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Abstract: Desktop and portable platform-based information systems become the most tempting target
of crypto and locker ransomware attacks during the last decades. Hence, researchers have developed
anti-ransomware tools to assist the Windows platform at thwarting ransomware attacks, protecting
the information, preserving the users’ privacy, and securing the inter-related information systems
through the Internet. Furthermore, they utilized machine learning to devote useful anti-ransomware
tools that detect sophisticated versions. However, such anti-ransomware tools remain sub-optimal
in efficacy, partial to analyzing ransomware traits, inactive to learn significant and imbalanced
data streams, limited to attributing the versions’ ancestor families, and indecisive about fusing
the multi-descent versions. In this paper, we propose a hybrid machine learner model, which is a
multi-tiered streaming analytics model that classifies various ransomware versions of 14 families
by learning 24 static and dynamic traits. The proposed model classifies ransomware versions to
their ancestor families numerally and fuses those of multi-descent families statistically. Thus, it
classifies ransomware versions among 40K corpora of ransomware, malware, and good-ware versions
through both semi-realistic and realistic environments. The supremacy of this ransomware streaming
analytics model among competitive anti-ransomware technologies is proven experimentally and
justified critically with the average of 97% classification accuracy, 2.4% mistake rate, and 0.34% miss
rate under comparative and realistic test.

Keywords: crypto-ransomware; locker-ransomware; static analysis; dynamic analysis;
machine learning

1. Introduction

Motivated by fame and illegal profit, cyber-criminals have threatened users’ privacy and
information systems by ransomware attacks [1]. Thus, different anti-ransomware tools and
anti-malware software have been developed to detect ransomware attacks of various ransomware
families on desktop and portable platforms [2,3]. Along with them; are the anti-ransomware tools
assisted by machine learning that learn ransomware data with a set of static and/or dynamic traits to
examine ransomware attacks at their runtime successfully [3,4]. Although they perform better than their
competitors, machine learning-based anti-ransomware tools still suffer from late ransomware tackle,
somewhat incorrect categorization of a ransomware family among other malware families, variable
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performance outcomes versus various ransomware families, complex computations, and longtime
reaction with heavy use of CPU and memory [4,5]. Accordingly, they still provide a chance of evasion
to the cyber-criminals who advance their exploitations to evolve 0-Day versions of new ransomware
families every day [6]. Then, more users’ data loss, systems’ data leakage, and users’ money loss would
be produced along with other tragic concerns to cyber-security [4–6]. Since data protection, systems’
defense, and cyber-space survival is the superior aim of researchers in cyber-security [7]. A more
proficient scheme to detect ransomware attacks in their runtime is required to overcome the previous
issues of the existing anti-ransomware tools. The required solution should be efficacious with less
performance overhead, and adaptive to operate on desktop and portable platforms of servers, PCs,
tablets, and smartphones. Furthermore, it should identify the ransomware version among the generic
versions of malware and good-ware apps as well as categorize its corresponding family decisively.
In addition, it should analyze both crypto and locker ransomware families automatically to extract
their static and dynamic traits that discriminating against them from other malicious families and
good-ware apps with light use of CPU and memory.

To this end, we propose a ransomware streaming analytics model by integrating a compact set
of 24 static and dynamic traits, a hybrid machine learner, a numeral measurement for ransomware’s
ancestor family attribution, and a statistic formula for a multi-descent ransomware version via a
multi-tiered architecture. The proposed machine learner trains a set of 24 rich traits to characterize
14 ransomware families in a semi-realistic environment. Correspondingly, it identifies the ancestor
family as well as the multi-descent ransomware versions among more than 40K of various ransomware,
malware, and good-ware versions decisively. Overall, this is done through multiple and synchronous
tiers, including ransomware characterization and family attribution tiers, multi-descent ransomware
fusion tiers, and then ransomware classification tier. To affirm the efficacy and the supremacy of our
proposed approach, an extensive study, test, and benchmarking are conducted across other machine
learners and anti-ransomware tools that have been recently adopted in the anti-ransomware domain.
Also, a critical qualification is achieved to distinguish and justify their limitations in terms of the type of
machine learning algorithms, the employed traits of ransomware, the family attribution, the robustness
against big datasets, and the performance outcomes. Hence, the addressed limitations demonstrate
what is overlooked, which our proposed model boosts for the best detection performance? Precisely,
this paper makes a six-fold contribution as follows:

• Revisiting state-of-the-art anti-ransomware technologies, particularly those assisted by machine
learners to highlight the issues that they have overlooked in ransomware detection.

• Deploying an informative compact set of static and dynamic traits to holistically characterize the
ransomware versions of both crypto and locker families.

• Enhancing numeral and statistic metrics to attribute a ransomware version to its ancestor family,
and to fuse ransomware versions of multi- descent families, respectively.

• Proposing a machine learner that unearths the 0-Day versions of ransomware into a generalized
class model.

• Designing a multi-tier streaming analytics model to implement in a realistic environment and
operate on manifold platforms by integrating the compact set of traits, the numeral and statistic
metrics, and the proposed machine learner.

• Significance of our proposals is manifested through testing, evaluating, and benchmarking on a
big dataset consisting of 35,000 ransomware versions of 14 families, 500 versions of 10 malware,
and 500 good-ware apps aggregated at a different time from different data archives.

For the aforesaid contribution, the remaining of this paper is organized as follows: Section 2
describes the ransomware life cycle, types, activities, and families. Section 3 revisits the state-of-the-art
anti-ransomware tools and appraises them critically. In Section 4, the materials and methodology are
elaborated, including the proposed machine learner, numeral, and statistic formulas. Results of the test,
evaluation, and benchmarking are presented in Section 5. Then, Section 6 discusses the observations
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and addresses the pivot issues of the proposed model and machine learner. Finally, Section 7 concludes
the overall facets investigated in this paper, along with future outlook.

