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A B S T R A C T

In this paper, a new concept of generalized convexity is introduced for (not necessarily) differ-
entiable optimization problem with 𝐸-differentiable functions. Namely, for an 𝐸-differentiable
function, the concept of 𝐸-𝐵-invexity is defined. The 𝐸-differentiable 𝐸-𝐵-invexity notion
unify the concepts of convexity, invexity, 𝐸-convexity, 𝐸-invexity and 𝐵-invexity. Further, the
sufficiency of the so-called 𝐸-Karush-Kuhn–Tucker optimality conditions are established for the
considered 𝐸-differentiable optimization problem with both inequality and equality constraints
under 𝐸-𝐵-invexity hypotheses. Moreover, the example of a nonsmooth programming problem
with 𝐸-differentiable functions is constructed to illustrate the aforesaid results.

1. Introduction

One of the most widely applied hypotheses in optimization theory is convexity. The convex functions appear in many pastures of
conomics, management science, engineering, finance, etc. Several definitions extending the concept of convexity of a function have
een introduced, with the purpose of weakening the assumptions to establish some results concerning the sufficiency of Karush–
uhn–Tucker conditions of a mathematical programming problem. A significant generalization of convex functions is invex functions,

ntroduced by Hanson [1]. Over the years, many generalizations of this concept have been introduced in the literature (see, for
xample, [2–15], and others). Bector and Singh [16] introduced the 𝐵-vex functions as generalization of convex functions, namely
𝐵-vex functions satisfy many of the basic properties of convex functions. Bector et al. [6] defined the concept of 𝐵-invexity. Under
the assumption of 𝐵-invexity imposed on the functions involving a mathematical programming problem, both the sufficiency of the
Karush–Kuhn–Tucker necessary optimality conditions and Wolfe duality results hold.

Youness [15] discussed the generalize convex sets and convex functions which placed on a one-to-one and onto operator
𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 in the same region in which functions defined and known as the 𝐸-convex sets and 𝐸-convex functions. Moreover,
the results established by Youness [15] were improved by Yang [17]. The beginning outcomes of Youness [15] inspired the great
study of succeeding work, which substantially developed the part of 𝐸-convexity in optimization theory (see, for example, [11,18–
30], and others). Megahed et al. [29] presented the concept of an 𝐸-differentiable convex function which transforms a (not
necessarily) differentiable convex function to a differentiable function also based on the effect of an operator 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛.

ecently, Abdulaleem [5] introduced a new concept of generalized convexity as a generalization of the notion of 𝐸-differentiable
-convexity. Namely, Abdulaleem defined the concept of 𝐸-differentiable 𝐸-invexity in the case of (not necessarily) differentiable

vector optimization problems with 𝐸-differentiable functions.
In this paper, firstly, we characterize the class of 𝐸-differentiable 𝐸-𝐵-invex functions. Namely, we show that every 𝐸-stationary

point of any 𝐸-differentiable 𝐸-𝐵-invex function is its global 𝐸-minimizer. Further, the concept of a so-called 𝐸-differentiable
𝐸-𝐵-invex function for 𝐸-differentiable optimization problems is introduced. Moreover, the sufficient optimality conditions are
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established for the considered 𝐸-differentiable optimization problem under 𝐸-𝐵-invexity. This result is illustrated by the example
of a nonconvex 𝐸-differentiable optimization problem in which the involved functions are 𝐸-𝐵-invex.

2. Definition of the class of 𝑬-𝑩-invex functions and preliminaries

We now give the definition of an 𝐸-differentiable function introduced by Megahed et al. [29].

Definition 1 ([29]). Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 and 𝑓 ∶ 𝑅𝑛 → 𝑅 be a (not necessarily) differentiable function at a given point 𝑢 ∈ 𝑅𝑛. It is
said that 𝑓 is an 𝐸-differentiable function at 𝑢 if and only if 𝑓◦𝐸 is a differentiable function at 𝑢 (in the usual sense), that is,

(𝑓◦𝐸) (𝑥) = (𝑓◦𝐸) (𝑢) + ∇ (𝑓◦𝐸) (𝑢) (𝑥 − 𝑢) + 𝜃 (𝑢, 𝑥 − 𝑢) ‖𝑥 − 𝑢‖ , (1)

where 𝜃 (𝑢, 𝑥 − 𝑢) → 0 as 𝑥 → 𝑢.

