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Abstract : 

     In this paper we discussed relation proximal points with many of  dynamical properties 

through studied topological transformation group , and it will given  necessary condition for 

proximal relation to be minimal set ,and introduce  new define replete set and semi-replete set 

by using concept of the replete set and semi-replete set as well as  we introduce that many of  

new  relations  and theorem. 
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Introduction : 

     The first has been introduced the proximal point in topological transformation group 

(𝑍, 𝑇, 𝜋) with compact hausdorff 𝑍 was Ellis R. and Gottschalk W.[4][5].We show  relation 

proximal point with some dynamical properties (fixed point-minimal point-almost periodic 

),also we studied replete proximal and semi-replete proximal independed on  replete set  and 

semi-replete set ,and it will be given a necessary and sufficient condition for proximal and 

semi-replete proximal to be  syndetic set ,and we studied the image of proximal points under 

epimomorphism ,we give some theorem about proximal points .We use symbol ∆ to 

indication the end. 

1.Preliminaries: 

     In this section we given important concepts that we needed in this work.  

Definition (1-1) [ 4]: 

     A topological group is  a set  𝑇 with  two structures:  

1. 𝑇 is a group 

2. 𝑇 is a topological space 

 

Definition (1-2)[4]: 

 

     A subset 𝜌 of  T is said to be {𝑙𝑒𝑓𝑡}, {𝑟𝑖𝑔ℎ𝑡} syndetic in T if and only if  there exists a 

compact subset 𝑘 of  T such that 𝜌𝑘 = 𝑘𝜌 = 𝑇. 
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Definition (1-3) [4]   

 Let (𝑍, 𝑇) be topological group : 

1. A subset 𝑤 of  T is said to be replete if for each compact set 𝛽 of  T there exist 

𝑡1, 𝑡2 ∈ 𝑇 such that   𝑡1𝛽𝑡2 ⊂ 𝑤. 

2. A subset 𝑤 of  T is said to be semi-replete if for each compact set 𝛽 of  T there exist 

𝑡 ∈ 𝑇 such that   𝛽𝑡 ⊂ 𝑤. 

      

Definition (1-4)[ 4]: 

 

     A right topological transformation group is a triple (𝑍, 𝑇, 𝜋) where 𝑍 is a topological space 

called the phase space , 𝑇 is a topological group called the phase group 𝜋: 𝑍 × 𝑇 →

𝑍, 𝜋(𝑧, 𝑡) → 𝑥𝑡  is a continuous mapping such that : 

 

1. 𝑧𝑒 = 𝑧 (𝑧 ∈ 𝑍),where e is the identity  of  𝑇 

2. (𝑧𝑡)𝑏 = 𝑧(𝑡𝑏)   (𝑧 ∈ 𝑍, 𝑧, 𝑏 ∈ 𝑇) 

 

Definition (1-5) [ 3]: 

 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group  

1. 𝐴 subset  𝐴 ⊂Z is  said to be invariant set if  𝐴𝑇 = 𝐴. 

2. 𝐴 non-empty closed invariant set  𝐴 ⊂Z is  said to be minimal set if  it contains no 

non-empty ,proper, closed invariant subset . 

 

   Definition (1-6)[ 4]       

 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group ,then the set 𝑧𝑇 = {𝑧𝑡: 𝑡 ∈ 𝑇}is called  

the orbit of 𝑧 and the set 𝑧𝑇̅̅ ̅ the orbit closure of  𝑧. 

 

Definition (1-7) 

     Let (𝑍, 𝑇, 𝜋) be a topological transformation group is said to be strongly effective if for 

each 𝑧 ∈ 𝑍, 𝑡 = 𝑒 there exist 𝑡 ∈ 𝑇 such that 𝑧𝑡 = 𝑧. 

