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Abstract: The never-ending threats of phishing to the cyberspace motivate
researchers to develop more proficient phishing classification models for the
survival of cyber-security with safe web services. However, these models
remain variable in their reaction and incompetent in their performance against
novel phishes at the real-time of application. This attributed to their partial or
full deficiency of inductive factors including a rich set of decisive features,
actively learned and adaptive machine learning based classification model.
Upon this issue, our paper revisits the current machine learning-based phishing
classification models and analyses their performance qualitatively and
quantitatively across three benchmarking data sets. Empirical results and
observations emphasised the causality between the models’ limitations and
their lack of inductive factors. Accordingly, future outlooks are recommended
as a navigating taxonomy to serve the researchers at developing their upcoming
achievements in both academia and industry.
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1 Introduction

Motivating by more illegal gains, phishers have threaten the users’ digital identity and the
industries’ reputation on the cyberspace by evolving phish web pages (Khonji et al.,
2013). To mitigate phishing threats, many efforts have been made by researchers in both
academia and industry for obtaining effective anti-phishing schemes (Khonji et al., 2013;
Zeydan et al., 2014b). Almost all anti-phishing schemes have adopted client-side filtering
to detect phish web pages towards more safe online communication (Zeydan et al.,
2014b). Amongst them, are machine learning-based phishing classification models that
assisted by a set of features and machine learning algorithms to tackle phish web pages
effectively (Khonji et al., 2013; Zeydan et al., 2014b; Shahriar and Zulkernine, 2012;
Whittaker et al., 2010). However, late phish tackle, somewhat faulty classification,
variable and adverse performance has been reported along with long elapsed time,
complex computations, and heavy use of external resources (Zeydan et al., 2014a;
Wardman et al, 2014). Such heavy-weight and static machine learning based
anti-phishing models still provide good opportunities to the phishers with to evolve new
phishing pattern (novel phishes) that exploit advanced deceptions and tricks to bypass
anti-phishing schemes. Then again, more thefts to the users’ identities are caused besides
more monetary losses to the enterprises and disastrous consequences to the cyber-security
(Zeydan et al., 2014a; Wardman et al., 2014; Abbasi and Chen, 2009; Islam and
Abawajy, 2013).

As time progresses, researchers have attempted to perform more proficient mitigation
of phishing threats for ideal cyber-security and optimal users’ safety. To assist in
achieving this goal, this paper critically studies the most salient machine learning-based
phishing classification models in an analytical context. In the analytical context, the most
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salient models are revisited, characterised according to their merits, and categorised
according to their classifiers’ design like single feature-based classifier (FBC), FBCs
assisted by feature selection mechanism (FSFBC), and ensemble FBCs (EFBC). This is
followed by an empirical analysis of their performance in terms of inductive factors
including rich set of features, handling big web data, active learning of the constructed
FBC model, and the adaptable modelling for real-time detection (Kumar et al., 2010;
Bishop, 2006). An empirical workflow is devoted to extract features from the fetched
batches of web pages (datasets), formulate the required feature space, and divide the
feature space into training data and testing data for learning and testing the classification
model. Based on the empirical results, classification performance is evaluated to justify
the causality between the models’ performance and their deficiency to the inductive
factors. Intellectual and empirical observations are discussed in-depth to restate what
research facets need to boost in the future towards obtaining an efficient phishing
classification model. Lookouts like exploring new features, chronological aggregation of
web pages as evolving dataset, designing an adaptive assembly and maintaining a deep
learning mechanism; are highly recommended as the best possible solution that can be
undertaken for real-time phishing detection.

To demonstrate all the aforesaid issues, the rest of this paper is organised as follows:
Section 2 introduces phishing activities along with the types of existing anti-phishing
schemes. Whereas, Section 3 presents the preliminaries of FBC and the state-of-the-art
machine learning algorithms that highly applied in anti-phishing domain. On this topic,
Section 4 surveys the recently published works and appraises them critically.
Consequently, Section 5 analyses the revisited works empirically their inductive factors.
Further, Section 6 restates the main issue of inductive factors that need to boost and
recommends the research facets that still open to further study. Altogether, are concluded
in Section 7 along with several remarks.

2 Phishing and anti-phishing

Although, the web is a huge communication channel between users and enterprises which
provides many services and applications including e-business, online banking, and retails,
etc. It causes many losses to the users and enterprises annually due to the insecure
web-based applications and the vulnerable web services that put both users and industries
at the risk of credentials’ theft, malware distribution, industrial espionage, and then big
financial losses. Such consequences often occur when phishers imitate the look of the
trustworthy web pages of publically known organisations to mislead victim users by
inserting spoofed links and using social engineering technologies. As illustrated in
Figure 1, victims catch the bait and submit their own credentials via online transactions.
Then, the phishers acquire these credentials for their own illegal gains (Khonji et al.,
2013; Zeydan et al., 2014Db).

To mitigate phishing threats, many anti-phishing schemes have been developed by
using either a whitelist of legitimate web pages or a blacklist of prominent phish web
pages. Also, some anti-phishing schemes have used heuristics and algorithms for
phishing characterisation and phishing classification respectively (Shahriar and
Zulkernine, 2012; Whittaker et al., 2010; Zeydan et al., 2014a). Even though some
anti-phishing schemes have performed well at phishing detection, they have been
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circumvented by phishers who usually advance their deceptions and spread their
activities day by day (Zeydan et al., 2014a). Amongst the defeated anti-phishing schemes,
are the machine learning-based classification models which still perform sub-optimally at
detecting novel phish web pages as their competitors did (Whittaker et al., 2010; Zeydan
et al., 2014a; Wardman et al., 2014; Abbasi and Chen, 2009; Islam and Abawajy, 2013).
To address their defeatism against novel phishes, this paper studies the recently published
achievements in the domain of machine learning-based anti-phishing models and it states
what open problems need to solve.