Now, we define a new concept of generalized convexity for an 𝐸-differentiable function.

Definition 2. Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 and 𝑓 ∶ 𝑅𝑛 → 𝑅 be an 𝐸-differentiable function on 𝑅𝑛. It is said that 𝑓 is 𝐸-𝐵-invex with respect
to 𝜂 and 𝑏 at 𝑢 ∈ 𝑅𝑛 on 𝑅𝑛 if, there exist functions 𝜂 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 and 𝑏 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅+ such that, for all 𝑥 ∈ 𝑅𝑛,

𝑏(𝐸(𝑥), 𝐸(𝑢)) [𝑓 (𝐸(𝑥)) − 𝑓 (𝐸(𝑢))] ≥ ∇ (𝑓◦𝐸) (𝑢) 𝜂(𝐸(𝑥), 𝐸(𝑢)). (2)

If inequality (2) holds for any 𝑢 ∈ 𝑅𝑛, then 𝑓 is 𝐸-𝐵-invex with respect to 𝜂 and 𝑏 on 𝑅𝑛.

Remark 3. Note that Definition 2 generalizes and extends several generalized convexity notions, previously introduced in the
literature. Indeed, there are the following special cases:

(a) If 𝑏(𝑥, 𝑢) = 1, then the definition of an 𝐸-𝐵-invex function reduces to the definition of an 𝐸-invex function introduced by
Abdulaleem [5].

(b) If 𝐸(𝑥) ≡ 𝑥 (𝐸 is an identity map), then the definition of an 𝐸-𝐵-invex function reduces to the definition of a 𝐵-invex function
introduced by Bector et al. [6].

(c) If 𝐸(𝑥) ≡ 𝑥 (𝐸 is an identity map) and 𝑏(𝑥, 𝑢) = 1, then the definition of an 𝐸-𝐵-invex function reduces to the definition of
an invex function introduced by Hanson [1].

(d) If 𝜂 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 is defined by 𝜂(𝑥, 𝑢) = 𝑥 − 𝑢 and 𝑏(𝑥, 𝑢) = 1, then the definition of an 𝐸-𝐵-invex function reduces to the
definition of an 𝐸-differentiable 𝐸-convex function introduced by Megahed et al. [29].

(e) If 𝑓 is differentiable, 𝐸(𝑥) = 𝑥 (𝐸 is an identity map), 𝜂 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 is defined by 𝜂(𝑥, 𝑢) = 𝑥 − 𝑢 and 𝑏(𝑥, 𝑢) = 1, then the
definition of an 𝐸-𝐵-invex function reduces to the definition of a differentiable convex function.

(f) If 𝑓 is differentiable, 𝜂 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 is defined by 𝜂(𝑥, 𝑢) = 𝑥 − 𝑢 and 𝑏(𝑥, 𝑢) = 1, then we obtain the definition of a
differentiable 𝐸-convex function introduced by Youness [15].

Definition 4. Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 and 𝑓 ∶ 𝑅𝑛 → 𝑅 be an 𝐸-differentiable function on 𝑅𝑛. It is said that 𝑓 is strictly 𝐸-𝐵-invex with
respect to 𝜂 and 𝑏 at 𝑢 ∈ 𝑅𝑛 on 𝑅𝑛 if, there exist functions 𝜂 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛 and 𝑏 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅+ such that, for all 𝑥 ∈ 𝑅𝑛,

𝑏(𝐸(𝑥), 𝐸(𝑢)) [𝑓 (𝐸(𝑥)) − 𝑓 (𝐸(𝑢))] > ∇ (𝑓◦𝐸) (𝑢) 𝜂(𝐸(𝑥), 𝐸(𝑢)). (3)

If inequality (3) holds for any 𝑢 ∈ 𝑅𝑛 (𝐸(𝑥) ≠ 𝐸(𝑢)), then 𝑓 is strictly 𝐸-𝐵-invex with respect to 𝜂 and 𝑏 on 𝑅𝑛.