 

Definition (1-8) [5]  

 

     Let (𝑍, 𝑇, 𝜋) be a topological transformation group: 

1. Let 𝑧 ∈ 𝑍 , is said to be Fixed point under 𝑇 if 𝑧𝑇 = 𝑧. 

2. Let 𝑧 ∈ 𝑍 , is said to be minimal points if closure orbit is minimal set. 
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3. Let 𝑧 ∈ 𝑍 , is said to be almost periodic points if for each invariant neighborhood  𝑉 of 

z there exist syndetic subset 𝐴 of  𝑇 such that 𝑧𝐴 ⊂ 𝑉 . 

 

Definition (1-9) [ 5] 

     Let (𝑍, 𝑇, 𝜋) and (𝐻, 𝐺, 𝜎) be a topological transformation group, and 𝜏: 𝑍 → 𝐻 be 

continuous ,𝛾: 𝑇 → 𝐺 be continuous homomorphism then (𝜏, 𝛾): (𝑍, 𝑇, 𝜋) →  (𝐻, 𝐺, 𝜎)  is said 

to be homomorphism and ((𝑧, 𝑡)𝜋)𝜏 = ((z)𝜏, (𝑡)𝛾)𝜎.If  for  each 𝜏, 𝛾 onto then 

homomorphism is said to be epimorphism . 

 

Theorem (1- 10): 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group, 𝑤𝑔 be replete subset of  𝑇  if  and only 

if  𝑤 is replete set. 

Proof: Let 𝑤𝑔 be replete subset of 𝑇 then for each compact subset 𝛽 of T there exist 𝑡1, 𝑡2 ∈ 𝑇 

such that 𝑡1𝛽𝑡2 ⊂ 𝑤𝑔 , since 𝑇 group  there exist 𝑔−1 ∈ 𝑇 ∈ such that 𝑡1𝛽𝑡 = 𝑡1𝛽𝑡2𝑔−1 ⊂ 𝑤  

for some 𝑡 ∈ 𝑇  thus 𝑤 is replete set. Same method  proof part other. 

 

Remark (1- 11) 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group , the following statements are valid.  

1. if  𝐾 compact subset of  T then 𝑔𝐾 compact set for some 𝑔 ∈ 𝑇. 

2. if  𝐴 syndetic subset of  T then 𝑔𝐴 syndetic set for some 𝑔 ∈ 𝑇. 

 

Theorem (2-12) 

     Let (𝑍, 𝑇, 𝜋) be a topological transformation group , (𝑛, 𝑚) ∈ 𝑃 , then (𝑍, 𝑇, 𝜋)   

 strongly effective. 

Proof: Let 𝑛 and 𝑚 are proximal points then for each index 𝜑 in 𝑍 there exist a 𝑡 ∈ 𝑇 such 

that (𝑛, 𝑚)𝑡 ∈ 𝜑  ,it is enough to show that 𝑡 = 𝑒,since 𝜑 be invariant then  (𝑛, 𝑚)𝑡 ∈ 𝜑𝑡 by 

hypothesis there exist 𝑡−1 ∈ 𝑇 ,it follows that (𝑛, 𝑚)𝑒 ∈ 𝜑, and (𝑛, 𝑚)𝑡 ∩ (𝑛, 𝑚)𝑒 ≠ ∅   this   

lead   to  (𝑛, 𝑚)𝑡 ⊂ (𝑛, 𝑚)𝑒  and  (𝑛𝑡, 𝑚𝑡) = (𝑛𝑒, 𝑚𝑒). 

Clearly 𝑡 = 𝑒 therefore (𝑍, 𝑇, 𝜋)  strongly effective. ∆ 

2.Main results  

     In this section , we introduce proximal point in topological transformation group and show 

that relation proximal point with dynamical properties 
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Definition ( 2-1) [1,2] 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group ,a two points n and m of  𝑍 are called 

proximal proved that for each index 𝜑 in 𝑍 there exist a 𝑡 ∈ 𝑇 such that (𝑛, 𝑚)𝑡 ∈ 𝜑.The set 

of all proximal pairs are called the proximal relation and are denoted by 𝑃(𝑍, 𝑇) or simply 𝑃. 

