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ABSTRACT 

The phenomena of convection are one of the most interesting problems in fluid dynamics. 

In this paper we shall study the case of linear stability of a rotating electrically conducting 

viscous layer heated from below lying in a uniform magnetic field based on the Boussinesq 

approximation. We restrict our study to the case when the direction of magnetic field and 

rotation are parallel; the discussion is focused on the case of large Taylor number T  and 

Chandrasekhar number Q . Generally, magnetic field facilitates convection in a rapidly 

rotating frame breaking the rotational constraints. The numerical solutions for stationary 

convection showed that at fixed large T  and as we increase Q , The critical Rayleigh 

number cRa  stayed fixed until Q  reached a special value, then as we increase Q , 

Rayleigh number continue to decrease reaching its minimum before starting to increase 

again, two minimum values are determined at large T . A further analysis done on the 

stationary convection is finding the critical value of Q  which give the same critical 

Rayleigh number at large Taylor number T . 

Keywords: Chandrasekhar Number Q , Convection, Rotating Convection, Magnetic Field, 

Rayleigh Number Ra , Stationary Convection, Stability of convection, Taylor NumberT . 

1. INTRODUCTION 

One of the most important examples of fluid motion is convection. It 

considers one of the methods of transferring heat energy via a fluid medium. 

The main cause of motion is gravity that acts on density variations 

associated with temperature variation, where hot fluid rises while cold fluid 

sinks. Rotating convection is considered a significant example of convection 
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in all planetary and stellar bodies, impacting on many other significant 

observed features such as the generation of magnetic fields. There are 

several contexts in which rotating and hydro-magnetic convection is 

significant, in atmospheres, oceans and planetary mantles. For example, in 

the Earth's lower atmosphere, convection leads to the formation of 

thunderstorms; moreover, the atmospheric circulation, the large scale air 

movement that distributes energy over the surface of the earth is driven by 

convection. [13] 

In the sun, convection is responsible for generating a strong and complex 

magnetic field by dynamo action. The cause of the sun's magnetic field is 

the movement of the convection cells consisting of electrically conducting 

plasma which circulates in a way that helps create the solar field. [13] 

 In the Earth's outer core, it is now accepted that magnetic fields are 

generated and destroyed by the movement of fluid in the depths of the earth. 

Moreover, it is believed that the Earth's outer core is filled with a vigorously 

convecting and conducting fluid, where motions of the fluid across magnetic 

field produce electric currents that induce magnetic field against the effect 

of dissipation. In the Earth's mantle, very slow convection leads to plate 

tectonics and hence earthquakes. [5, 6]  

Moreover, convection is used in engineering practices to provide the desired 

temperature for heating systems in homes and cooling devices.  

The phenomenon of convection is quite old, but the first quantitative 

experiment was performed by Henri B’enard in 1900. B’enard made an 

experiment on thermal convection. He melted some wax in a metal dish 
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heating it from below. Firstly B’enard noted no motion of the melted fluid 

wax, but at a critical value of the temperature, B’enard saw a hexagonal 

pattern on the surface of the melted wax. He had discovered the presence of 

convection cells below. [7] 

B’enard determined some properties of convection such as the profile of the 

interface, the spatial periodicity of the hexagonal patterns and their 

variation. [7] 

In 1916 Rayleigh modeled this problem again. Rayleigh assumed that there 

was an infinite layer of a fluid bounded by stationary horizontal boundaries 

0z  and dz   and he assumed that both boundaries heated at a constant 

uniform temperature. He noted that the fluid develops a regular pattern of 

convection cells and he developed a complete linear stability theory 

assuming free surface boundaries for the velocity and perfectly conducting 

boundaries. [11]  

In this paper, we shall study the linear stability at the onset of rotating 

convection in the presence of magnetic field, following Rayleigh's ideas. 

We will analyze the onset of rotating convection in the presence of 

magnetic. 