Now, we present an example of a nondifferentiable 𝐸-𝐵-invex function, which is not a 𝐵-invex function or an 𝐸-invex function.

Example 5. Let 𝐸 ∶ 𝑅 → 𝑅. A function 𝑓 ∶ 𝑅 → 𝑅 defined by 𝑓 (𝑥) = 𝑒 3√𝑥 is 𝐸-𝐵-invex with respect to 𝐸(𝑥) = 𝑥3, 𝜂 and 𝑏 defined
by

𝑏(𝐸(𝑥), 𝐸(𝑢)) =

{

1 if 𝑥 ≥ 𝑢,
𝑒𝑥

𝑒𝑢−𝑒𝑥 if 𝑥 < 𝑢.

𝜂(𝐸(𝑥), 𝐸(𝑢)) =

{

𝑒𝑥−𝑒𝑢
𝑒𝑢 if 𝑥 ≥ 𝑢,

−1 if 𝑥 < 𝑢.
But 𝑓 is not 𝐸-invex with respect to 𝜂 defined above as can be seen by taking 𝑥 = 1, 𝑢 = 2, since the inequalities

𝑓 (𝐸(𝑥)) − 𝑓 (𝐸(𝑢)) < ∇(𝑓◦𝐸)(𝑢)𝜂(𝐸(𝑥), 𝐸(𝑢))

hold. Hence, by the definition of an 𝐸-invex function [5], it follows that 𝑓 is not 𝐸-invex with respect to 𝜂 given above. Also, 𝑓 is
not a 𝐵-invex function with respect to 𝜂 and 𝑏 defined above (see [6]).

Now, we present an example of a nondifferentiable 𝐸-𝐵-invex function, which is not an invex function or an 𝐸-invex function.
2
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Example 6. A function 𝑓 ∶ 𝑀 ⊆ (0, 𝜋2 ) → 𝑅 defined by 𝑓 (𝑥) = 3
√

𝑥 + sin( 3
√

𝑥) is 𝐸-𝐵-invex with respect to 𝐸 ∶ 𝑀 → 𝑀 ,

𝜂 ∶ 𝑀 ×𝑀 → 𝑅 and 𝑏 ∶ 𝑀 ×𝑀 → 𝑅+ defined by 𝐸(𝑥) = 𝑥3, 𝜂(𝑥, 𝑢) = 2 sin( 3
√

𝑥)−sin( 3
√

𝑢)
cos( 3

√

𝑢)
and 𝑏(𝑥, 𝑢) = 2, respectively. But 𝑓 is not invex

with respect to 𝜂 defined above, since the inequality

𝑓 (𝑥) − 𝑓 (𝑢) < ∇𝑓 (𝑢)𝜂(𝑥, 𝑢)

holds. Hence, by the definition of an invex function [1], it follows that 𝑓 is not invex with respect to 𝜂 given above. Also, 𝑓 is not
𝐸-invex with respect to 𝜂 defined above, since the inequality

𝑓 (𝐸(𝑥)) − 𝑓 (𝐸(𝑢)) < ∇(𝑓◦𝐸)(𝑢)𝜂(𝐸(𝑥), 𝐸(𝑢))

holds. Hence, by the definition of an 𝐸-invex function [5], it follows that 𝑓 is not 𝐸-invex with respect to 𝜂 given above. Further,
𝑓 is not 𝐵-invex function with respect to 𝜂 and 𝑏 defined above (see [6]).

Now we introduce necessary and sufficient conditions for an 𝐸-𝐵-invex function.

Theorem 7. Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛. 𝑓 ∶ 𝑅𝑛 → 𝑅 is an 𝐸-differentiable 𝐸-𝐵-invex function with respect to 𝜂 and 𝑏 on 𝑅𝑛, where
𝜂 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛, 𝑏 ∶ 𝑅𝑛 × 𝑅𝑛 → 𝑅+ and if and only if its every 𝐸-stationary point is a global 𝐸-minimum of 𝑓 .