Figure 1 Phishing and anti-phishing as adopted in Zuhair et al. (2016b) (see online version
for colours)
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3 Applied machine learning algorithms

Due to their classification purposes, machine learning algorithms still play prominent
roles in the development of many research domains including anti-phishing. In
anti-phishing domain, machine learning algorithms are usually used to construct a FBC
that can identify phishes and legitimate web pages on a batch of web pages (Zeydan
et al., 2014a; Wardman et al., 2014; Abbasi and Chen, 2009; Islam and Abawajy, 2013).
As yet, such algorithms vary in their classification performance across increasing web
streams due to their diverse specifics, decision settings, and the induction factors (Zeydan
et al., 2014a; Wardman et al., 2014; Abbasi and Chen, 2009; Islam and Abawajy, 2013).
For example, Naive Bayes (NB), logistic regression (LR), sequential minimal
optimisation (SMO), support vector machine (SVM), and transductive SVM (TSVM) as
they are described briefly in Table 1. Typically, the existing phishing classification
models are constructed as single FBC model, or ensemble FBC (EFBC) model, or single
FBC model assisted by feature selection method (FSFBC). In Figure 2, a FBC maps the
input feature vector to the output classes by attributing the input feature vector V = (v,
..., vy) and inducts its relevance to either phish or not phish classes with ¥ = AV, y). All
input feature vectors that extracted from the m-dimensional training dataset (3, V>, ...,



Phishing classification models 223

V,,) are induced in the training phase to classify the incoming instance 7, in the testing
phase into either phish or legitimate label (Kumar et al., 2010; Bishop, 2006; Nguyen and
Armitage, 2008).

Table 1 Examples of machine learning algorithms adopted in Kumar et al. (2010), Bishop
(2006), Nguyen and Armitage (2008), Galar et al. (2012), and Toolan and Carthy

(2010)
Algorithm Description
C4.5 It depends on decision tree hypothesis that traces the node paths, their branches
until terminating leafs.
Decision It models the unknown instances as nods in a rooted tree, and the feature values
tree (DT) as edges. Induction starts from the root node approaching to leaf and passing

through edges. Test is applied at each node to re-order feature values which
determine the next edge to go. Final decision found at the end-up leaf node.

NB A probabilistic judgment done conditionally with independent attributes of all
instances belonging to a given class:

_POP(x, - %, [C)

PClX)=P(C|xi, ..o Xy 1
( ) ( | ! ) P(xl....,x,,) M
Where X is an instance with a vector of n features (xy, ..., x,), C is the class label
that the classifier seeks for.
SVM A separating hyper-plane maximises the margins between closest points of two
classes to estimate the induction function:
1,
min—w/ 5+ Cz,é )
That subjects to:
(W x)+b)21-6.620.i=1.2,....m 3)
m 1 m
malezla,—Ezl.]y,y,a,a,K(x,,x/) 4)
Which is subject to:
<a,<C,i= =
0<a, <C,i l,2,...,mandz,:la,,y, 0 5)

Where: x; is m-dimensional data vector x; € R” with samples belong to either
one of two classes labelled as y € {—1, +1} that it is separated by a hyper-plane
of (w -x) + b= 0, &; denotes the lagrange multipliers for each vector in the
training dataset.

TSVM It separates positive and negative samples of training dataset with a maximal
margin of SVM hyper-plane, such that it minimises over

(Vs VoW b & & 8 &)

. 1y " N ©
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Table 1 Examples of machine learning algorithms adopted in Kumar et al. (2010), Bishop
(2006), Nguyen and Armitage (2008), Galar et al. (2012), and Toolan and Carthy

(2010) (continued)
Algorithm Description
LR Use probabilistic induction that evaluates relationship between a categorical
dependent variable and a continuous independent variable(s):
N e(ﬂ() + ﬂl-x) _ 1
m(x) = elBothx) 41 o(Bothx) 41 ©)
(x)
g(x)=In =B+ Bx (10)
1—n(x)
() = oPo+h) (1n
1—-7m(x)

Where: g(x) is the logistic function of a given predictor X, In and, nt(x) denote
natural logarithm and case probability, /4, and S, denote criterion of X, and f\x
is the regression coefficient.

Random Forest constructed for randomly selected set of instances on training dataset. It
forests (RF)  comprises of many combined tree predictors that are distributed similarly. Each
tree predictor is learned on feature vector belongs to independent sample.

K-nearest Nonparametric classifier estimates class conditional densities by using a
neighbour discriminant function
(K-NN)
g(x)=P(x|C)P(C) (12)
P(xlc)= (13)
(NV*(x))

Where P(x|C)), k; and V‘(x) are the class conditional densities, the number of
nearest neighbors that belong to C;, and the volume of n-dimensional
hyper-sphere centred at x with radius of » = ||x — x| and x; is the nearest
observation to x.

SMO It solves the optimisation problem caused during classification iteratively and
analytically:

maXaZrnzla] _%Z;z::ly,yjl((x”x])a,,a] (14)

Where 0 < ; <C, fori=1,2,...,nand X y,a; = 0. C is the classifier’s hyper-

sphere, K(x;, x;) refers to the kernel function provided by user, and ¢; is the
Lagrange multiplier.

Neural It updates the individual weights of different inputs during the training task
network according to the examples of network receives to reduce the error rates:
(NN)

f(x)=g[z,v,g(zjw,,x,+b,+b(.)] (15)

where x, v;, g, w; and b; , are the input vector, the weight of output neuron, the
activation function, the weight of hidden neuron and the bias respectively.