2. Ransomware Versions and Ransomware Families

Even though, cyberspace provides useful communication media to the users with many services
of e-commerce and e-government [1,2], it puts them at the risk of ransomware attacks that cause
significant damage to their interconnected information systems and then money loss [2–4]. The risk of
ransomware often occurs when the cyber-criminals exploit e-commerce services and e-government
applications to access the victims’ information systems fully and to gain a ransom from those victims [8].
Furthermore, the advanced electronic payment methods and electronic currencies like bitcoin and de
facto payments enable the cyber-criminals to deploy their social engineering technologies to deceive the
victims [8,9]. Usually, a ransomware attack is a malicious variant aiming at either locking the victim’s
information system or encrypting that system and its user files for a ransom acquirement to revive
the system and regain the files access [1,4,10]. As we illustrate in Figure 1, cyber-criminals pursue
a “recipe-to-success” strategy to deceive the users, intruding their information system on different
platforms like Windows and Androids [4,10]. Through the “recipe-to-success” strategy, the victim
catches the bait via an email attachment or spoofed link that is under the cyber-criminal’s control.
Then, the ransomware is disseminated to the victim’s information system by exploiting that system’s
vulnerabilities to infect that system and encrypt particular system files and/or lock particular system’s
locations. Accordingly, the victim’s access to his/her system or files is blocked, and the ransomware
attack acquires a ransom from the victim to either decrypt the files or unlock the system [4,10].
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Continually, cyber-criminals evolve ransomware families of either crypto or locker type, as described
in Table 1. Crypto-ransomware leverages symmetric and asymmetric ciphering on the user data and
system files, whereas locker-ransomware hijacks the hosted system’s resources and apps to disable the
user’s access to them [3,4]. As they intend to bypass the existing system defense’ settings to cause more
potential damage and gain more profit; cyber-criminals used to create many patterns (i.e., versions)
belonging to every evolving family [2,3,7]. Generally, ransomware versions run sophisticated intrusion
actions and employ advanced exploits that may infect different or similar platforms [8,9]. Additionally,
they act similarly to those of other malicious threats and/or they maneuver to those of good-ware
apps [8–10]; for example, the ransomware families that are described in Table 1. Hence, ransomware
versions and families require different analytics mechanisms assisted by different compact sets of traits
to recognize them, among other malware and good-ware apps accurately [4,10].
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Table 1. Time-line summary of ransomware families.

Family Year Type Exploits and Actions Damage (s)

AiDS [10] 1989 Crypto It was delivered to computer-based
information systems via floppy disks

• Leakage of Root Directories
• Loss of System Files

GpCode [10,11] 2005 Crypto
It was developed with an asymmetric
encryption algorithm to encrypt users’ data
files

• Holding Up the Banking
Information Systems

• Loss of System and User Files

Archiveus [10,11] 2006 Crypto It was applied with the RSA algorithm to
encrypt system files

• Ruining the Original Version of
Windows Platform

• Data Loss
• Money Loss

WinLock [10,11] 2010 Locker
It locked the computer system and demanded
ransom via sending SMS to the victim’s phone
number

• Holding Up The Operating System
• Loss of Backup Data
• Loss of Money

Reveton [4,10,11] 2012 Locker It impersonated the law enforcement agencies
to deceive users with rumor claims

• Holding Up The Operating System
• Abusing the Prepaid Electronic

Payment Platforms
• Loss of Backup Data

Crypto-Locker
[4,10,11] 2013 Crypto It encrypted the file’s contents by RSA

algorithm with private and public keys

• The Halt of Targeting System
• Loss of Backup Data
• Loss of Money

Crypto-Wall
[4,10,11] 2014 Crypto

It encrypted the system files and injected
malicious codes which freezes the system’s
firewalls

• Leakage of Original System Files
• Loss of User Files
• Loss of Money in Bitcoins

Ransom as
Service (RaaS)

[6,10]
2015 Locker

It used the social engineering techniques to
impersonate a good-ware website as a
malicious website in the dark web

• The Halt of Targeting Systems
• Loss of Backup Data
• Loss of Money in Bitcoins

Cerber [10,11] 2016 Crypto
It injected the malicious instructions to
overwrite an encrypted content onto the
original system

• Loss of Original System Files
• Deactivation of the system registry

Crysis [10] 2016 Crypto It encrypted the system files, rewrote their
contents, and renamed them

• Leakage of System Files
• Loss of User Data
• Loss of Backup Data

Locky [4,10,11] 2016 Locker

It used the social engineering techniques to
intrude the system through vulnerabilities of
system settings, deactivated the registry
actions, and removed the backup data

• The Halt of the Targeting System
• Loss of Backup Data
• Money Loss

WannaCry [4,10] 2017 Crypto It encrypted the contents of the system files and
removed the original system files

• Data Loss
• Holding Up the Operating System
• Money Loss in Bitcoins

Sopra [12,13] 2017 Crypto It encrypted the contents of the system files and
removed the original system files

• Data Loss
• Holding Up the Operating System
• Money loss in Bitcoins

Zeus [12,13] 2018 Crypto
It encrypted the contents of systems files and
created new files with extensions belonging to
different ransomware versions

• The Halt of the Targeting System of
Industrial Organization

• Backup Data Loss
• Money Loss

3. The State-of-The-Art of Anti-Ransomware Technology

To thwart ransomware families and their corresponding versions, researchers have developed
various anti-ransomware technologies during the last decades, and they categorized them into
misuse-based technology, anomaly-based technology, and machine learning-based technology [6,14–16],
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as described briefly in Table 2. For a clear description, we illustrate the categories above, along with
their advantages, are presented in Figure 2.

Table 2. Brief description of the state-of-the-art anti-ransomware technology.

Table Description Demerits Examples

Misuse-Based
Technology [6,14–16]

They analyze ransomware versions to extract cryptographic
primitives, suspicious scripts, built-in functions, infected files’
paths, and extensions. They achieved moderate accuracy in

lightweight performance

-User’s data can be lost
-They can be obfuscated
-They can be defeated against 0-Day
ransomware versions
-A lot of false alarms
-The database must be updated frequently

Bitdefender

Kaspersky

McAfee

Avast

Anomaly-Based
Technology [17–23]

They trace ransomware runtime activities, computer processes,
CU and memory footprints, server actions and control to detect

ransomware versions effectively and efficiently

-The infirm vs. scalable network traffic
-They can be defeated vs. 0-Day ransomware
versions
-Fragile analysis vs. big and imbalanced dataset

R-Locker

RansomFlare

Poster

UNIVEIL

Talos

Machine Learning-Based
Technology [11,24–32]

They apply machine learning algorithms to classify training and
testing sets of ransomware and good-ware instances with a

hybrid set of static and dynamic traits. Then, generated class
models characterize generic and/or unseen ransomware

versions with high detection accuracy, low false alarms, and
misclassifications

-They can be evaded by adversarial
ransomware traits and newly emerged
ransomware families
-Simi-real testbed and real-mode conditions are
needed
-Obsolescent detection vs. various ransomware
families

EldeRan

ShieldFS

2entFOX

GAN

NetConverse

RansomWall

RANDS

DRTHIS
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The misuse-based anti-ransomware technology relies on either archiving the exploits and actions
of ransomware families in a black-list or archiving exploits of good-ware apps in a white-list [6,14–16].
However, it can detect the generic versions of the prevalent ransomware families exclusively as if
the built-in archives are not frequently updated by the data of 0-Day versions [6,16]. Furthermore, it
consumes a longer time and more computer resources as well as human labor to trace ransomware
exploits and actions [6,10,14]. Unlikely, the anomaly-based anti-ransomware technology can analyze
ransomware’ normal behaviors and generic processes statically and/or dynamically to deviate 0-Day
versions [4,6] (see Figure 2). Although anomaly-based anti-ransomware technology outperforms the
misuse-based technology against 0-Day versions, it is still bypassed by versions of more advanced
crypto coding families [6,10,14].