Proof. ‘‘⇒’’ Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛. Clearly, if 𝑓 is an 𝐸-differentiable 𝐸-𝐵-invex function with respect to 𝜂 and 𝑏 on 𝑅𝑛 satisfying

𝑏(𝐸(𝑥), 𝐸(𝑢)) ≠ 0 𝑖𝑓 𝑥 ≠ 𝑢,

𝑏(𝐸(𝑥), 𝐸(𝑢)) = 0 𝑖𝑓 𝑥 = 𝑢, (4)

and 𝐸(𝑥) its 𝐸-stationary point, then ∇𝑓 (𝐸(𝑥)) = 0 implies 𝑓 (𝐸(𝑥)) ≤ 𝑓 (𝐸(𝑥)), ∀𝑥 ∈ 𝑅𝑛.
‘⇐’’
f ∇𝑓 (𝐸(𝑥)) = 0, take 𝜂(𝐸(𝑥), 𝐸(𝑥)) = 0 and (4).

If ∇𝑓 (𝐸(𝑥)) ≠ 0, take

𝜂(𝐸(𝑥), 𝐸(𝑥)) =
𝑓 (𝐸(𝑥)) − 𝑓 (𝐸(𝑥))
∇𝑓 (𝐸(𝑥))∇𝑓 (𝐸(𝑥))

∇𝑓 (𝐸(𝑥))

and 𝑏 is any nonnegative real-valued function defined on 𝑅𝑛 × 𝑅𝑛 satisfying (4). ■

Example 8. Let 𝐸 ∶ 𝑅 → 𝑅, 𝑓 ∶ 𝑅 → 𝑅 be an 𝐸-differentiable function on 𝑅 defined by

𝑓 (𝑥) = 3√

𝑥2, 𝐸(𝑥) = 𝑥
9
2 .

Note that 𝑓 is not an 𝐸-differentiable 𝐸-𝐵-invex function. Since the differentiable function 𝑓 (𝐸(𝑥)) = 𝑥3 has an 𝐸-stationary point
at 𝐸(𝑥) = 0, but it is not a global 𝐸-minimum.

. Optimality conditions for 𝑬-differentiable optimization problem

In the paper, we consider the following (not necessarily differentiable) optimization problem with both inequality and equality
onstraints:

𝑓 (𝑥) → min

subject to 𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ 𝐼 = {1,… , 𝑘} ,

ℎ𝑗 (𝑥) = 0, 𝑗 ∈ 𝐽 = {1,… , 𝑠} ,

(P)

where 𝑓 ∶ 𝑅𝑛 → 𝑅 and 𝑔𝑖 ∶ 𝑅𝑛 → 𝑅, 𝑖 ∈ 𝐼 , ℎ𝑗 ∶ 𝑅𝑛 → 𝑅, 𝑗 ∈ 𝐽 , are 𝐸-differentiable functions on 𝑅𝑛. We will write
𝑔 ∶=

(

𝑔1,… , 𝑔𝑘
)

∶ 𝑅𝑛 → 𝑅𝑘 and ℎ ∶=
(

ℎ1,… , ℎ𝑠
)

∶ 𝑅𝑛 → 𝑅𝑠 for convenience. Let

𝛺 ∶=
{

𝑥 ∈ 𝑅𝑛 ∶ 𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ 𝐼 , ℎ𝑗 (𝑥) = 0, 𝑗 ∈ 𝐽
}

be the set of all feasible solutions of (P). Further, 𝐼
(

𝑥
)

is the set of all active inequality constraints at point 𝑥 ∈ 𝐷, i.e. 𝐼
(

𝑥
)

=
{

𝑖 ∈ 𝐼 ∶ 𝑔𝑖
(

𝑥
)

= 0
}

.

Definition 9. A point 𝑥 is said to be an 𝐸-optimal solution of (P) if there exists no 𝑥 such that

𝑓 (𝑥) < 𝑓 (𝑥).

Now, for the considered optimization problem (P), we define its associated differentiable 𝐸-optimization problem (P𝐸) as follows:

𝑓 (𝐸(𝑥)) → min

subject to 𝑔𝑖(𝐸(𝑥)) ≤ 0, 𝑖 ∈ 𝐼 = {1,… , 𝑘} , (P𝐸)
ℎ𝑗 (𝐸(𝑥)) = 0, 𝑗 ∈ 𝐽 = {1,… , 𝑠} .