Unlike FBC, EFBC promotes an assembly classifier which integrates multiple machine
learning algorithms of different induction settings (Nguyen and Armitage, 2008; Galar
et al., 2012). It learns the input feature vectors by its entire constituent machine learning
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algorithms that may vary in their induction boundaries and decision outcomes (Nguyen
and Armitage, 2008; Galar et al., 2012). Whereas, FSFBC maintains learning task with a
feature selection method to predict phishness in a high-dimensional feature space (Toolan
and Carthy, 2010). In practice, the final judgement of FBC depends on classifying the
features extracted from the input web page to predict its class as either phish web page or
legitimate. While, EFBC leverages the average of all its constituent classifiers’
predictions on a fetched web page to set its final decision on its phishness or its
legitimacy (Nguyen and Armitage, 2008; Galar et al., 2012; Toolan and Carthy, 2010;
Xiang, 2013). On the other hand, FSFBC analyses the most informative features of the
fetched web page with the aid of features selection, or features ranking, or features
weighting method. Then, it classifies the web page by applying a machine learning
algorithm assisted by the selective features (Toolan and Carthy, 2010).

Figure 2 Work flow of FBC model (see online version for colours)
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4 Machine learning-based phishing classification models

In anti-phishing domain, researchers have attempted to perform their achievements at
nominal computational cost by using machine learning algorithms. As depicted in
Table 2, this section provides a bird’s-eye view on the most salient machine learning-
based phishing classification models along with their regressing frontiers.

As depicted in Table 2, among the most salient EFBCs in anti-phishing domain was
that the developed model of (CANTINA") (Xiang, 2013). CANTINA" was constructed
with many machine learning algorithms such as NB, SVM, and LR etc. Also, it was
learned with 15 textual and structural features that were derived from the fetched web
page and it’'s URL along with its online features. CANTINA"™ devoted to perform
accurate classification on many phish exploits. It reported 92% of true positive rate
(TPR), and 1.4% of false positive rate (FPR). The examined exploits included redirecting
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web page, login form handlers, and web pages hosting in English. However, CANTINA"
encountered a trade-off in leveraging up-to date phish web pages due to the use of limited
feature space to English textual features as well as re-learning on defaults settings (Xiang,
2013). While, the authors of Gowtham and Krishnamurthi (2014a, 2014b) leveraged 17
features to examine login form phish web pages via a FBC by using SVM classifier.
Their model achieved a rationale performance with (99.6%) of TPR and (0.44%) of FPR.
However, it was computationally intensive and time-consuming due to the use of external
resources and less adaptive to present training datasets.

Table 2 Categorisation of machine learning-based phishing classification models
Model Year  Related work Machine l earmng Related limitations
category algorithms
FBC 2014 Gowtham and SVM e Generic features
Krishnamurthi L .
(2014a, 2014b) e Limited size of datasets
2014 Marchal et al. k-NN e Limited maintain to web page exploits

(2014a, 2014b) o Use of external resources for data query

¢ No features selection mechanism
o Inactive learner
e Not adaptive model

FSFBC 2014  Zhang et al. SMO, LR, RF, e Generic features

(2014) NB Imbalanced datasets

e Irrelevance and redundancy problems

o Features heterogeneity

e Inactive learner

e Not adaptive model

EFBC 2011, Xiang (2013) NB, SVM, LR e Generic features
2013

2014  Mohammad SVM, RF, JRip e Imbalanced datasets
et al. (2014)
2015 Marchal (2015) SVM, C4.5, RF, e No selected set of features
IRip External sources like search engines
and blacklists were used for data query.
o Inactive learner

e In-adaptive classification model

Notes: SVM = support vector machine; LR = logistic regression; BN = Bayesian; DT,
C4.5, and JRip are types of decision tree classifier; RF = random forest;
NN = neural network; SMO = sequential minimal optimisation, NB = Naive Bayes.
FBC: feature-based classifier; FSFBC: FBC assisted by features selection method;
EFBC: ensemble FBC.

To degrade the trade-offs of extracting features and to upgrade the classification
performance with less false classifications, some researchers like Zhang et al., identified
phishing on (2,878) Chinese e-business websites via phishing Chinese web page
detection model. They selected 15 language independent features by weighting and
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ranking them with Chi-Squared (y°) statistic criterion. The selected set of features were
utilised exclusively to identify Chinese web pages. Four machine learning algorithms like
SMO, LR, NB, and random forests (RF) were applied individually in an FBC to learn the
selected set of features on the collected dataset. Even Experimentally, their model
performed (95.83%) of accuracy rate on Chinese e-business web pages solely, even
though; it was not reliable to classify other types of phish web page due to its exclusive
set of features and datasets (Zhang et al., 2014).

As time progresses, EFBC were developed such as that adopted in Mohammad et al.
(2014) to learn 12 URL features by applying multiple machine learning algorithms like
SVM and RF in addition to C4.5, and JRip as types of decision tree algorithm Such
EFBC achieved (94.91%) and (1.44%) as classification accuracy and classification faults.
In spite of using big training and testing datasets, the used dataset were imbalanced in
their classes of phishing and not phishing as well as including e-commerce websites
exclusively.

On the other hand, an FBC was developed by authors of Marchal et al. (2014a,
2014b) to catch phishing in e-commerce, login form, and English and French web pages
by using 17 generic features with NN classifier. Even though, this achievement yielded
up to 94.07% accuracy rates, high misclassification rates were reported. However, these
models scarcely detected novel phish websites due to learning big datasets and extracting
many features to characterise phishing. Whereas, another version of this phishing
classification model was optimised in Marchal (2015) with the aid of an EFBC
construction and functionality. The optimised version attained active learning by
deploying a hybrid set of 212 typical features. Thus, it performed an effective
classification on (96,018) web pages aggregated during (2012-2015). However,
deploying typical (generic) features on large and imbalanced datasets revealed notable
misclassification rates versus novel phishes. Moreover, long execution time, complex
computations are encountered due to data query from several external resources like
GoogleTrends and YahooClues. Inactive learning on the up-to-date data also observed
and it caused limited adaptation in real-time practice.