As described in Table 2, machine learning-based anti-ransomware technology applies various
machine learners to cope with the problems of the former anti-ransomware technologies at
discriminating 0-Day versions of different families expertly [6,24]. Furthermore, the constructed
machine learners take the advantages of static and/or dynamic analysis of ransomware traits to extract
the vectors of traits and learn them with a compact set of traits [25,26]. Precisely, they rely on different
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decisive functions, induction parameters, design, and class attributes to promote their discriminating
power; for example, naïve bayes (NB), support vector machine (SVM), decision tree (DT), logic
regression (LR), bayesian network (BN), neural networks (k-NN), and random forest (RF), etc. as
well as hybrid machine learners like (HMLC) that hybridizes multiple and complementary machine
learners as presented in Table 3. Therefore, machine learning-based anti-ransomware technologies
outperform their competitors [2–4]. However, they still fall short at characterizing ransomware
families holistically, attributing ransomware versions to their ancestor families, fusing ransomware
versions of multi-descents, learning big data stream, and running on manifold platforms [24], as
presented in Table 3. Beyond the above, the next sections will emulate the milestones of our proposed
solutions, justify its sufficiency versus the lack of state-of-the-art anti-ransomware technology, qualify
its performance, and enumerate its future outlook.

Table 3. Prominent anti-ransomware tools assisted by machine learners.

Existing Tools Method Machine Learning
Algorithm Lacks

EldeRan
[11]

It detected the updates of API calls,
registry key and file system operations
via a sandbox versus
locker-ransomware families

DT

• Exclusive for locker ransomware
• Heavyweight in use
• Time-sensitive
• High detection faults
• Unaware of new ransomware families
• Unaware of family attribution
• Unaware of multiple datasets
• Unaware of manifold platforms

ShieldFS
[30]

It detected some crypto-ransomware
families that exploit generic
ransomware traits like I/O and
low-level file system infections,
encrypting file contents, and
overwriting the original contents by
monitoring file system activity and then
updating the threat profile overtime on
a realistic environment.

DT

• Exclusive for crypto-ransomware
• Heavyweight in use
• Time-sensitive
• High detection faults
• Unaware of new ransomware families
• Unaware of multiple datasets
• Unaware of manifold platforms
• Unaware of family attribution

Net-Converse
[26]

It used dynamic traits and six machine
learning algorithms to detect 0-Day
versions of locker-ransomware versions

LR, DT, BN

• Exclusive for locker-ransomware
• Performance overhead
• Unaware of new ransomware families
• Unaware of runtime condition
• Unaware of static analysis
• Unaware of family attribution
• Unaware of multiple datasets
• Unaware of manifold platforms

2entFOX
[31]

It detected static and dynamic traits of
crypto-ransomware by using graph
traversal network

BN

• Exclusive for crypto-ransomware
• Performance overhead
• Heavyweight in use
• Unaware of new ransomware families
• Unaware of family attribution
• Unaware of manifold platforms

GAN
[32]

It develops a generative adversarial
network for detecting versions of
locker-ransomware families with a
generic set of dynamic traits

NN, NB, RF, SVM

• Exclusive for locker-ransomware
• Performance overhead
• Heavyweight in use
• Unaware of multi-class decision
• Unaware of new ransomware families
• Unaware of runtime condition
• Unaware of multiple datasets
• Unaware of static analysis
• Unaware of manifold platforms

Ransom-Wall [33]

A multi-layered tool detects 0-Day
versions of crypto-ransomware families
by developing a generalized model
comprised of static and dynamic traits

LR, SVM, NN, RF

• Exclusive for crypto-ransomware
• Time-sensitive
• High detection faults
• Unaware of multi-class decision
• Unaware of family attribution
• Unaware of multiple datasets
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Table 3. Cont.

Existing Tools Method Machine Learning
Algorithm Lacks

RANDS
[34,35]

A hybrid machine learning-based
anti-ransomware tool that detects 0-Day
versions of both crypto and locker
ransomware families by using dynamic
traits on Windows platform

HMLC

• Unaware of static analysis
• Unaware of family attribution
• Unaware of manifold platforms
• Unaware of multiple datasets

DRTHIS
[36]

A three-fold machine learner that
identifies crypto and locker
ransomware versions among malware
and good-ware versions using dynamic
traits.

NN

• Unaware of static analysis
• Unaware of family attribution
• Unaware of advanced and new

ransomware versions
• Time-sensitive
• Unaware of manifold platforms

4. Materials and Methods

This section describes the design and emulates the milestones of the proposed ransomware
streaming analytics model to justify its sufficiency versus the lacks of the state-of-the-art
anti-ransomware technology in terms of the compactness of traits, hybrid machine learner, and
decision margins for ransomware characterization and family attribution.

4.1. Ransomware Characterization

Like malware families, ransomware families expose static traits such as digital signatures, built-in
scripts, fuzzy functions, and hashes. They exhibit the ten static traits described in Table 4 to intrude the
targeting system, infect its firewalls, and disable its restore settings. Also, they utilize static traits to
encrypt data, APIs, files’ content, and files’ paths as well as spoofing the links to particular directories.
The ten static traits presented in Table 4, are usually exploited in the versions of 14 ransomware families
that this work deploys to implement and testify the proposed model. In the extraction tier that of a
semi-realistic environment, the existence of encrypts, packers, hashes, and suspicious scripts are traced
to inspect. Furthermore, any infections like altered filenames and directories, file system locations,
bootstraps, and registry keys that might be done by a ransomware version are tracked through created
trap files. Whereas, the 14 dynamic actions those leveraged by the versions of the 14 ransomware
families (as described in Table 4) are traced to state their exploits through the accessing queries of files
and directories, read/write/delete operations, edit the system’s digital certification, modify system files’
headers as well as the entropies of buffering data. Then, the raw data of all traced traits and actions of
an examined version are formulated into an input vector of traits along with the class of that version as
either ransomware R or non-ransomware R’ to be computationally readable by the machine learner.
The values of the trait vector are normalized into “0” s and “1” s according to the existence of their
traits. The class label R in the trait vector is represented by “1” and the class label R’ is represented by
“−1”. In contrast, any suspicious version that does not belong to R and R’ (an imperviously examined
version that might be malicious) is remarked as “0”.