3
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𝐸

T

We call the problem (P𝐸) an 𝐸-optimization problem. Let

𝛺𝐸 ∶=
{

𝑥 ∈ 𝑅𝑛 ∶ 𝑔𝑖(𝐸(𝑥)) ≤ 0, 𝑖 ∈ 𝐼 , ℎ𝑗 (𝐸(𝑥)) = 0, 𝑗 ∈ 𝐽
}

be the set of all feasible solutions of (P𝐸).

Lemma 10 ([18]). Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 be a one-to-one and onto operator. Then 𝐸
(

𝛺𝐸
)

= 𝛺.

Definition 11. A point 𝐸(𝑥) ∈ 𝛺 is said to be an 𝐸-optimal solution of (P) if there exists no 𝐸(𝑥) ∈ 𝛺 such that

𝑓 (𝐸(𝑥)) < 𝑓 (𝐸(𝑥)).

Definition 12. Let 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 be a one-to-one and onto operator. If 𝑥 is an optimal solution of (P𝐸). Then, there exists 𝐸
(

𝑥
)

is
an 𝐸-optimal solution of (P).

Theorem 13 ([5]). (𝐸-Karush-Kuhn–Tucker Necessary Optimality Conditions). Let the objective function 𝑓 , the constraint functions 𝑔𝑖,
𝑖 ∈ 𝐼 , and ℎ𝑗 , 𝑗 ∈ 𝐽 , be 𝐸 -differentiable at 𝑥 ∈ 𝛺𝐸 . Further, let 𝐸

(

𝑥
)

be an 𝐸-optimal solution of the considered 𝐸-differentiable
optimization problem (P) and the 𝐸-Guignard constraint qualification [5] be satisfied at 𝑥. Then, there exist Lagrange multipliers 𝜁 ∈ 𝑅𝑘

and 𝜇 ∈ 𝑅𝑠 such that

∇𝑓 (𝐸
(

𝑥
)

) +
𝑘
∑

𝑖=1
𝜁 𝑖∇𝑔𝑖(𝐸

(

𝑥
)

) +
𝑠
∑

𝑗=1
𝜇𝑗∇ℎ𝑗 (𝐸

(

𝑥
)

) = 0, (5)

𝜁 𝑖𝑔𝑖(𝐸
(

𝑥
)

) = 0, 𝑖 ∈ 𝐼, (6)

𝜁 𝑖 ∈ 𝑅+, 𝑖 ∈ 𝐽 . (7)

Definition 14. It is said that
(

𝐸
(

𝑥
)

, 𝜁 , 𝜇
)

∈ 𝛺 × 𝑅𝑘 × 𝑅𝑠 is an 𝐸-Karush-Kuhn–Tucker point (𝐸-KKT-point, in short) for the
considered optimization problem (P) if the 𝐸-Karush-Kuhn–Tucker necessary optimality conditions (5)–(7) are satisfied at 𝐸(𝑥) with
Lagrange multiplier 𝜁 , 𝜇.

Now, we prove the sufficiency of the 𝐸-Karush-Kuhn–Tucker (𝐸-KKT, in short) necessary optimality conditions for the considered
-differentiable optimization problem (P) under 𝐸-𝐵-invexity hypotheses.

heorem 15. Let
(

𝑥, 𝜁, 𝜇
)

∈ 𝛺𝐸 × 𝑅𝑘 × 𝑅𝑠 be a Karush–Kuhn–Tucker point (KKT-point, in short) of the 𝐸-optimization problem (P𝐸).
Let 𝐽+

𝐸
(

𝐸
(

𝑥
))

=
{

𝑗 ∈ 𝐽 ∶ 𝜇𝑗 > 0
}

and 𝐽−
𝐸
(

𝐸
(

𝑥
))

=
{

𝑗 ∈ 𝐽 ∶ 𝜇𝑗 < 0
}

. Furthermore, assume the following hypotheses are fulfilled:

(a) the objective function 𝑓 , is an 𝐸-𝐵𝑓 -invex function with respect to 𝜂 and 𝑏𝑓 at 𝑥 on 𝛺𝐸 ,
(b) each inequality constraint 𝑔𝑖, 𝑖 ∈ 𝐼𝐸