As a matter of fact, the web contains millions of the strongly associated web pages
belonging to many types of cyber-attacks like spam, ham, scam, malware as well as
phishing attacks (Uzun et al., 2013). Such web pages of cyber-attacks may share millions
of features and embedded links and objects generically (Zuhair et al., 2016c).
Additionally, the web involves many exploits of web pages including login forms,
pharming, homepages, and ending up pages along with the web page hosting language
like English, French, Chinese and others (Zuhair et al., 2016a). As such, web page
processing and extraction of heterogeneous features from these web page exploitations
were somewhat insignificant in the FBCs adopted in Gowtham and Krishnamurthi
(2014a, 2014b) and Marchal et al. (2014a, 2014b). Such models required more extensive
computation to bare holistic phishing characterisation and robust mechanisms to select
the most informative features and feature subsets. Therefore, altogether produced
divergent accuracies of classification with false detections, more and complex
computations, memory and processing footprints, and long execution time.

Even though, the models in Zhang et al. (2014) and Mohammad et al. (2014) were
assisted by feature selection methods, they encountered several shortcomings attributed
to the feature selection strategies that they employed. These selection methods relied on
ranking the best features by weighting them individually with respect to their
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interdependencies amongst the others (Zuhair et al.,2015a, 2015b, 2016b). Therefore,
they fall short in leveraging:

1 the heterogeneity of features’ values (categorical/continuous/mixed values) which
could vary among attack classes across the training and the testing datasets

2 the irrelevant and the redundant features involving in the selected subsets of features
which is caused by the overlapping of generic features among the examined classes
(phish and non-phish) (Zuhair et al.,2015a, 2015b, 2016b). Altogether, cause
inefficient phishing classification particularly on a high-dimensional training and
testing dataset with class imbalance problem.

Whilst, the EFBC models such as those developed in Xiang (2013), Mohammad et al.
(2014) and Marchal (2015) outperformed their competitors in phishing classification,
they still unaware of new phish patterns (novel phishes) that have been evolved
periodically by the phishers. This is attributed to the deficiency of:

1 actively learnt classifiers that supposed to be able to expect the future error and pick
up the best batch of web pages which will reduce that error iteratively (Galar et al.,
2012; Huang et al., 2015)

2 adaptive modelling along with updating mechanism which inspects any change (an
unknown pattern) in the fetched web stream, identifies the new features, and adjusts
the default induction function for the future learning of the classifier over the time
(Huang et al., 2015; Tsai et al., 2009; Shabtai et al., 2009).

Recently, several published works have studied the performance of some existing anti-
phishing schemes (Whittaker et al., 2010; Abbasi and Chen, 2009; Vink and de Haan,
2015; Abu-Nimeh et al., 2007; Miyamoto et al., 2008) however, they rarely analysed
their lack of induction factors and their disastrous consequences on novel phish web page
classification in the real-time experience. Therefore, a necessary depth of analysis in the
term of inductive factors is required to assert whether the aforementioned machine
learning based classification model do or do not their best with maximal accuracy,
minimal false detections, zero misclassifications, simple computations, and low execution
time as well as the least amount of external resources in the realistic mode. To do so, this
paper pays much attention to study phishing classification performance in terms of the
deficiency of inductive factors quantitatively and qualitatively. Analysis, observations
and standpoints will provide researchers the right direction on how to undertake their
further achievements which is the main goal of this paper. To attain this goal, the next
section focuses on the empirical analysis of the revisited models which is followed by an
extensive discussion and justification of the observations in the following sections.

5 Empirical analysis

This section analyses the aforementioned phishing classification models in a practical
context to assess their classification performances and discuss their related limitations.
The empirical analysis is pursued with three recently published, publically available and
highly used datasets for benchmarking in anti-phishing domain. Consequently, the
findings of the computerised simulation have been evaluated with a set of standard
metrics that usually used for validation in anti-phishing domain. Altogether, the
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benchmarking datasets, the evaluation metrics, the empirical workflow and results will be
discussed in the following sub-sections.

5.1 Benchmarking datasets and evaluation criteria

As described in Table 3, three benchmarking datasets with low and high range of phish
and legitimate samples are used. All the datasets differ in terms of their size, the
imbalance and/or balance of phishing class distribution, the number of phish web pages.
Also, they differ in the number of legitimate web pages, and the source of datasets (i.e.,
data archives). In addition, they vary in terms of web page’s functionalities like
homepage, login form page, e-business web page, retail, etc. Moreover, they encompass
the web page’s hosting languages such as English, Chinese, French, Italian, German,
Spanish, etc. All benchmarking datasets are retrieved from three recently published
works in which they were aggregated periodically during 2010 and 2015. For instance,
the dataset 1 used in Shahriar and Zulkernine (2012) included 52 phishes exploited login
forms and they are exclusively belonging to a broad range of brands and industries.
Whereas, dataset 2 used in Zhang et al. (2014) contains (2,878) samples of e-business
Chinese web pages to as phish and legitimate samples. dataset 3 consists of (96,018) web
pages and it is a large scale dataset retrieved from Marchal et al. (2014a, 2014b) and
Marchal (2015). Also, it varies in the web page functionalities, hosting languages and
targeting industries. Moreover, it was used to detect DNS poisoning and login form
handler phishes hosting different natural languages.