4.2. Ancestor Family Attribution and Multi-Descent Fusion

Consequently, the attribute of the ransomware family that the examined version might belong to
is assumedly represented by two digits ranging from “01” to “99” as the header of the version’s trait
vector. Since 14 ransomware families are investigated for this work; therefore, the headers would range
from “01” to “14”. Any additionally adopted ransomware families will be assigned with the remaining
digits of the assumed range in the future work. It is noteworthy to mention that the assumption “00” is
assigned to the headers of all good-ware trait vectors, and “99” is assumedly assigned to the headers
of all malware apps in the dataset. Then, a lookup table of the assigned headers is created as a tracing
file for the numeral computation of Attribution Rate (ARti, j) of every trait in a trait vector across other
trait vectors involved in ransomware vectors and non-ransomware vectors, as in Equation (1). By
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product, the header data “h” of all characterized trait vectors are exploited to identify their relevance
to a particular ransomware family among other families.

ARti, j =
n∑

j=1

hti, j→ R − hti, j→ R∼

hti, j→ R + hti, j→ R∼
(1)

where R refers to the ransomware trait vectors and R∼ refers to all non-ransomware trait vectors in the
batch of the dataset. Then, ARti, j is the frequency of each trait t j belonging to a trait vector ti, j across all
vectors encompassed in R and R∼. Unlikely, hti, j→ R is the frequency of that trait ti, j with respect to the
headers of trait vectors in R. However, hti, j→ R∼ is the frequency of the same trait ti, j with respect to all
headers of trait vectors in R∼.

Table 4. Potential traits exploited by 0-Day versions of generic ransomware families.

Traits Type

Ransomware Families
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Windows API calls Dynamic 7 4 4 7 7 7 7 7 7 4 7 7 7 7

Windows Cryptographic APIs Dynamic 4 7 4 4 4 4 7 7 4 7 4 7 4 7

Registry Key Dynamic 4 7 4 4 7 7 7 7 7 4 7 7 7 7

System File Process Dynamic 4 7 7 4 7 7 7 4 4 4 4 7 7 7

Directory Actions Dynamic 4 4 7 4 7 7 7 7 7 7 4 4 4 4

Application Folders Dynamic 4 4 7 4 7 7 7 7 7 4 4 4 4 4

Control Panel Settings Dynamic 4 7 4 4 7 7 7 7 7 4 7 4 7 4

System File Locations Dynamic 4 7 7 4 7 7 7 4 4 4 4 7 7 7

Pay-loaders/Downloaders Dynamic 4 7 4 4 7 7 7 7 7 4 7 4 7 4

Command and Control Server Dynamic 4 4 4 4 7 7 7 4 7 4 7 4 7 4

Windows Volume Shadow
(vssadmin.exe and WMIC.exe) Dynamic 7 4 4 7 7 7 7 4 7 4 7 4 7 4

File Fingerprint Dynamic 4 7 7 4 7 4 7 7 4 7 4 7 7 7

Directory Listing Queries Dynamic 4 7 7 4 7 7 7 4 4 4 4 7 7 7

Windows Safe Mode Booting
(bcdedit.exe) Dynamic 7 4 4 7 7 7 4 4 7 4 7 4 4 4

File Extensions Static 4 4 4 4 4 4 7 7 4 7 4 4 4 4

Files Names Static 7 7 7 7 4 7 4 7 4 7 4 4 4 4

Portable Executable Header Static 7 4 4 7 7 7 4 4 7 4 7 4 4 4

Embedded Resources Static 7 4 4 7 7 7 4 4 7 4 7 4 4 4

Packers Static 7 4 4 7 7 7 4 4 7 4 7 4 4 4

Shannon’s Entropy Static 4 7 4 4 4 4 7 7 4 7 7 7 7 7

Cryptors Static 4 7 4 4 4 4 7 7 4 7 7 7 7 7

Portable Executable Signature Static 7 4 4 7 7 7 4 4 7 4 7 4 4 4

Embedded Scripts Static 7 4 4 7 7 7 4 4 7 4 7 4 4 4

Fuzzy Hashing Static 4 7 4 4 4 4 7 7 4 7 7 4 7 7

On the other hand, the header data “h” of all characterized trait vector “T j” would be checked-up
across all extracted trait vectors from the batch of the dataset to categorize its mutual multi-descent
to the other families of ransomware among malware and good-ware families as per Equations (2)
and (3). This statistic probability is named Multi −Descent Ratio (MDR(Ti)), which prioritizes the
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ransomware versions that may belong to multi-descent families of ransomware with respect to their
relative redundancy in malware and good-ware families on the learned trait vectors (T).

Pr(Ti | hi) =
Nhi→R

Nhi→R + Nhi→R∼
(2)

MDR(Ti) =

∑|K|
i=1 Pr(Ti | hi)

|Ti|
(3)

4.3. Ransomware Classification

As it is elaborated in Algorithm 1, two dominant machine learning algorithms, DT and NB, are
synchronously hybridized in HML to optimize the adaptive categorization at the moment of tackling
0-Day versions of ransomware, malware, and good-ware. Since DT and NB are complements in their
decisive functions and pruning margins, they are therefore hybridized to classify ransomware more
accurately [28]. Conceptually, DT carries out a fast classification versus big training data throughout
the tree structure such that the predictive classes of the input trait vectors can be arranged as the
antecedent nodes, and their traits can be set as leaves of the tree. However, it might be ineffective in
predicting the class of imperviously seen and relevant traits [27–29]. On the other hand, NB executes
fast training of data; however, it is impractical against a big set of traits and heterogeneous trait values.
However, it spends a short computation time in learning the training vectors of traits and predicting
their actual classes by using Bayes’ probabilistic theorem with the assumption that all the examined
traits are independent of each other [27–29]. Thus, NB is applied by HML to trace the predictive classes
of all overlooked traits in the indecipherable nodes of DT that optimizes the adaptive classification.