(

𝑥
)

, is an 𝐸-𝐵𝑔𝑖 -invex function with respect to 𝜂 and 𝑏𝑔𝑖 at 𝑥 on 𝛺𝐸 ,
(c) each equality constraint ℎ𝑗 , 𝑗 ∈ 𝐽+ (

𝐸
(

𝑥
))

, is an 𝐸-𝐵ℎ𝑗 -invex function with respect to 𝜂 and 𝑏ℎ𝑗 at 𝑥 on 𝛺𝐸 ,
(d) each function −ℎ𝑗 , 𝑗 ∈ 𝐽− (

𝐸
(

𝑥
))

, is an 𝐸-𝐵ℎ𝑗 -invex function with respect to 𝜂 and 𝑏ℎ𝑗 at 𝑥 on 𝛺𝐸 .

Then 𝑥 is an optimal solution of the problem (P𝐸) and, thus, 𝐸
(

𝑥
)

is an 𝐸-optimal solution of the problem (P).

Proof. By assumption,
(

𝑥, 𝜁, 𝜇
)

∈ 𝛺𝐸 × 𝑅𝑘 × 𝑅𝑠 is a Karush–Kuhn–Tucker point of the differentiable optimization problem (P𝐸).
Then, by Definition 14, the Karush–Kuhn–Tucker necessary optimality conditions (5)–(7) are satisfied at 𝑥 with Lagrange multipliers
𝜁 ∈ 𝑅𝑘 and 𝜇 ∈ 𝑅𝑠. We proceed by contradiction. Suppose, contrary to the result, that 𝑥 is not an optimal solution of the problem
(P𝐸). Hence, by Definition 11, there exists another 𝑥∗ ∈ 𝛺𝐸 such that

𝑓 (𝐸
(

𝑥∗
)

) < 𝑓
(

𝐸
(

𝑥
))

. (8)

Using hypotheses (a)–(d), by Definition 2, the following inequalities

𝑏𝑓
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
)) [

𝑓
(

𝐸
(

𝑥∗
))

− 𝑓
(

𝐸
(

𝑥
))]

≥ ∇𝑓
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, (9)

𝑏𝑔𝑖
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
)) [

𝑔𝑖(𝐸
(

𝑥∗
)

) − 𝑔𝑖(𝐸
(

𝑥
)

)
]

≥ ∇𝑔𝑖
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, 𝑖 ∈ 𝐼
(

𝐸
(

𝑥
))

, (10)

𝑏ℎ𝑗
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
)) [

ℎ𝑗 (𝐸
(

𝑥∗
)

) − ℎ𝑗 (𝐸
(

𝑥
)

)
]

≥ ∇ℎ𝑗
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, 𝑗 ∈ 𝐽+ (

𝐸
(

𝑥
))

, (11)

𝑏ℎ𝑗
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
)) [

−ℎ𝑗 (𝐸
(

𝑥∗
)

) + ℎ𝑗 (𝐸
(

𝑥
)

)
]

≥ −∇ℎ𝑗
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, 𝑗 ∈ 𝐽− (

𝐸
(

𝑥
))

(12)

hold, respectively. Where 𝑏𝑓
(

𝐸 (𝑥∗) , 𝐸
(

𝑥
))

> 0, for all 𝑥∗ ∈ 𝛺𝐸 . Combining (8) and (9), we get

∇ 𝑓◦𝐸
(

𝑥
)

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

< 0. (13)
( )

4
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T

N

f

N
(

t

Multiplying inequalities (10)–(12) by the corresponding Lagrange multipliers, respectively, we obtain

𝑏𝑔𝑖
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

[

𝜁 𝑖𝑔𝑖(𝐸
(

𝑥∗
)

) − 𝜁 𝑖𝑔𝑖(𝐸
(

𝑥
)

)
]

≥ 𝜁 𝑖∇𝑔𝑖
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, 𝑖 ∈ 𝐼
(

𝐸
(

𝑥
))

, (14)

