the method of Lagrange factors, so we form the following Lagrange function:   

𝐿𝐿(𝑄𝑄𝑖𝑖 , 𝜇𝜇) = �(
𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
𝑄𝑄𝑖𝑖

+
ℎ𝑖𝑖 .𝑄𝑄𝑖𝑖

2
+ 𝜆𝜆𝑖𝑖𝑖𝑖 .𝐶𝐶𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

+ 𝜇𝜇(𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 +⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 −B) 

 
To find the minimum limit, which is the optimal volume, we differentiate Lagrange function 
in regards to 𝑄𝑄𝑖𝑖and 𝜇𝜇 where 𝜇𝜇 is the Lagrange factorial. We take its value to match the 
problem and we equate the differentiation to zero to get  
 
𝜕𝜕𝐿𝐿(𝑄𝑄𝑖𝑖 , 𝜇𝜇)
𝜕𝜕𝑄𝑄𝑖𝑖

=
−𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
𝑄𝑄𝑖𝑖2

+
ℎ𝑖𝑖
2

+ 𝜇𝜇𝑆𝑆𝑖𝑖 = 0                                         (∗) 
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𝜕𝜕𝐿𝐿(𝑄𝑄𝑖𝑖 , 𝜇𝜇)
𝜕𝜕𝑄𝑄𝑖𝑖

= 𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 +⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 → B = 0             (∗∗) 

 
We solve the formulas (∗) so 𝑚𝑚 equation with 𝑚𝑚 variable is  𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑚𝑚 and we get   

𝑄𝑄𝑖𝑖 = �
2𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
ℎ𝑖𝑖 + 2𝜇𝜇. 𝑆𝑆𝑖𝑖

  ;        𝑖𝑖 = 1,2, … ,𝑚𝑚 

Since 𝜆𝜆𝑖𝑖𝑖𝑖 ,𝐾𝐾𝑖𝑖 , ℎ𝑖𝑖 , 𝑆𝑆𝑖𝑖 , 𝜇𝜇 ≥ 0   so the limitation 𝑄𝑄𝑖𝑖 ≥ 0 is satisfied 
 
We compensate for the limitation 
𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 ≤ B 
We find 
 

𝑆𝑆1�
2𝜆𝜆1𝑁𝑁.𝐾𝐾1

ℎ1 + 2𝜇𝜇. 𝑆𝑆1
+ 𝑆𝑆2�

2𝜆𝜆2𝑁𝑁.𝐾𝐾2

ℎ2 + 2𝜇𝜇. 𝑆𝑆2
+ ⋯+ 𝑆𝑆𝑚𝑚�

2𝜆𝜆𝑚𝑚𝑁𝑁.𝐾𝐾𝑚𝑚
ℎ𝑚𝑚 + 2𝜇𝜇. 𝑆𝑆𝑚𝑚

≤ B                   (2) 

In which the amount 𝑄𝑄1,𝑄𝑄2, … ,𝑄𝑄𝑚𝑚 must satisfy the limitation (2), in the case that it does not  
 
 

𝑆𝑆1�
2𝜆𝜆1𝑁𝑁.𝐾𝐾1

ℎ1 + 2𝜇𝜇. 𝑆𝑆1
+ 𝑆𝑆2�

2𝜆𝜆2𝑁𝑁.𝐾𝐾2

ℎ2 + 2𝜇𝜇. 𝑆𝑆2
+ ⋯+ 𝑆𝑆𝑚𝑚�

2𝜆𝜆𝑚𝑚𝑁𝑁.𝐾𝐾𝑚𝑚
ℎ𝑚𝑚 + 2𝜇𝜇. 𝑆𝑆𝑚𝑚

> B      

 
We notice that the left side of the formula becomes smaller when the value of 𝜇𝜇  increases, since 
𝜇𝜇 is an imagined value we can find one positive value for 𝜇𝜇. For example 𝜇𝜇∗and that is by 
gradually increasing the value until we satisfy the limitation (2). This means that the optimal 
demand value 𝑖𝑖 material is given the following relationship 
 

Q𝑖𝑖
∗ = �

2𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
ℎ𝑖𝑖 + 2𝜇𝜇∗. 𝑆𝑆𝑖𝑖

  ;        𝑖𝑖 = 1,2, … ,𝑚𝑚                              (3) 

 
The optimal solution is given by the following relationship 
If 𝜇𝜇∗ makes the constraint  𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯+ 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 ≤ B equal then the quantities Q𝑖𝑖

∗ 
achieve the following equality: 

𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯ + 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 = B 
From the relationship between the stored quantity and the rate of demand for stock, we must 

store quantities Q𝑖𝑖
∗ that meet demand, and at the same time, the space needed to store them 

does not exceed the warehouse space. 