To do so, HML trains the fetching batch of trait vectors through cutting the decision edges of
DT with NB pruning margins in an iterative splitting of the training trait vectors into sub-training
vectors. Thus, the training trait matrix (T = {T1, . . . , TK}) is given such that (Ti =

{
Ti, j

}
i∈K, j∈|Ti |

) with

the predictive labels (Pclass = {C1, C2} : C1 = 1, and C2 = −1). Each trait vector can be represented as
(Ti =

{
Cm, Ti, j

}
i∈|TK |, m∈|CM |

. Then, the prior class probability P(Cm) is computed as per Equation (4) to

predict how often each class occurs over (T) relatively to the trait vector (Ti); whilst, the conditional
probability of (Ti) is computed by Equation (5) to predict the relevance between the predictive class
(Cm) and its corresponding trait (Ti, j) as it was indicated by (P

(
Ti, j|Cm

)
).

P(TiCm) = P(Cm)
∏

e=1→p

(
Ti,j|Cm

)
(4)

Cm = Ci → Pms( Ti, Cm) (5)

4.4. Structure of the Ransomware Multi-Tier Streaming Analytics Model

Figure 3 illustrates the structure of the proposed ransomware streaming analytics model. It
consists of a trait extraction tier, an ancestor-family attribution tier, a multi-descent fusion tier, and
a learning tier. The extraction tier works on the semi-realistic environment to analyze datasets (i.e.,
versions of ransomware, malware, and good-ware) into class-labeled trait space (i.e., a set of trait
vectors with their class label). The semi-realistic environment is a virtual testbed used to create trap
files (s) with realistic conditions, and it disseminates them into particular system directories. Once
the trap (s) are exploited by ransomware, that ransomware runs its malfunctions and downloads
its crypto-or locker-gadgets to either encrypt system data or halt the system. Correspondingly, the
extracted trait vectors are attributed to their ancestor ransomware/non-ransomware families in the
family attribution tier by normalizing the header data of each trait vector with respect to its family.
Given that they assigned to their family attributes, all trait vectors are examined versus the case of a
multi-descent family in the multi-descent fusion tier.
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Algorithm 1

Definition of Semantic Codes

Let

S the stream of ransomware and non-ransomware versions such that S = {Sm}m∈|S|
T the compact set of traits
Tspace the generated space of extracted traits where Tspace = {Ti}i∈|T|
Ti a trait vector included in Tspace

TreeNode the decision tree of Tspace

Tsub the splitting space of Tspace such that Tspace = {Tsub}sub∈|sub|
Cm the class model of Ti, where C = {Cm}m∈M, and M is the number of predictive classes
R the ransomware trait vectors (i.e., ransomware versions)
R∼ are the non-ransomware trait vectors (i.e., non-ransomware versions)
F the trace file
ARti,j the Attribution Rate of a trait vector
MDR(Ti) the multi-descent ratio of a trait vector

Input: S and T
Output: R and R’
Begin

1. Generate Tspace from S with headers
2. Repeat (3) to (c)

3.
a. Create TreeNode
b. IF (all {T i}i∈|T| in Tspace have similar class Cm) THEN TreeNode← Lea f Node
c. Until T = {} THEN attach TreeNode to the majority class model Cm

4. For each Ti in Tspace

a. find prior probability C j over Tspace by Equation (4)
b. Find the conditional probability of ti, j about C j over Tspace by Equation (5)
c. Update Ti in Tspace with the maximal P

(
ti, j

∣∣∣Cm
)

such that P
(
C jm

∣∣∣ti, j
)
; Cm → Pml

(
Cm

∣∣∣ti, j
)

d. Partition Tspace into Tspace = {Tsub}sub∈|T| and Tspace ← {Tsub}sub∈|T|
5. Repeat (6) Until (Tspace , {}) AND (T , {})
6. Keep all computed probabilities in R and R∼ for classification decision

7.

For each Ti in R and R∼

a. find ARti, j

b. find MDR(Ti)

c. keep ARti, j and MDR(Ti) in the trace file Fi
End
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The diagnoses of ancestor family and multi-descent families that are pursued by family attribution
and multi-descent fusion tiers are implemented synchronously along with learning done by the hybrid
machine learner in the learning tier. So far, the proposed ransomware streaming analytics model
carries out the aforesaid multi-tiers in a multi-disciplinary manner across data, trait space, header data,
and predictive classes during both the training and testing tasks, as shown in Figure 3. Thus, the input
(unknown) ransomware version is analyzed on its runtime during the testing task of the proposed
multi-tiered streaming analytics architecture as the same as the data of the training corpus but in a
different order. The training task can be traced by the black path, whereas the testing task is tracked
throughout the red path, as it can be seen in Figure 3.

5. Experiments and Results

This section elaborates the experimental workflow that is conducted for the purpose of performance
assessment along with the description of data corpora and evaluation metrics as well as the discussion
of obtained results. As illustrated in Figure 4, the experimental workflow is conducted through
several tasks, including a collection of data, construction of data into training corpus and testing
corpus, implementation of the benchmarking machine learners as well as the proposed machine
learner (HML). In addition, the experimental workflow pursues the implementation task of the
benchmarking anti-ransomware tools and the proposed ransomware multi-tiered streaming analytics
model. Then, the evaluation task is carried out to qualify the overall experimental results and to justify
the asserted findings.
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5.1. Runtime Test Routine

Figure 5 shows how the proposed multi-tier streaming analytics model runs its run-time test
routine to detect a ransomware version in a realistic environment. In Figure 5, a suspicious version
downloads itself onto the targeting computer system when the user browses the web. To do so, the
suspicious attack uses many toolkits for this purpose, such as Trojans, spoofing links, and downloading
software and apps. Meanwhile, the suspicious version tackles the trap files created by the proposed
model during the extraction tier. It activates its static and dynamic traits to infect the trap files. Then, a
scan disk is implemented to check-up the actions and infections on the computer system. Whenever
infections are observed, they are analyzed statically and characterized dynamically. Accordingly, the
ancestor families are attributed, and multi-descent ransomware versions are fused to be ready for
further learning by the hybrid machine learner. Consequently, the class label of the fetched version is
predicted throughout the learning tier. By tracking and analyzing the observed actions, the proposed
model attempts to determine to what ancestor family this version does belong? Thus, it affirms that
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the suspicious version is either ransomware, or malware, or good-ware. Finally, it either warns the
user by a popped up message or; it pops-up a safe acknowledgment to the user’s screen.
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5.2. Data Collection and Evaluation Metrics