𝑏ℎ𝑗
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
)) [

𝜇𝑗ℎ𝑗 (𝐸
(

𝑥∗
)

) − 𝜇𝑗ℎ𝑗 (𝐸
(

𝑥
)

)
]

≥ 𝜇𝑗∇ℎ𝑗
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, 𝑗 ∈ 𝐽+ (

𝐸
(

𝑥
))

, (15)

𝑏ℎ𝑗
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
)) [

𝜇𝑗ℎ𝑗 (𝐸
(

𝑥∗
)

) − 𝜇𝑗ℎ𝑗 (𝐸
(

𝑥
)

)
]

≥ 𝜇𝑗∇ℎ𝑗
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

, 𝑗 ∈ 𝐽− (

𝐸
(

𝑥
))

. (16)

Using the 𝐸-Karush-Kuhn–Tucker necessary optimality condition (6) together with 𝑥∗ ∈ 𝛺𝐸 and 𝑥 ∈ 𝛺𝐸 , where 𝑏𝑔𝑖
(

𝐸 (𝑥∗) , 𝐸
(

𝑥
))

>
0, 𝑖 ∈ 𝐼

(

𝐸
(

𝑥
))

and 𝑏ℎ𝑗
(

𝐸 (𝑥∗) , 𝐸
(

𝑥
))

> 0, 𝑗 ∈ 𝐽
(

𝐸
(

𝑥
))

we get, respectively,

𝜁 𝑖∇𝑔𝑖
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

≤ 0, 𝑖 ∈ 𝐼
(

𝐸
(

𝑥
))

, (17)

𝜇𝑗∇ℎ𝑗
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

≤ 0, 𝑗 ∈ 𝐽+ (

𝐸
(

𝑥
))

, (18)

𝜇𝑗∇ℎ𝑗
(

𝐸
(

𝑥
))

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

≤ 0, 𝑗 ∈ 𝐽− (

𝐸
(

𝑥
))

. (19)

Combining (13) and (17)–(19), we obtain that the following inequality
[

∇ (𝑓◦𝐸)
(

𝑥
)

+
𝑘
∑

𝑖=1
𝜁 𝑖∇𝑔𝑖

(

𝐸
(

𝑥
))

+
𝑠
∑

𝑗=1
𝜇𝑗∇ℎ𝑗

(

𝐸
(

𝑥
))

]

𝜂
(

𝐸
(

𝑥∗
)

, 𝐸
(

𝑥
))

< 0

holds, which is a contradiction to the 𝐸-Karush-Kuhn–Tucker necessary optimality condition (5). By assumption, 𝐸 ∶ 𝑅𝑛 → 𝑅𝑛 is a
one-to-one and onto operator. Since 𝑥 is an optimal solution of the problem (P𝐸), by Definition 12, 𝐸

(

𝑥
)

is an 𝐸-optimal solution
f the problem (P). Thus, the proof of this theorem is completed. ■

heorem 16. Let
(

𝑥, 𝜁, 𝜇
)

∈ 𝛺𝐸 × 𝑅𝑘 × 𝑅𝑠 be a Karush–Kuhn–Tucker point (KKT-point, in short) of the 𝐸-optimization problem (P𝐸).
Furthermore, assume that the following hypotheses are fulfilled:

(a) the objective function 𝑓 , is a strictly 𝐸-𝐵𝑓 -invex function with respect to 𝜂 and 𝑏𝑓 at 𝑥 on 𝛺𝐸 ,
(b) each inequality constraint 𝑔𝑖, 𝑖 ∈ 𝐼𝐸

(

𝑥
)

, is an 𝐸-𝐵𝑔𝑖 -invex function with respect to 𝜂 and 𝑏𝑔𝑖 at 𝑥 on 𝛺𝐸 ,
(c) each equality constraint ℎ𝑗 , 𝑗 ∈ 𝐽+ (

𝐸
(

𝑥
))

, is an 𝐸-𝐵ℎ𝑗 -invex function with respect to 𝜂 and 𝑏ℎ𝑗 at 𝑥 on 𝛺𝐸 ,
(d) each function −ℎ𝑗 , 𝑗 ∈ 𝐽− (

𝐸
(

𝑥
))

, is an 𝐸-𝐵ℎ𝑗 -invex function with respect to 𝜂 and 𝑏ℎ𝑗 at 𝑥 on 𝛺𝐸 .