Table 3 Description of the benchmarking datasets

Merits dataset 1 dataset 2 dataset 3
Size 52 2878 96,018
Phishes 36 1382 48009
Legitimates 16 1496 48009
Data archives PhishTank/Alexa  Chinese e-business PhishTank/DMOZ
Training split (2/3)nd 34 1918 64012
Testing split (1/3)rd 18 960 32006
Data source Shahriar and Zhang et al. (2014) Marchal et al. (2014a,
Zulkernine (2012) 2014b), Marchal (2015)
Aggregation time 25-31/7/2010 2014 20122015
Web page Login forms/bank web  E-business web E-business/web
functionality pages/e-business web pages pages’/homepages/login
pages/retailing web forms/social networking/web
pages pages
Hosting language English/French/ Chinese English/French/German/
German Italian/Spanish etc.
nd 1 rd
For performance evaluation, each benchmarking dataset is split up into g and —
3

splits for both training and testing task, respectively. Throughout experiments, each
classification model is tested and evaluated across the splits of every benchmarking
dataset individually. Benchmark results are averaged to estimate the overall performance
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outcomes and overhead of each tested classification model. To do so, typical evaluation
metrics are used including: TPR that indicates the rate of correctly classified phish
samples, and FPR refers to mistakenly classified legitimate samples as phishes, whereas;
false negative rate (FNR) refers to mistakenly labelled phish samples as legitimate ones
which implies misclassification cost [25]. Furthermore, Elapsed Time is used to compute
the amount of time spent by the tested classification model from its start-up to its ending-
up. Elapsed time quantifies how long the tested classification model takes to detect
phishing on a batch of web page stream in practice (Huang et al., 2015).

5.2 Empirical workflow

As illustrated in Figure 3, the empirical workflow was pursued via three steps: features
extraction, implementing the classification model, and then evaluation. In features
extraction step, the source code and URLs of the fetched web pages were parsed to
extract a three categories of features that were discussed in our previously published
papers: URL features, cross site scripting (XSS) features, and HTML features. URL
features such as certain patterns, terms, irregularities, and indicators are widely used by
potential phishes to impersonate legitimate web pages (Zuhair et al., 2016a, 2016c). The
XSS features are suspicious java scripts injected in the source code of the web page by
phishers for malware damage. HTML features are the embedded objects and attributes
structured by the tree of document object model (DOM) (Zuhair et al., 2016a, 2016c).
Thus, the previously revisited classification models are tested on different sets of generic
and new features. Furthermore, the used sets of features -as they have been employed by
the their corresponding works- are of either a hybrid set, or URL features set, or web
page content features set.

Accordingly, each dataset was formulated into feature vectors to be manipulated by

the tested classification model. Then, the formulated dataset (the group of extracted
nd rd

feature vectors) was split up into 3 and 3 splits as training and testing dataset to

learn and test the chosen classification model (Abbasi and Chen, 2009; Islam and
Abawajy, 2013; Xiang, 2013). These splits were fed to the classification model and to
obtain the detection results, see Figure 3. In the evaluation step, the obtained results of
each classification model that was tested on every benchmarking dataset individually
were averaged to estimate the overall performance outcomes and overhead.

It is worthy to mention that evaluation was calculated in terms of average TPR,
average FPR and average FNR, respectively. Also, 27 computerised simulations
(27 repetitions of the conducted experiment across three benchmarking datasets) were
implemented for the comparable classification models and benchmarking datasets. Their
implementation was carried out via a highly used tool for data mining that is ‘WEKA
3.5.7 — Waikato environment for knowledge analysis’ which is developed by some
researchers at the University of Waikato.
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Figure 3 Workflow of empirical analysis (see online version for colours)
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Evaluation Results

5.3 Results and discussions

The obtained classification performance outcomes as they plotted in Figure 4
demonstrate the performance and manifest the detection capability of the tested phishing
classification models across all the benchmarking datasets.

As shown in Figure 4(a), the phishing classification adopted in Marchal et al. (2014a,
2014b) and Marchal (2015) showed that the competitive models could achieve high
levels of TPR on all benchmarking datasets. Amongst them, the tested model adopted by
Marchal et al. (2014a, 2014b) and Marchal (2015) achieved the best scores of TPRs,
FPRs and FNRs among its competitors across benchmarking datasets. This is attributed
to its related feature set which was a large scale and a hybrid set of feature. It consisted of
212 generic features including those previously used by its competitors and/or other
anti-phishing schemes. In practice, such set of features provided an optimal configuration
of features’ variety and quantity. Therefore, the tested model of Marchal et al. (2014a,
2014b) and Marchal (2015) could predict phishness in the chronologically collected
datasets: datasets I, 2 and 3. Whereas, the other classification models showed less
performance (lower TPRs, higher FPRs and FNRs). This is attributed to those models
deployed relatively less number of features along with newer features than those adopted
by model in Marchal et al. (2014a, 2014b) and Marchal (2015). As previously depicted in
Table 4, almost comparable models deployed hybrid sets of features rather than features
of the same type (i.e., a combination of URL, HTML, and XSS features). Except that set
of feature used by the models developed by Zhang et al. (2014) and Mohammad et al.
(2014). It was of a unique type either HTML or URL features. Hence, the variation in
empirical results manifest how the hybrid set of features is the most significant factor of
the best and holistic phishing induction.
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Table 4 Issues of the tested models
Work Gowtham and Marchal et al.
Xiang . . Zhangetal.  Mohammad
. Krishnamurthi (2014a, 2014b),
Merit.
erits 013 2014q, 2014y COTH et ROI4 chal 2015)
Machine learning  SVM, LR, SVM SMO, LR, NN SVM, C4.5,
algorithm(s) BN, DT, RF, NB REF, JRip
Adaboost
Classifier’s Ensemble Single Single Ensemble Single
design
Number of 15 17 15 17 212
features
Feature category Hybrid Hybrid URL Web page Hybrid features
features features features  content features
Generic features 7 14 10 17 200
New features 8 3 5 None None
Feature selection Not Not $ CFS, IG, o Not
mechanism
Active learning Not Not Not Not Active
Adaptive model Not Not Not Not Not
Exploited web Redirecting, E-commerce E-business, E-commerce, E-commerce,
pages login form,  login forms, Chinese login forms, English,
e-business,  redirecting, redirecting, French,
social English English, French German,
networking, Italian, Spanish,
English Portuguese
Avg. TPR (%) 91% 90% 96% 98.6% 97.53%
Avg. FPR (%) 7.6% 6.3% 5.9% 4.48% 2.85%
Avg. FNR (%) 6.7% 11.6% 4.6% 3.4% 1.3%
Avg. elapsed 77 sec. 76.8 sec. 59 sec. 64.6 sec. 43 sec.
time (sec.)