By searching publically used archives like the Virus Total Intelligence Platform and Virus Share,
the executable and portable ransomware and malware versions are aggregated to construct data
corpora. Exclusively, our data aggregation targets those versions that are submitted at least three
times to the aforesaid data archives between 1 January 2019 and 1 September 2019, and they are still
undetected by any existing antivirus software and/or anti-ransomware tools. Similarly, the good-ware
instances are aggregated and merged randomly to the aforesaid data corpora based on particular
heuristics of benign software apps. As described in Table 5, the aggregated data corpora are divided

randomly into 2
3

nd
and 1

3
rd

as training data corpus and testing data corpus to be used in training and
testing tasks, respectively. On the other hand, the rates of true positive (TPR), false positive (FPR),
false negative (FNR), and classification accuracy as well as mistake rate, miss rate, and elapsed time;
all are used as standard performance evaluation metrics for the evaluation task in recently published
works [11,27–29,34,35]. TPR, FPR, and FNR are derived from the confusion matrix calculations as
follows:

TPR =
TP

TP + FN
(6)

FPR =
FP

TN + FP
(7)

FNR =
FN

TP + FN
(8)

where TPR refers to the rate of correctly classified ransomware data, FPR indicates the rate of wrongly
classified good-ware data as ransomware, and FNR indicates the rate of wrongly labeled ransomware
data as good-ware data, respectively. While TP is the number of good-ware samples classified as
ransomware, FN is the number of ransomware samples classified as good-ware, TN is the number
of ransomware samples that correctly classified, and FP is the number of good-ware samples that
classified as ransomware; respectively.

Based on the above mentioned standard metrics, the classification accuracy rate (ACCR) is
calculated to validate the effectiveness of the applied machine learner and/or anti-ransomware tool
at detecting valid ransomware (TP) and valid good-ware samples (TN) relatively to the whole data
corpora as follows:

ACCR =
TP + TN

TP + FP + TN + FN
(9)
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Accordingly, mistake rate is computed to qualify the abilities of the comparable anti-ransomware
tools as well as the proposed ransomware multi-tier streaming analytics model on how they rationally
detect the valid ransomware versions with least false classifications as per Equation (10); whereas, the
miss rate is computed to qualify their abilities to rationally detect valid ransomware versions with
least misclassification cost as per Equation (11).

Mistake Rate =
FP
NG

(10)

Miss Rate =
FN
NR

(11)

where, NG and NR are the number of good-ware data and ransomware data, respectively.
In addition, the Elapsed Time plays an important to assert how long the comparable machine

learners and anti-ransomware tools spend to execute and respond by examining a batch of data with
a nominal cost of computations [35–37]. On the other hand, the proposed HML is assessed against
its competitor machine learners in terms of AUC against the up-to-date ransomware, malware, and
good-ware data during the real test. AUC calculation is widely used to justify the performance of a
machine learning algorithm on experimental data by devoting the scalar value of the receiver operating
characteristic curve (ROC), which is a plot of TPR versus FPR [35,37,38]. If the AUC score closes to 0.9,
then it signifies an excellent performance in the realistic practice; while score values of 0.8, 0.7, and less
could signify good, moderate, and then poor performance [38,39].

Table 5. The corpora of data.

Description Corpus

Number of Valid Ransomware Versions 35,000

Number of Malware Versions 500

Number of Good-ware Versions 500

Data Archives [40–42]

Aggregation Time 1/1/2019–1/9/2019

Training Data Corpus 17,332

Testing Data Corpus 17,666

Ransomware Families

AiDS 4000

GpCode 8000

Archiveus 1500

WinLock 3620

Reveton 2400

CryptoLocker 1720

CryptoWall 3250

RaaS 1300

Cerber 1535

Locky 2000

Crysis 1320

WannaCry 1300

Sopra 1570

Zeus 1500
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Thus, overall performance metrics are used during performance evaluation task that involves
comparative experiments, and realistic experiments. Such experiments quantify how often and how
long the proposed machine learner and the multi-tier ransomware streaming analytics model takes
for ransomware detection and ransomware families’ categorization versus the dominant machine
learners and the benchmarking anti-ransomware tools. Both comparative and real-time experiments
are evaluated by using the corpora of training and testing data. It is worthy of mention that simulated
machine learners in Weka, as well as soft computing by Python, are used for the conducted experiments.

5.3. Comparative Experiment

Three comparative experiments are conducted to address several problematic issues of machine
learners-based anti-ransomware technology like the rich set of traits to classify ransomware, ransomware
family attribution, and learn big and imbalanced corpora of data. The first comparative experiment is
conducted in between to validate the efficacy of the proposed hybrid machine learner (HML) against
state-of-the-art machine learners, including LR, SVM, RF, DT, and NB. On the other hand, the second
experiment is conducted to compare the proposed ransomware streaming analytics model versus the
most salient signature-based anti-ransomware tools like BitDefender, misuse-based anti-ransomware
tools like R-Locker, and the machine learner-based anti-ransomware tools such as EldeRan and RANDS.
As shown in Figures 6 and 7, HML outperforms significant TPRs, FPRs, and FNRs versus all ransomware
versions of the 14 families.

Consequently, HML contributes the proposed ransomware streaming model progressively to
classify ransomware versions effectively, among other examined anti-ransomware tools. Plots of
Figures 6 and 7 demonstrate how the previous questionable issues can be improved to enrich
ransomware classification throughout (i) handling variety, heterogeneity, and quantity of the employed
set of traits (static and dynamic traits), (ii) leveraging the commonness among ransomware families,
(iii) learning a scalable and variable corpus of data adaptively, and (iv) affecting by different emerging
and aggregation time of the input versions. Furthermore, plots of Figures 6d and 7d demonstrate
the efficiency of the proposed HML and then the proposed ransomware streaming model within
its multi-tiered design in time, and light-weight use of computer resources. The attitudes above
could be decisive factors to escalate the detection accuracy and lessen the false detections against
ransomware versions.
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(a) True positive rate (TRR) vs. ransomware families 

Figure 6. Cont.
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Figure 6. Evaluation of the proposed machine learner against state-of-the-art machine learners.Figure 6. Evaluation of the proposed machine learner against state-of-the-art machine learners.
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of anti-ransomware tools.