2. THE BASIC PROBLEM AND THE PROCESS OF 

SOLUTION 

Consider an infinite horizontal layer of conducting fluid and let be the 

uniform angular velocity of the rotation in a magnetic field 0B , which is 

constant in the rotating frame. Suppose that the lower boundary surface at 
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dz )2/1(  is heated to a higher temperature than the top surface

dz )2/1( , on the assumption that all material properties of the fluid are 

constant, then heat can be conducted across the layer along a constant 

temperature gradient    in the z-direction. If   is large enough, then the 

conduction solution is unstable to convective motions [1]. In this paper, we 

shall determine the marginal stability state at which convection supposed to 

be of small amplitude can occur. 

The equations required are: 

Momentum equation added Lorentz force and Coriolis force for 

incompressible fluid. 
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Heat equation for incompressible fluid. 
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Induction equation with constant magnetic diffusivity (i.e. constant ). 
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Now, we perturb the basic states as follows: uu  0 , ,T  

BBBpPp  0  and ,  and we assume that the perturbed states 

satisfies the governing equations. By substitution in equations (1-4), we get: 
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We have dropped non-linear terms such as
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Since 
0B  is a constant vector, this makes simplification in the equations 

above as     0B ,0 000  BBB  and we made more 

simplification using the vector identity: 
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To eliminate the pressure we take the curl of equation (5) and we drop 

primes 
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Where ,  , 0 BJu   and since   is a constant vector, then  
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Taking another curl of equation (9), we obtain 
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Taking the z-component of equations (9) and (10) 
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2.1.The process of solution when 0B  and  are both vertical 

We shall restrict our analysis to the case when 
0B  and  are both vertical 

due to limited time, then our basic equations become: 

The heat equation  
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The z-component of curl of induction equation 
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The z-component of double curl of momentum equation 
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2.2. Dimensionless equations 

Now we switch to dimensionless variables, consider a length scale d, time 

scale /2d , velocity scale d/ temperature scale d , and magnetic field 

scale 0B , substituting in equations (13-17): 
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The resulting dimensionless parameters are: 
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2.3.Analysis into normal modes 

In this section, we shall investigate solutions of equations (18-22) which 

satisfy the normal boundary conditions (i.e. stress free and no slip boundary 

conditions, in addition to the electrical fluid is non conducting),  Expressing 

each variable in equations (18-22) as a normal mode of the form: 
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Now eliminate B between equations (25) and (28) by applying the operator 
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Now eliminate Z using equation (29), we obtain 
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The solution of the characteristic value problem must satisfy the boundary 

conditions satisfied above. 

2.4. Solutions for the case of stationary convection 

In this section, we shall consider the case when instability sets in as 

stationary convection, which means the marginal state will be characterized 

by s = 0, so setting s = 0 in equation (32), we obtain 
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Solution of equation (33) must be sought to satisfy the boundary conditions 

satisfied before (i.e. stress free and no slip boundary conditions, in addition 

to the electrical fluid is non-conducting). Based on Chandrasekhar analysis, 

the proper solutions of equation (33) is 
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Then equation (34) for lowest unstable mode (i.e. 1n ) can be written as 
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It is quite complicated to specify the minimum values of wave number x  

from equation (37) analytically, so we shall locate the Rayleigh minimum 

values numerically based on Maple work. 

2.5.Numerical solutions for critical wave numbers and critical 

Rayleigh numbers 

Firstly, looking at figure (1), we note that equation (37) has two minimum 

values for the Rayleigh number for various values of 1Q  and 1T . One 

minimum occurs at a large value of x , the other at values of x close to unity. 

For example when 
5

1 10T and at small 1Q , the larger value of x  gives the 

smaller minimum, while at larger 1Q , the value of x  close to unity gives the 

smaller minimum. So for given 1T  there is a certain value of 1Q , at which a 

jump from the larger x  mode to the x of order unity mode occurs. For 1Q  

greater than this critical value, the smaller x  solution is preferred as 

Rayleigh number is increased. This behavior is detailed in table (1). 