Furthermore, the chart plotted in Figure 4(a), pays a close attention onto the
discriminating power of the deployed features. It is found that not all the employed sets
of features were contributing enough to characterise all types of phish web pages and
their exploits holistically. Indeed, the set of features should be informative to induct
phishing class among all other remaining classes like legitimate and suspicious. More
precisely, the set of features must identify phishing attacks decisively among the other
cyber-attacks that might share the same features. It is observed from Figures 4(b) and
4(c) that the high rates of FPR and FNR demonstrated the need to use a set of decisive
features which could crucially classify phishes on small and/or large data streams. To do
so, a robust feature selection mechanism is required which chooses the best subset of
features frequently to induct phishing accurately. Subsequently, using the best selective
subset of features could solve the problems of class imbalance, size and variety of data,
evolution of web page streams.
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Figure 4 Performance outcomes of the empirical analysis, (a) avg. true positive rate (b) avg. of

false positive rate (c) avg. of false negative rate (d) elapsed time (see online version
for colours)
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In spite of using a gradual scale of the benchmarking datasets along with their diversity in
aggregation time that offered a suitable test-bed to assess the studied phishing
classification models chronologically. Yet, the learning the tested classification model
across the past and the present datasets was passive and questionable, see Figures 4(a),
4(b) and 4(c). This is due to the variable time of data aggregation as well as their variable
and scalable size. For example, dataset 1 was the smallest in size and oldest in aging
among other datasets. Whilst, dataset 2 was bigger in size and younger in aggregation
time than dataset 1 but it convolved exploits of Chinese e-business websites of URL
features exclusively. Whereas, dataset 3 was the biggest in size, the most present in
aging, the most balanced in the distribution of phish/not phish classes, and the most
variant in web page functionalities and hosting languages among its competitors.
Therefore, almost all tested models fall short to classify phishes on dataset 3 accurately.
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That indicates their inability to identify the phish web pages (w) which might be emerged
at time (7 + Q) on a dataset (/) which might be fetched at time (7). As yet, they need a
period of time (Q2) to learn (W) and to set decision boundaries for the newly fetched and
unknown web page on the incoming web page stream. In this concern, the escalating
classification accuracies in Figure 4(a) implied that the emerged phish web page (w)
might be short-living and taken down by its phisher during time (€2). More precisely, the
results plotted in Figure 4(a) pointed out that the time of emerging (Q2) was a long time
horizon that could mislead classification accuracies of the tested models against novel
phishes. That, in turn, makes the sense to validate the factors of big and evolving data as
well as the active learning straightforwardly crosswise all the tested classification models.

As shown in Figure 4(c), a variation of FNRs among the tested models was reported
from low to high rates across all the benchmarking datasets that, in turn arises a crucial
problem of real-time detection. Such variation was attributed to the inabilities of the
tested models in identifying the aging of web page streams and the evolutionary features
of phishing. Typically, the tested models trained the datasets and then set their decision
boundaries for phishing classification. As such, they detected the generic features
exploited by the prevalent phishes in the incoming web page stream. Other reason is that
phishing patterns change very fast as long as the web page streams evolve. Indeed, the
distribution of phish and legitimate classes also will change after each web page stream
evolves. That, in turn, requires the classification model to update its previous decision
rules which will not be to tackle the new changes. From observations in Figure 4(c), it is
clear that all tested models lack of re-learning their classifiers, updating their decision
rules frequently, and adapting to the up-to-date emerging novel phishes throughout their
test across benchmarking datasets.

On the other hand, the plots in Figure 4(d) indicate another concern including the
time of response (phish tackle) and execution along with the nominal cost of
computations in phishing classification. In this concern, almost all tested models reported
approximately long elapsed time to fetch the batch of dataset, extract the vectors of
features, characterise phishing features (generic and/or new features), setup the
classifiers’ decision settings, classify phish and/or legitimate web pages, and then testify
the remaining data to give a precise prediction with less faults in the future. It can be seen
in Figure 4(d) that all the tested models performed well with dataset 1 due to its small
size and limited phish exploits. Whereas, the elapsed time escalated to higher rates on
dataset 2 because dataset 2 was relatively different in its web page exploits than the
others and it had a larger size than that of dataser 1, as presented in Table 3. Additionally,
dataset 2 involved Chinese e-business web page exploits which needed more complicated
computational algorithms to extract and characterise their features. Further, most tested
models learnt dataset 3 during a very long elapsed time due to its big size, various web
page exploits, and different distribution in phish/not phish class that need much
computation cost. Therefore, all tested models except that adopted by Marchal et al.
(2014a, 2014b) and Marchal (2015) could not attain the best case of TPRs, FPRs, FNRs,
and elapsed time with dataset 3. In short, the conducted analysis with the obtained
classification outcomes highlighted open problems of the competitive models in the term
of inductive factors that will be discussed in the next section.
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Issues and perspectives

This section addresses the main contributions of this paper via highlighting the deficiency
of inductive factors and discussing the important research tendencies of future work.