We clarify the above aspects through the following example: 

 
6. Practical Example 
By taking the same case study that previously discussed in the classical point of view and put 
the rate of demand for materials indefinite, i.e. we took it in the form of intervals. 
The context of the problem from neutrosophically perspective: 
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A factory stores and sells three raw materials 𝐴𝐴,𝐵𝐵,𝐶𝐶 in its warehouse, which has an area of  

700𝑚𝑚2 only. The data for these materials were as follows: 

 

The required: 

Determine the optimal stock quantity of the three materials, so that the factory ensures the 

availability of materials during the storage cycle period and at the lowest cost. 

From the study of the data, we notice that the rate of demand for inventory is given by 

indeterminate (i.e. indefinite) values (i.e. intervals), and therefore we must find the optimal 

quantities for the orders of these materials that correspond to the demand rate and are 

appropriate for the warehouse space. We use the formula (3) that gives us the optimal quantity 

that we have reached in the theoretical study: 

Q𝑖𝑖
∗ = �

2𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
ℎ𝑖𝑖 + 2𝜇𝜇∗. 𝑆𝑆𝑖𝑖

  ;        𝑖𝑖 = 1,2, … ,𝑚𝑚   

By giving qualitative values of the Lagrange factorial 𝜇𝜇, Firstly suppose that 𝜇𝜇 = 0 ,then 

𝑄𝑄1 = �
2𝜆𝜆1𝑖𝑖.𝐾𝐾1
ℎ1 + 2𝜇𝜇. 𝑆𝑆1

= �2[0,5000]. (500)
10

= �[0,500000] = [0,707.15] 

𝑄𝑄2 = �
2𝜆𝜆2𝑖𝑖 .𝐾𝐾2
ℎ2 + 2𝜇𝜇. 𝑆𝑆2

= �2[0,2000]. (300)
15

= �[0,80000] = [0,282.84] 

𝑄𝑄3 = �
2𝜆𝜆3𝑖𝑖 .𝐾𝐾3
ℎ3 + 2𝜇𝜇. 𝑆𝑆3

= �2[0,10000]. (200)
5

= �[0,800000] = [0,894.45] 

substitute the above values into the equation: 

𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + ⋯ + 𝑆𝑆𝑚𝑚𝑄𝑄𝑚𝑚 = B 
0.7[0, 707.15] + 0.8[0, 282.84] + 0.4[0, 894.45] = [0, 495] + [0, 226.27] + [0, 357.78]

= [0, 1079.05] 

We need to ensure that the upper bound that we obtain from the above interval is less than or 

equal to the area of the warehouse 700𝑚𝑚2. We note that the upper bound of the 

interval[0, 1079.05]  is greater than the area of the warehouse (i.e. 1079.05 > 700 𝑚𝑚2). Thus, we 

 

𝐶𝐶 

 

𝐵𝐵 

 

𝐴𝐴 

  material 

 Indicator  

[0, 10000] [0, 2000] [0,5000] The rate of demand for the material 𝑖𝑖 𝜆𝜆𝑖𝑖𝑖𝑖  

200 300 500 The cost of preparing the order of the material 𝑖𝑖 𝐾𝐾𝑖𝑖  

5 15 10 Storage cost per unit of material 𝑖𝑖 ℎ𝑖𝑖  

0.4 0.8 0.7 The space required for one unit in 𝑚𝑚2 𝑆𝑆𝑖𝑖  

https://doi.org/10.54216/IJNS.180105


International Journal of Neutrosophic Science (IJNS)                  Vol. 18, No. 1,  PP. 42-56, 2022 

51 
Doi   :   https://doi.org/10.54216/IJNS.180105 
Received July 30, 2021 Accepted: Jan 08, 2022 

 

must give a new value for 𝜇𝜇 that is greater than zero to reduce the stored quantity of a substance 

where 𝑖𝑖 = 1,2,3. Assume that 𝜇𝜇 = 3 , by substituting this value into formula (3), we will obtain 

the following intervals: 