This double minimum behavior occurs only for large 1T . If 1T  is small, for 

example 15001 T , then there is only a single minimum and the wave 

number will vary extremely and rapidly for a very small interval of 1Q . 

Table (2) gives the critical value of wave number ca  and cRa  for various 

values of 1Q .  
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Fig. I.  Onset of stationary convection for 
5

1 10T  and 200,100,401 Q  respectively 

TABLE I THE CRITICAL WAVE NUMBERS WITH CRITICAL RAYLEIGH NUMBER FOR 
5

1 10T AND VARIOUS 

VALUES OF 
 1Q  

1Q  1ca  2ca  1cRa  2cRa  

40 3.61 18.66 51082.8   
51004.4   

60 3.43 18.50 51018.6   
51002.4   

80 3.38 

 

18.35 51078.4   
51000.4   

100 3.36 18.18 51093.3   
51098.3   

200 3.49 17.10 51028.2   
51086.3   

1000 5.68 - 51083.1   - 

10000 12.29 - 61008.1   - 

100000 18.90 - 71002.1   - 

Physically, this means that if convection starts with 
5

1 10T without 

magnetic field 01 Q , and then we gradually increase the strength of 



Journal of Humanities and Applied Science (JHAS)                         Issue No. (31)  December 2018 

 

- 53 - 

 

 

 

magnetic field 1Q , and then cells appear at stationary convection will be 

elongated, however as we increase the strength of magnetic field 

corresponding to 1001 Q , then two different pattern of cells determined, 

one pattern will be highly elongated and the other pattern will be almost 

square. As we increase the strength of magnetic field, the critical Rayleigh 

number will start to decrease and pass through a minimum value, and 

eventually the inhibition due to the marginal field will predominate. All 

these results are valid for 25001 T . 

 We are interested in the case where the value of 1Q   is such that the 

two critical Rayleigh numbers have the same value. This means that the two 

critical waves number both onsets at the same value of cRa . 

TABLE II THE CRITICAL WAVE NUMBER WITH CRITICAL RAYLEIGH NUMBER FOR  15001 T  

1Q  crita  critRa  

10 8.67 26190.20 

20 7.79 25131.83 

30 4.30 22548.18 

50 4.33 19756.73 

100 5.04 21682.51 

1000 8.49 510197.1   

10000 12.80 610065.1   

100000 18.94 7100148.1   
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2.6.Critical value of 1Q   for large  1T  

Numerical investigation of equation (37) suggests there can be two minima 

for large 1T , with different values of x , say Ax  and Bx . We assume that 

BA xx   (i.e. where
22 /ax  ). 

At large 1T , we seek a value of 1Q , at which these two extremal values Ax  

and Bx  give the same critical value of Ra  according to (36). This then 

defines a value of critQQ 1 , so for critQQ 1 , this minimum Bx  will give a 

lower critical value of critRa  than the minimum Ax . 

Moreover, if critQQ 1 , then the minima Ax  will give the lower critical cRa . 

 Basically, finding  critQ   is not straightforward, however according 

to maple work, we have found that at 6

1 10T , which is large enough to have 

two critical wave numbers, there are two equal minima near 2121 Q , with  

0636.1Ax  which corresponds to 
61084.1 cRa and 1.76Bx  which 

also corresponds to 
61084.1 cRa .(see figure (II)) 

 

Fig. II Stationary convection for 
6

1 10T  and Q1 = 212 
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In a non magnetic rotating convection where 01 Q , then equation (37) 

gives 1

32 Tx  , so  x  sc09O88LIaled with

3/1

1

2










T
x , then the critical 

Rayleigh number approximated as 

    (38)           
2

3

2

32 3/2

3/2

4

1

3/1

1

4

1

3
4

3

1

44

T
T

T
Tx

xx

xTxx
R





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

















  

This value of x  and  Ra  correspond quite closely to the numerical values of 

the large x minimum in figure (II), suggesting that this minimum is 

determined by the rotation, but not the magnetic field. 