So far, we attempt to investigate how do state-of-the-art machine learners, as well as the proposed
HML, can leverage the issues above in the realistic environment against 0-Day ransomware versions.
Such investigation points out the effects of real-life data corpus that might contain many different and
daily emerged versions of cyber-attacks, including ransomware, malware, and good-ware. Almost
cyber-attacks are of a multi-descent family; for example, malicious and ransomware attacks. The
existence of cyber-attacks causes an abundance of attacks’ versions, imbalance in those versions’ classes,
variety in versions’ ancestor families, and versions’ multi-descent families as well as their commonness
in their latent traits and dynamic behaviors that are suggested by this work. Thus, a third comparative
experiment is conducted in the realistic mode during one month (specifically from 1 November to 30
November 2019), and its outcomes are evaluated by the scores of AUC as they are plotted in Figure 8.
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Figure 8. Outcomes of the third comparative experiment in a realistic environment with respect to
AUC scores.

Unlike the proposed HML, the state-of-the-art machine learners achieve approximately high to
moderate scores of AUC at classifying 0-Day ransomware versions among other cyber-versions during
the month of the test (see Figure 8). AUC scores state that the examined machine learners require more
crucial functions with probably regulating margins to adapt 0-Day versions involved in such real-life
data corpus. That is due to some cases like that any suspicious version might be classified as invalid
ransomware, or invalid good-ware, or invalid malware, or a new version of ransomware inaccurately.
Furthermore, the examined machine learners show their consumption of changeable periods of time
and complex computations to charactserize every version as well as recognizing its identity and its
probability of a multi-descent family.

5.4. Realistic Experiment

Besides the previous comparative experiments, a daily based test is conducted in a realistic
environment to evaluate how the proposed ransomware streaming analytics model manifests its
efficacy against different and 0-Day ransomware versions of those of different ancestor-families and
multi-descent family. The plotted charts of Figure 9 demonstrate the detection ability and holistic
characterization of the proposed ransomware streaming analytics model with minimal performance
overhead through its multi-tiered design versus daily escalating/deescalating and/or imbalanced
corpus of data during one month. Unlike the anti-ransomware tool RANDS, which is devoted to our
previous work [34,35], a minor escalation or de-escalation of efficacy’s trend line is reported by our
proposed ransomware streaming analytics model at certain days (see Figure 9). This is due to its
attitude in solving the problems of the multi-descent family case as well as ancestor family attribution
by using numeral and statistic metrics that are pursued by the proposed HML. Furthermore, the
proposed ransomware streaming analytics model achieves shorter elapsed time than that of RANDS
in [34], as shown in Figure 9d, due to its minor consumption of CPU and memory.
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6. Discussion

The previous experiments have pointed out “why the state-of-the-art anti-ransomware tools those
assisted by machine learners are still insufficient to detect ransomware versions of different ancestor
families and multi-descent families in the realistic environment?” The answers to this question can be
summarized as follows:

• Shortage in static analysis. Not all the state-of-the-art machine learners leverage static traits to
characterize versions of all-inclusive ransomware families. Indeed, many ransomware families
might exploit more adversarial scripts to intrude on their target operating systems [6,24]. Thus,
the examined machine learners showed their defeatism against static exploits of ransomware, and
they achieved low to sensible TPRs along with nontrivial FPRs and FNRs, as shown in Figures 6
and 8. In addition, some of the examined anti-ransomware tools revealed partial characterization
of such static exploits on data corpora, as shown in Figure 7.

• Shortage in dynamic analysis. Tracking the behavioral traits, executed server controls, I/O resources,
buffers, system activity, file events, CPU processes, and memory usage; all together, these are more
distinctive to classify ransomware versions than the static exploitations [13,15,21]. However, their
analysis and extraction require a virtual testbed which must be designed under realistic conditions
to trigger ransomware payloads, linking libraries, and access permissions. As shown in Figure 6,
the state-of-the-art machine learners fall short in tracing a ransomware’s infection chain, and they
produced trivial FPRs because they are mostly devoted to semi-realistic environments and lack the
necessary triggers. Then, they are rendered vulnerable against any 0-Day ransomware versions
during the second comparative experiment in realistic practice (see Figure 7).

• Elapsed time-accuracy trade-off. The trade-off between elapsed time and classification accuracy is
a double-edges sword in machine learning [37]. Almost all, the examined machine learners and
anti-ransomware tools achieved acceptable accuracy rates but at unacceptable elapsed time for
detecting an incremental stream of training and testing corpora (see Figures 6 and 7). Elapsed
time is a crucial factor to consider in ransomware detection since its computation depends on the
traits’ relevance and redundancy to the data corpus, the number of traits to be extracted from data
corpus, the dimensionality of data corpus to learn, the extensive utilization of device’s resources
like CPU and memory and the computation complexity of the machine learning algorithm during
both learning and testing tasks. Thus, some machine learners showcase high accuracy rates, but
they spend a long elapsed time to obtain the detection results.
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• Unaware of multi-descent versions of ransomware. The training and testing corpora of versions
might involve versions of other malware and scareware families that probably share similar and
mutually inter-related static exploits and dynamic behaviors and functionalities [6,24]. This may
confuse machine learners, which leverage binary-class inductive function rather than a multi-class
inductive function [36,37]. As a result, almost examined machine learners achieved high to
moderate false classifications versus valid ransomware versions; those are descents of multiple
ransomware and/or malware families, as shown in Figures 6–8. Hence a manifold induction could
be attained by hybridizing multiple machine learners and/or statistic pruning formularization as
it is adopted in HML

• Imbalanced corpora of data. Experimentally, the state-of-the-art machine learners produced their
own predictions by learning the employed set of traits on the corpus of training data that was (i)
various in the versions of other cyber-attacks like scareware and malware, etc. (ii) sub-optimally
representative of ransomware detection, (iii) imbalanced in ransomware family population and
ransomware-type distribution (i.e., crypto and locker), and (iv) varied in aggregation time.
Altogether, it caused substantial FPRs, FNRs, and insignificant AUCs, as shown in Figures 6 and 7,
respectively. Similarly, the examined anti-ransomware tools achieved incompetent outcomes
versus the aforesaid corpus of data, as shown in Figure 8.

• Unreliable source of data. Most of the popular archives of ransomware fall short in providing
reliable and unique ransomware datasets that is a complementary factor of boosting the
implicit ransomware classification against 0-Day ransomware versions and imperviously detected
ransomware families [4,6,7,12]. It is observed in Figures 6 and 7 that predicting valid ransomware
versions across unreliable training corpus of data could be crucial to adjust the decision margins
of the examined machine learners. Hence, resembling a reliable training corpus by re-learning the
default predictions would solve the problem of substantial FPRs [37,38].