𝑄𝑄1 = �
2𝜆𝜆1𝑖𝑖.𝐾𝐾1
ℎ1 + 2𝜇𝜇. 𝑆𝑆1

= �
2[0,5000]. (500)

10 + (2). (3). (0.7)
= �[0,352000] = [0,593.3] 

𝑄𝑄2 = �
2𝜆𝜆2𝑖𝑖 .𝐾𝐾2
ℎ2 + 2𝜇𝜇. 𝑆𝑆2

= �
2[0,2000]. (300)

15 + (2). (3). (0.8)
= �[0,60600] = [0, 246.17] 

𝑄𝑄3 = �
2𝜆𝜆3𝑖𝑖 .𝐾𝐾3
ℎ3 + 2𝜇𝜇. 𝑆𝑆3

= �
2[0,10000]. (200)
5 + (2). (3). (0.4)

= �[0,540500] = [0,735.18] 

0.7[0, 593.3] + 0.8[0, 246.17] + 0.4[0,735.18] = [0, 415.31] + [0, 196.94] + [0, 294.07]

= [0, 906.32] 

It is clear that the upper bound of the interval [0, 906.32]  is greater than the 700 𝑚𝑚2 area of the 

warehouse. Thus, we must give a new value for 𝜇𝜇  that is greater than 3 to reduce the stored 

quantity of a substance 𝑖𝑖 where 𝑖𝑖 = 1,2,3. For example, we substitute  𝜇𝜇 = 5 into formula (3) 

and we obtain: 

𝑄𝑄1 = �
2𝜆𝜆1𝑖𝑖.𝐾𝐾1
ℎ1 + 2𝜇𝜇. 𝑆𝑆1

= �
2[0,5000]. (500)

10 + (2). (5). (0.7)
= �[0,294000] = [0,542.22] 

𝑄𝑄2 = �
2𝜆𝜆2𝑖𝑖 .𝐾𝐾2
ℎ2 + 2𝜇𝜇. 𝑆𝑆2

= �
2[0,2000]. (300)

15 + (2). (5). (0.8)
= �[0,52160] = [0, 228.39] 

𝑄𝑄3 = �
2𝜆𝜆3𝑖𝑖 .𝐾𝐾3
ℎ3 + 2𝜇𝜇. 𝑆𝑆3

= �
2[0,10000]. (200)
5 + (2). (5). (0.4)

= �[0,444400] = [0,666.63] 

0.7[0,542.22] + 0.8[0,228.39] + 0.4[0,666.63] = [0, 379.55] + [0, 182.71] + [0,266.65]

= [0,828.91] 

We note that the upper bound of the field [0,828.91] is greater than the 700𝑚𝑚2 area of the 

warehouse. Thus, we must give a new value for 𝜇𝜇  that is greater than 5 to reduce the stored 

quantity of a substance 𝑖𝑖 where 𝑖𝑖 = 1,2,3 . For example, we substitute 𝜇𝜇 = 8 into formula (3) 

and we obtain: 

𝑄𝑄1 = �
2𝜆𝜆1𝑖𝑖.𝐾𝐾1
ℎ1 + 2𝜇𝜇. 𝑆𝑆1

= �
2[0,5000]. (500)

10 + (2). (8). (0.7)
= �[0,235800] = [0,485.59] 

𝑄𝑄2 = �
2𝜆𝜆2𝑖𝑖 .𝐾𝐾2
ℎ2 + 2𝜇𝜇. 𝑆𝑆2

= �
2[0,2000]. (300)

15 + (2). (8). (0.8)
= �[0,43160] = [0, 207.75] 

𝑄𝑄3 = �
2𝜆𝜆3𝑖𝑖 .𝐾𝐾3
ℎ3 + 2𝜇𝜇. 𝑆𝑆3

= �
2[0,10000]. (200)
5 + (2). (8). (0.4)

= �[0,350800] = [0,592.28] 
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0.7[0, 485.59] + 0.8[0, 207.75] + 0.4[0, 592.28] = [0, 339.91] + [0, 166.2] + [0,236.91]

= [0,743.01] 

Again, we note that the upper bound of the field [0,743.01] is greater than the 700𝑚𝑚2  area of 

the warehouse. Thus, we must give a new value for 𝜇𝜇 that is greater than 8 to reduce the stored 

quantity of a substance 𝑖𝑖 where 𝑖𝑖 = 1,2,3. For example, we substitute 𝜇𝜇 = 10 into formula (3) 

and we obtain: 