For the smaller value of x , a significant result about this is that Ax  is very 

close to 1, so the roots of    11 2

1

4
 xQx  in the extremal equation (37) 

are not large, however it has order 1. In addition, 132 23  xx  is negligible, 

since Ax  is close to 1, so the remaining terms in equation (37) give 

(39)                                                                                3/1

11

3

1 TQTQ   

Thus   21

2
1 Qx  in equation (36) is negligible to )1(1 xT  , so we are left 

with  

(40)                                                                         44 3/24

1

14 T
Q

T
Ra    

For the large root Bx , terms including 1Q  which are of order 
3/1

1T 1 in the 

extremal equation (37) are negligible compare with terms include 1T  and x

, so keeping terms of highest power of  x  and 1T , then x  will be close to 

(41)                                                                                              
2

3/1

1










T
x

 

(42)                                                                                     
2

3

3/2

14










T
Ra   

This is consistent with root of x  in a nonmagnetic rapidly rotating 

convection. Substituting for x  and 1Q  in equation (36), then we obtain 
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Since at critQ , the critical Rayleigh numbers are the same, this implies to 

(43)                                                                             
2

34

3/2

14

1

14










T

Q

T
  

This simplifies to  

(44)                                                               1165.2
3

2 3/13/1
3/8

TTQcrit   

 

This is consistent with the values of critQ
 
 obtained for finite 1T  using 

Maple, the results being given in table (3), so at large 1T , 
3/1

8/3

1
3

2
TQ  is 

the critical value of the Chandrasekhar number which divides the tall thin 

column modes from the order one magnetic wave number modes. So for 

3/1

1 1165.2 TQ   , then large root of x  is preferred, but for
3/1

1 1165.2 TQ  , 

then smaller x  mode is preferred. Note that as 1Q gets large compared to

3/1

1T , then the magnetic effect dominates and x  become large again 

 

Fig.  III Relation between T1 and critical values of Q1 
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TABLE III THE CRITICAL VALUE OF Q1 FOR VARIOUS VALUES OF T1 AND THEIR CORRESPONDING RAC 

1T  critQ  
Ax  AR  Bx  BR

 

410  45.6 1.38 41061.8   13.59 41060.8   

510  98.24 1.15 51099.3   33.54 51098.3   

610  211.65 1.06 61085.1   76.15 61084.1   

710  456 1.03 61056.8   167.80 61055.8   

810  982.41 1.01 71097.3   365.22 71097.3   

1010  4559.94 1.00 81055.8   1706.81 81055.8   

3. CONCLUDING REMARKS ON STATIONARY 

CONVECTION OF THE SYSTEM 

In this paper we examined the linear stability of a rotating, electrically 

conducting viscous layer and lying in a uniform magnetic field 0B . We 

restricted our study to the case when the direction of the rotating axes and 

magnetic field are both vertical and the boundaries are free. The numerical 

analysis showed that at fixed T  and as we increase strength of magnetic 

field Q , the critical Rayleigh number has high values until Q  reached a 

specific value, and then cRa started to decrease reaching its minimum value 

at stationary convection.  

Numerical investigation of the extremal equation at stationary convection 

showed that there are two exist minimum at largeT , we determine the 

critical value of Chandrasekhar number which divides the tall thin column 

modes from the order one magnetic wave number modes on the fact that one 
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of the x  root is close to 1 and the other root is quite big and we conclude 

that 

3/1
3/8

3

2
TQcrit   

So for    3/13/8

1 3/2 TQ  , then large root of x  is preferred, but for 

   3/13/8

1 3/2 TQ  , then smaller x  mode is preferred. Note that as 1Q  gets 

large compared to 3/1

1T , then the magnetic effect dominates and x  become 

large again. 
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