• Unaware of family attribution. Escalated ransomware streams from 2005 to 2019 yield more than
30 different ransomware families of both locker and crypto types [21,24,34,35]. This is attributed
to the availability of e-services, social engineering, and primitive ciphering technologies that
enable cyber-criminals to advance their ransomware without sophisticated knowledge [21,24].
However, the big stream of ransomware versions might share mutually inter-related traits that
cause overfitting to decisive margins of machine learners and then limited detection against some
ransomware families with high rates of FNR, as shown in Figure 6.

• Realistic and semi-realistic environment. The comparable machine learners, except HMLC that
is devoted by [34,35], are still inactive to learn the misclassified versions of ransomware, and
they achieve sub-optimal AUCs (see Figure 9). This is attributed to their decisive default settings,
which fall short in minimizing the future cases of their predictions, which rely on their high rates
of falsely detected versions versus their low rates of the truly detected versions. By product, the
examined machine learners are still unaware of imperviously classified ransomware families on
chronologically increasing ransomware stream.

The aforesaid observations raise another question to answer: “Why and how did our proposed HML
and then our proposed multi-tier ransomware streaming analytics model outperform the state-of-the-art
machine learners and anti-ransomware technologies?” The answer is summarized as follows:

• Set of traits. Great care was put on exploring and utilizing the most generic and evolutionary
traits of ransomware families. Twenty-four different traits of both static-type and dynamic-type
are used to provide a holistic characterization of ransomware versions among the versions of
other cyber-attacks. Thus, our proposed work was privileged at classifying ransomware in the
semi-realistic and realistic modes as it is observed from the experimental outcomes in Figures 6–9.

• Hybrid machine learner. The evaluation outcomes in Figures 6–9 restated that the proposed
HML was more competent among its competitors. This was attributed to (i) its dual inductive
function that is a hybrid of NB and DT functions, and (ii) its adjustable decisive boundary that is
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complementary of numeral and statistic metrics, AR and MDR. Accordingly, it achieved higher
detection rates than others against the versions of ever-seen and/or never-seen ransomware
families on big and different corpora of data.

• Training and testing corpora of data. The corpora of data were collected during a one-year period
of time at different runtimes
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training, and testing tasks would be less biased versus the implicit and explicit class distribution
problem in the examined data stream. Moreover, the data corpora were privileged in terms
of quantity and variety of versions 45 K of ransomware, malware, and good-ware versions),
quantity and variety of families (14 ransomware families), the difference of aggregation time, the
difference of data archives, and imbalance of versions belong to common ancestors as well as the
multi-descent versions (see Figures 6–9).

• Realistic conditions. To customize the overall performance, the proposed ransomware streaming
analytics model with the presence of the proposed HML was run with the assumption of learning
a corpus of data at its actual runtime
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the training, and testing tasks would be less biased versus the implicit and explicit class 
distribution problem in the examined data stream. Moreover, the data corpora were privileged 
in terms of quantity and variety of versions 45 K of ransomware, malware, and good-ware 
versions), quantity and variety of families (14 ransomware families), the difference of 
aggregation time, the difference of data archives, and imbalance of versions belong to common 
ancestors as well as the multi-descent versions (see Figures 6–9). 

• Realistic conditions. To customize the overall performance, the proposed ransomware streaming 
analytics model with the presence of the proposed HML was run with the assumption of 
learning a corpus of data at its actual runtime ₮. Hence, a suspicious version R that was inspected 
at time ₮ could be classified as a ransomware version in the future runtime iteration of (₮ + Δ). 
That, in turn, would control the trade-off between the elapsed time, which relied on both CPU 
and memory consumption of the hosted system and the rate of detection accuracy in the realistic 
environment (see Figures 8 and 9). 

7. Conclusions and Future Work 

By studying the performance trade-offs across the state-of-the-art machine learners-based anti-
ransomware tools experimentally, this paper affirms that they were computationally insufficient to 
classify 0-Day versions of different ransomware families on 40K corpora of data throughout in semi-
realistic and realistic environments. They were still limited in static and dynamic analyses, set of traits 
to extract, type of ransomware to examine, the number of versions to learn, variety of ancestor 
ransomware families to attribute, multi-descent versions to recognize, the significant and imbalanced 
data stream to analyze, semi-realistic and realistic testbeds, decisive margins to prune, and inductive 
functions to adjust. Thus, this paper devotes a multi-tier ransomware streaming analytics model, 
which is empowered by a rich set of 24 static and dynamic traits, a novel machine learner, statistic, 
and numeral rates of family attribution and multi-descent family fusion those overlooked by the 
state-of-the-art anti-ransomware technologies. The proposed solution pursues four tiers of traits 
extraction, ransomware classification, ancestor family attribution, and multi-descent family fusion to 
discriminate ransomware versions from malware and good-ware versions. Experiments have 
qualified how the proposed solution enriches the accuracy, reduces the mistakes and 
misclassifications, and shortens the elapsed time versus escalating, big, lifelike, and imbalanced 
corpora of data. Overall results that averaged by 97% of accuracy rate, 2.4% of mistake rate, and 0.34% 
of miss rate; justify its maximal efficacy and cost-efficiency among its competitors. 

For future improvement, it is recommended to explore more distinctive traits to classify the 
imperviously seen ransomware families by investigating versions of other ransomware families. 
Herewith, 14 crypto-type, and locker-type ransomware families are investigated with 24 traits solely. 
Furthermore, a hybrid machine learner of other base machine learners rather than NB and DT could 
be designed as either a single-based learner or an ensemble-based learner for pivoting an ideal 
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extraction, ransomware classification, ancestor family attribution, and multi-descent family fusion to
discriminate ransomware versions from malware and good-ware versions. Experiments have qualified
how the proposed solution enriches the accuracy, reduces the mistakes and misclassifications, and
shortens the elapsed time versus escalating, big, lifelike, and imbalanced corpora of data. Overall
results that averaged by 97% of accuracy rate, 2.4% of mistake rate, and 0.34% of miss rate; justify its
maximal efficacy and cost-efficiency among its competitors.

For future improvement, it is recommended to explore more distinctive traits to classify the
imperviously seen ransomware families by investigating versions of other ransomware families.
Herewith, 14 crypto-type, and locker-type ransomware families are investigated with 24 traits solely.
Furthermore, a hybrid machine learner of other base machine learners rather than NB and DT could be
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