𝑄𝑄1 = �
2𝜆𝜆1𝑖𝑖.𝐾𝐾1
ℎ1 + 2𝜇𝜇. 𝑆𝑆1

= �
2[0,5000]. (500)

10 + (2). (10). (0.7)
= �[0,208350] = [0,456.45] 

𝑄𝑄2 = �
2𝜆𝜆2𝑖𝑖 .𝐾𝐾2
ℎ2 + 2𝜇𝜇. 𝑆𝑆2

= �
2[0,2000]. (300)

15 + (2). (10). (0.8)
= �[0,38700] = [0, 196.72] 

𝑄𝑄3 = �
2𝜆𝜆3𝑖𝑖 .𝐾𝐾3
ℎ3 + 2𝜇𝜇. 𝑆𝑆3

= �
2[0,10000]. (200)
5 + (2). (10). (0.4)

= �[0,307700] = [0,554.7] 

0.7[0 ,456.45] + 0.8[0, 196.72] + 0.4[0, 554.7] = [0, 319.52] + [0, 157.38] + [0,221.88]

= [0,698.78] 

We note that the upper limit of the field [0,698.78] is approximately equal 700𝑚𝑚2 to the area of 

the warehouse, and thus we have reached the ideal solution that gives us the optimal quantities 

of orders from the three materials, which are : 

𝑄𝑄1∗ = [0,456.45],𝑄𝑄2∗ = [0,196.72],𝑄𝑄3∗ = [0,554.7]     

These quantities meet the demand for materials during the storage cycle and make the cost of 

storage as low as possible and occupy the space allocated for storage in the warehouse.  

Notes: 

1. We note that the ideal quantities of orders from the three materials that we obtained 

from the classical study only represent one quantity from the range of optimal 

quantities obtained in the Neutrosophic study. This illustrates that using the 

Neutrosophic logic yields the best and most accurate results considering that the rate 

of demand for inventory changes and is affected by the market. 

2. Any kind of imprecise data such as intervals, sets  or other vague (i.e. indefinite) value 

can be selected for 𝜆𝜆𝑖𝑖𝑖𝑖 , and meets the limitations so that the values we obtain for the 

required quantities do not exceed the space needed by the available space 700𝑚𝑚2. 

For example, if we assume that the indeterminacy belongs to an interval that takes into account 

that the demand for the stock of the three materials does not exist and does not exceed the 

upper limit that is in the data provided by the market study, the text of the issue becomes as 

follows: 
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7. A Case Study 

A factory stores and sells three raw materials 𝐴𝐴,𝐵𝐵,𝐶𝐶 in its warehouse, which has an area of 

700𝑚𝑚2 only. The data for these materials were as follows: 

 
Required: 
Obtaining the optimal demand values for the raw materials using the relationship that gives 
the optimal value, as denoted in the prior theoretical study: 

Q𝑖𝑖
∗ = �

2𝜆𝜆𝑖𝑖𝑖𝑖 .𝐾𝐾𝑖𝑖
ℎ𝑖𝑖 + 2𝜇𝜇∗. 𝑆𝑆𝑖𝑖

  ;        𝑖𝑖 = 1,2, … ,𝑚𝑚 

By giving hypothetical values for the Lagrange factorial 𝜇𝜇 from 𝜇𝜇 = 0 then: 

𝑄𝑄1 = �
2𝜆𝜆1𝑖𝑖.𝐾𝐾1
ℎ1 + 2𝜇𝜇. 𝑆𝑆1

= �2[2000,5000]. (500)
10

= �[20000,500000] = [141.42,223.60] 

𝑄𝑄2 = �
2𝜆𝜆2𝑖𝑖 .𝐾𝐾2
ℎ2 + 2𝜇𝜇. 𝑆𝑆2

= �2[1500,2000]. (300)
15

= �[60000,80000] = [244.9, 282.8] 

𝑄𝑄3 = �
2𝜆𝜆3𝑖𝑖 .𝐾𝐾3
ℎ3 + 2𝜇𝜇. 𝑆𝑆3

= �2[5000,10000]. (200)
5

= �[400000,800000] = [632.46, 894.43] 