6.1 Main issue: deficiency of inductive factors

The aforesaid empirical analysis showcases why none of the tested models is ideal for
novel phish classification. This intricate issue, as it is described briefly in Table 4, points
out this question “what inductive factors do the tested models lack?” Those inductive
factors could include the following:

Rich set of features. Day after day, phishers emerge new patterns of phishes along
with the prevalent ones (Zeydan et al., 2014a, 2014b; Zuhair et al., 2016a, 2016¢). In
these patterns, new, numerous, and various features are exploited to bypass existing
anti-phishing schemes and cause more damage to users’ computer systems (Zuhair
et al., 2016a, 2016c). Most of these features are more sophisticated than those
already adopted by the tested models. Such new features may include hidden links
for redirecting users to fake pages, obfuscated scripts of JavaScript, PHP, and ASP
for malware insertion and further damage, deceptive cookies and fake advertisements
in the web banners, modified source code in the terms of Applets, Flash, and
ActiveX controls and other embedded objects (; Zuhair et al., 2016a, 2016¢). As
such, the model is at the risk of substantial misclassifications due to the partial
characterisation of all types of phish variants. That, in turn, could degrade its
performance in thwarting novel phishes. In this light, most tested classification
models relied on generic (typical) features rather than new features, and utilised
particular attributes to classify zero-hour and novel phish attacks and to characterise
all the types of web exploits (Zeydan et al., 2014a; Zuhair et al., 2016b).
Accordingly, they scored low to moderate rates of classification accuracy on the
benchmarking datasets. On the other hand, not all the adopted features are
contributing and informative to phishing class induction. They were almost limited at
selecting a subset of features of minimal redundancy and/or maximal relevance to
the phishing class (Zuhair et al., 2015b, 2016b). Such subset of features can be the
best for phishing induction with trivial false classifications. For this reason, the
tested classification models vary in their classification outcomes due to the diversity
of their employed and selected features upon different datasets. In the light of this
factor ‘rich set of features’, this paper introduces a continuation study of previously
published studies addressed the importance of new features and the effects of robust
feature selection (Zuhair et al., 2015a, 2015b, 2016c¢).

Big data and data collection. Low in dimension, short in life span, limited in variety,
imbalanced in class distribution, and divergent in the time of aggregation; altogether
are the most crucial part in training the classification model (Suthaharan, 2014).
Small sets of data having substantial amount of instances belonging to a specific
class rather than other classes, will not be reflective enough to the abundance of the
competitive classes (Kwon and Sim, 2013). Also, the big web is abundant in data but
imbalanced in classes of both phish and not-phish (Huang et al., 2015). Besides
phishes, the web may contain various attacks like ham and spam which share the
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same features of phishing (Toolan and Carthy, 2010). Altogether, yield substantial
false classifications along with complex computation and long processing time
(Toolan and Carthy, 2010). On the other hands, the web offers a variety of valid
phish and suspicious web pages (attacks that not yet identified as phishes by the
existing anti-phishing schemes) (Shahriar and Zulkernine, 2012; Zeydan et al.,
2014a; Tsai et al., 2009; Shabtai et al., 2009). Suspicious web pages could share the
same web functionalities and hosting languages that usually exploited by phishers
(Zeydan et al., 2014a; Zuhair et al., 2016a). Such web variety contributes a
complementary factor of holistic phish characterisation; however, it may yield
substantial phish misclassifications. Furthermore, retrieving phish web pages is hard
to implement due to the short life span of phishes on the web, inaccessible and null
phish web pages, and phish web pages leads to the same website but they are hosted
in different domains (Zeydan et al., 2014a; Uzun et al., 2013; Zuhair et al., 2016a,
2016c¢). Thus, dataset’s integrity and availability need to boost as a complementary
factor of solid datasets to work with (Suthaharan, 2014; Kwon and Sim, 2013; Huang
et al., 2015). To do so, a continual aggregation of data via training task leads to an
implicit identification of the continuously evolved patterns of phishing, updating the
induction settings, resampling the training data, and re-learning the previously
generated classification model that will minimise both false detections and
misclassifications (Tsai et al., 2009).