Then 𝑥 is an optimal solution of the problem (P𝐸) and, thus, 𝐸
(

𝑥
)

is an 𝐸-optimal solution of the problem (P).

We now present an example of an 𝐸-differentiable optimization problem in which the functions involved are 𝐸-𝐵-invex, in order
to illustrate the sufficient optimality conditions defined in the paper.

Example 17. Consider the following nondifferentiable optimization problem

𝑓 (𝑥) = 𝑒
3√8𝑥 − 1 → min

s.t. 𝑔(𝑥) = 1 − 𝑒 3√𝑥 ≤ 0.
(P1)

ote that the feasible solution set of the considered optimization problem (P1) is 𝛺 = {𝑥 ∈ 𝑅 ∶ 1 − 𝑒 3√𝑥1 ≤ 0}. Further, note that
the functions constituting problem (P1) are nondifferentiable at 𝑥 = 0. Let 𝐸 ∶ 𝑅 → 𝑅 be a one-to-one and onto mapping defined as
ollows 𝐸 (𝑥) = 𝑥3. Now, for the problem (P1), we define its associated constrained 𝐸-optimization problem (P𝐸1) as follows

𝑓 (𝐸(𝑥)) = 𝑒2𝑥 − 1 → min

s.t. 𝑔(𝐸(𝑥)) = 1 − 𝑒𝑥 ≤ 0.
(P𝐸1)

ote that the feasible solution set of the problem (P𝐸1) is 𝛺𝐸 = {𝑥 ∈ 𝑅 ∶ 1 − 𝑒𝑥 ≤ 0} and 𝑥 = 0 is a feasible solution of the problem
P𝐸1). Let 𝜂 and 𝑏 be defined by 𝜂(𝑥, 𝑢) = 𝑒 3√𝑥 + 𝑒 3√𝑢, 𝑏𝑓 (𝑥, 𝑢) =

𝑒
3√𝑢

𝑒
3√𝑥+1

and 𝑏𝑔(𝑥, 𝑢) = 1. Further, note that all functions constituting
the considered optimization problem (P1) are 𝐸-differentiable 𝐸-𝐵-invex at 𝑥 = 0. Then, by Definition 2, it can be shown that
the objective function 𝑓 is 𝐸-𝐵𝑓 -invex with respect to 𝜂, 𝑏𝑓 at 𝑥 on 𝛺𝐸 , the constraint function 𝑔 is 𝐸-𝐵𝑔-invex with respect to 𝜂,
𝑏𝑔 at 𝑥 on 𝛺𝐸 . Thus, all hypotheses of Theorem 15 are fulfilled and, therefore, we conclude that 𝑥 = 0 is an optimal solution of
he 𝐸-optimization problem (P𝐸1) and, thus, 𝐸(𝑥) is an 𝐸-optimal solution of the considered multiobjective programming problem

(P1). Note, moreover, that the sufficient optimality conditions under 𝐸-differentiable 𝐸-convexity (see, for example, [18]) are not
applicable since the functions constituting problem (P𝐸1) are not 𝐸-convex at 𝑥 on 𝛺𝐸 . Also, the sufficient optimality conditions
under invexity (see [1]) are not applicable in the considered case since the functions constituting problem (P1) are not invex with
respect to 𝜂 defined above on 𝛺. Moreover, the sufficient optimality conditions under 𝐵-invexity (see [6]) are not applicable in the
considered case since the functions constituting problem (P1) are not 𝐵-invex with respect to 𝜂 and 𝑏 defined above on 𝛺.
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4. Concluding remarks

In this paper, a new class of nondifferentiable optimization problems has been defined. Namely, the concept of 𝐸-𝐵-invexity in
which all involved functions are 𝐸-differentiable has been introduced. The so-called 𝐸-Karush-Kuhn–Tucker sufficient optimality
conditions have been established for the considered 𝐸-differentiable optimization problem under 𝐸-𝐵-invexity. These results have
been illustrated in the paper by suitable examples.
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