 
We insert these values into the formula:   
𝑆𝑆1𝑄𝑄1 + 𝑆𝑆2𝑄𝑄2 + 𝑆𝑆3𝑄𝑄3 = 700 
 
0.7[141.42,223.60] + 0.8[244.9, 282.8] + 0.4[632.46, 894.43]

= [98.99, 187.81] + [195.9, 226.24] + [252.98,357.77] = [547.87,771.82] 
 
 
We compare the upper bound 771,82 with the available space 700 and we note that:   
771,82 > 700 
It is clear that the gained result from 𝜇𝜇 = 0 is close to the available space value , therefore, we 
will take 𝜇𝜇 = 1, predicting to get the optimal value as follow: 
 
0.7[132.45,209.43] + 0.8[232.85,268.87] + 0.4[525.23,830.45]

= [92.72,146.6] + [186.28,215] + [210,332.18] = [489,693.78] 

 

𝐶𝐶 

 

𝐵𝐵 

 

𝐴𝐴 

  material 

 Indicator  

[4000, 10000] [1500, 2000] [2000,5000] The rate of demand for the material 𝑖𝑖 𝜆𝜆𝑖𝑖𝑖𝑖  

200 300 500 The cost of preparing the order of the 

material 𝑖𝑖 

𝐾𝐾𝑖𝑖  

5 15 10 Storage cost per unit of material 𝑖𝑖 ℎ𝑖𝑖  

0.4 0.8 0.7 The space required for one unit in 𝑚𝑚2 𝑆𝑆𝑖𝑖  
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We compare the upper bound of the interval = [489,693.78] with the available space 700𝑚𝑚2 
we note that: 
693.78 ≅ 700 
This means that we have used almost the entire available space, and then the ideal quantities 
for orders on the three materials are as follows: 
𝑄𝑄1∗ = [132.45,209.43],𝑄𝑄2∗ = [232.85,268.87],𝑄𝑄3∗ = [525.23,830.45]   
Note : 
If we choose the Lagrange factorial and get a size smaller than the available, we continue to 
search for the optimal solution by taking a value of the Lagrange factorial that is smaller than 
the value that was used in order to increase the size. For example, if we take 𝜇𝜇 = 3 we get 
[83.08,131.36] + [170.56,196.94] + [186,294.08] = [439.64,622.38] 
We compare the upper bound of the interval  [439.64,622.38] with the available space 700𝑚𝑚2 
and we note that: 
622.38 < 700 
This means that we have not used all of the available space, we must give a new value for 𝜇𝜇 
that is less than 3 to enlarge the stored quantity of 𝑖𝑖 substance where 𝑖𝑖 = 1,2,3 
Also, if we take 𝜇𝜇 = 2 we obtain: 
[276.7,138.35] + [177.9,205.42] + [196.95,311.4] = [593,655.17] 
We compare the upper bound of the interval [593,655.17] with the available space 700𝑚𝑚2 and 
we note that: 655.17 < 700 
This means that we have not used all of the available space, we must give a new value for 𝜇𝜇 
that is less than 2 to enlarge the stored quantity of 𝑖𝑖 substance where 𝑖𝑖 = 1,2,3 
 
Practical Fact 
When choosing the Lagrange factorial, if we obtain a value greater than the actual value, we 
increase the Lagrange factorial to reduce the result. On the other hand, if we obtain a value 
smaller than the actual value, we reduce the Lagrange factorial to increase the result. 

 
8. Conclusion and results:  

Through the previous study, we note that the use of neutrosophic technique provides the 
production facilities, which depend on storing materials, a safe working environment that 
guarantees them the ability to address market fluctuations resulting from fluctuation in 
demand for inventory during the duration of the storage cycle. This is possible through the 
plans presented in this study, which included most of the cases that a production facility can 
go through, where the company can re-order the appropriate quantities according to the rate 
of demand for inventory and the volume available for it. 
The results we reached through our study reflect the reality of the market, and this realistic 
application was lacking in the study according to the classical logic that deals with the rate of 
demand for inventory as a fixed amount throughout the duration of the storage cycle. The 
neutrosophic logic provides us with a more comprehensive study and allows us to compute 
the most accurate results possible.  
In the near future, we look forward to studying the rest of the inventory management models 
according to the neutrosophic techniques, such as inventory models with a deficit of one item, 
dynamic models… etc. 
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