Active learning. The task of active learning is to label instances of the most
informative batch of the training data artificially (Tsai et al., 2009). The abundant
instances are qualified with a particular function of phishing induction which is
frequently updated throughout training every fetched batch of data (Kumar et al.,
2010; Galar et al., 2012; Shabtai et al., 2009). By default, the classification model
learns a batch of few labeled instances to generate the prototype prediction during
the first iteration of the training phase. When an unlabeled (unknown) datum is
acquired via the testing phase, the classification model uses the prototype prediction
to classify the unlabeled instance. Then, it adds the classified datum to the default
training data for further iteration of training. Iteratively, this procedure is repeated
along with the update of induction settings and fetching unlabeled datum (Vink and
de Haan, 2015). By active learning, the classification model such as FBC, FSFBC
and EFBC can expect the future error with the aid of its own regulations and then
pick up the most informative batch of feature vectors (web pages) which is closest to
minimise that error while handling the forthcoming web stream in the testing phase
(Tsai et al., 2009; Shabtai et al., 2009). Accordingly, the classification model needs
to maintain a particular regulation to cope with the notable change between the
initially classified feature vectors and the newly classified one (Shabtai et al., 2009;
Vink and de Haan, 2015). Simultaneously, it needs to set the new margins of
induction artificially and to remove the unwanted feature vectors from the old
training dataset progressively (Tsai et al., 2009; Shabtai et al., 2009; Vink and de
Haan, 2015). Altogether, should be repeated at every iteration of classification to
tackle the unidentified phish (novel phish). Considering the empirical results and
performance evaluation, all tested FBCs, FSFBCs and EFBCs lacked the factor of
active learning. Additionally, they tend to use the default induction settings at every
classification of unidentified web page via testing phase.
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Adaptive classification model. Almost, the tested models are of static detection
model due to their inability to verify the reported predictions with respect to their
rates of false positives (FPRs) (Abu-Nimeh et al., 2007; Miyamoto et al., 2008).
Predictions of high FPRs could be used as available data to update the default
induction boundaries of the FBCs, FSFBCs and EFBCs in order to minimise the
future case of false positive classifications (Abu-Nimeh et al., 2007; Miyamoto et al.,
2008). Tested classification models lacked the frequent verification mechanism
which inspects the predictions of FPRs and report any change of phishing class
abundance in the learning batch of data over time. As such, they lacked updating the
learnt induction settings eventually and then left the unknown patterns of phishes to
bypass as legitimate web pages after a period of execution time. Thus, the tested
models were heavy to tackle new patterns of phishes (novel phishes) on the
sequentially increasing batches of datasets. Accordingly, their performance implied a
non-zero misclassification rates. Overall, dynamically updating the former
predictions by a new prediction, which is made from inspecting the unlabeled web
page, becomes an intricate challenge to the tested models in real-time experience. As
time progresses, they are restricted at detecting phishes online with zero
misclassification cost. That, in turn, requires developing an adaptive algorithm which
detects any changes in the fetched web flows and accordingly updates its induction
boundaries to learn them accurately.

6.2 Future perspectives

From the above highlighted issue and the obtained findings of the conducted analysis, a
research question is raised to be solved: “How the inductive factors could be boosted to
obtain an efficient and real-time phishing classification model?” To answer the
highlighted question, it is highly recommended to consider the following perspectives for
future work:

New features. A great care must be put on exploring new features and enrich the
currently used ones. That will provide holistic characterisation of both novel and
prevalent phishes. Based on rich features, the induction settings of the classification
models will be promoted. Specifically, if the explored features belong to the recently
observed feature categories including XSS features, embedded objects, language
independent features, and hybrid features (Uzun et al., 2013; Zuhair et al., 2016a,
2016c¢). Where, hybrid feature category involve numerous features of different
categories; i.e. typically being formed from the former categories (Uzun et al., 2013;
Zuhair et al., 2016a, 2016¢). Additionally, variant outcomes of classification will be
avoided with the heavy dependence on the best and robust selected subset of features
on any dataset that escalating in its size and its age. Therefore, more optimised
mechanisms should be involved in building a phishing classification model to select
the best contributing features.

Chronological training. Based on the assumption that a classification model is
actively learned with the training dataset at a certain time 7. A given web page w at T
could be predicted as a phish in the future (7 + 7). Nevertheless, the revisited
machine learning-based phishing classification models rarely estimate their
prediction across the benchmarking datasets that are scaling in their dimensions and
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chronological in their aggregation time. To control the compromise between the
consumption of external resources and the real-time classification of phishing,
aggregating datasets periodically every T (time interval) of minutes, for example;
will be a complementary induction factor in less biased training and testing. In
addition, chronological aggregation yields cost-sensitive classification of novel
phishes on evolving web flow in the realistic-mode of practice due to its scalability
versus the implicit and explicit class balance problem.

e Adaptive modelling. In the real-time application, the mechanism of building an anti-
phishing scheme along with its default inductive settings falls short to detect novel
phishes on up-to-date web page stream. Adaptive mechanism assesses the unknown
fetched data frequently to select the most informative datum for updating its default
inductive settings as well as training dataset (Kwon and Sim, 2013). As such, it
would be able to detect the modest phish patterns on the upcoming data flows. To do
so, an adaptive assembly could be devoted with three functionally inter-related
modules working together in a synchronised mechanism: prediction module,
validation module and detection module. Initially, the prediction module classifies
the training web page stream and learns the FBC or FSFBC or EFBC offline. Whilst,
the detection module fetches a new web page from the evolving web page stream
and tests it online by the default inductive settings. Whenever a change is observed
(unknown phish pattern is tackled), the detection module will exclude it and send it
back to the validation module. Then, the validation module will validate the change
and reconfigure the default settings (features). To update the previously trained web
page stream at the prediction module, the validation module will feedback the
prediction module with the excluding datum (feature vector).

7 Concluding remarks

By revisiting the current achievements in machine learning-based anti-phishing domain,
it is observed that they affirmed to be computationally effective but in-adaptive to
accomplish real-time phishing detection. That is due to their full or partial deficiency of
inductive factors such as rich set of features, big web data and its class imbalance,
actively learned FBC, and adaptable modelling. By restating the causality between their
limitations and their inductive deficiency throughout an empirical analysis; future
outlooks are suggested to promote their induction power. Furthermore, a phishing
classification model could be extended in the future via a high level assembly integrating
functionally inter-relating and synchronously working modules to adapt novel phish
patterns on the evolving web page stream. Regarding the issues stated in this paper at
building any machine learning-based classification model; effectiveness of classification
could be elevated along with reducing the misclassification and computational cost.
Additionally, this paper with the underlined perspectives are hoped to serve as a
navigating taxonomy to the researchers for their future efforts.
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