 

Definition ( 2-2) 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group ,a two points n and m of  𝑍 are called 

replete proximal proved that for each index 𝜑 in 𝑍 there exist a a replete subset 𝑤 of T such 

that (𝑛, 𝑚)𝑤 ⊂ 𝜑.The set of all replete proximal pairs are called the replete proximal relation 

and are denoted by 𝑅𝑃(𝑍, 𝑇) or simply 𝑅𝑃. 

 

Definition ( 2-3) 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group ,a two points n and m of  𝑍 are called 

semi-replete proximal proved that for each index 𝜑 in 𝑍 there exist a a semi-replete subset 𝑣 

of T such that (𝑛, 𝑚)𝑣 ⊂ 𝜑.The set of all semi-replete proximal pairs are called the semi-

replete proximal relation and are denoted by 𝑆𝑅𝑃(𝑍, 𝑇) or simply 𝑆𝑅𝑃. 

 

Remark (2- 4) 

      Let (𝑍, 𝑇, 𝜋)be a topological transformation group then: 

1. P(X,T) is invariant set. 

2. P(X,T) is close set . 

 

Theorem (2-5) 

      Let (𝑍, 𝑇, 𝜋) be a topological transformation abelain group,(𝑛, 𝑚) are replete proximal 

points then 𝜑 is invariant . 

Proof: We may assume that T be replete group ,let 𝑛 and m are replete proximal points then 

for each index 𝜑 in 𝑍 there exist a replete subset 𝑤 of T such that (𝑛, 𝑚)𝑤 ⊂ 𝜑 and 

(𝑛, 𝑚)𝑤𝑇 ⊂ 𝜑𝑇 so (𝑛, 𝑚)𝑤𝑇 ∩ (𝑛, 𝑚)𝑤 ≠ ∅  thus 𝜑𝑇 ⊂ (𝑛, 𝑚)𝑤 ⊂ 𝜑 since 𝜑𝑒 ⊂ 𝜑𝑇 ,thus  

𝜑 is invariant under T. 

Theorem (2- 6) 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation abelain group,(𝑛, 𝑚) are proximal points if 

and only if (𝑛, 𝑚) are replete proximal points. 
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Proof: Suppose that 𝛽 be compact subset of T , since 𝑛 and 𝑚 are proximal points then for 

each index 𝜑 in 𝑍 there exist a 𝑡 ∈ 𝑇 such that (𝑛, 𝑚)𝑡 ∈ 𝜑  , by hypothesis there exist 

identity 𝑒 in T such that 𝛽𝑒 ⊂ 𝑇 so 𝛽𝑔𝑔−1 ⊂ 𝑇 for all 𝑔 ∈ 𝑇 , 𝛽𝑔 ⊂ 𝑇𝑔 ⊂ 𝑇 and 𝑔1𝛽𝑔 ⊂

𝑔1𝑇 ⊂ 𝑇 for all 𝑔1 ∈ 𝑇 .Therefore 𝑇 be replete  and 𝑛 and 𝑚 are replete proximal points. 

Conversely let 𝑛 and 𝑚 are replete proximal points ,then for each index 𝜑 in 𝑍 there exist a 

replete subset 𝑤 of T such that (𝑛, 𝑚)𝑤 ⊂ 𝜑, since 𝑤 replete subset of T then for each 

compact set 𝛽 of T there exist 𝑡1, 𝑡2 ∈ 𝑇 such that 𝑡1𝛽𝑡2 ⊂ 𝑤 , (𝑛, 𝑚)𝑡1𝛽𝑡2 ⊂ (𝑛, 𝑚)𝑤 ⊂ 𝜑 

so (𝑛, 𝑚)𝑡1𝛽𝑡2𝑇 ⊂ 𝜑𝑇 by theorem (2-5) we obtain (𝑛, 𝑚)𝑡1𝛽𝑡2𝑇 ⊂ 𝜑 by hypothesis 

(𝑛, 𝑚)𝛽𝑡1𝑡2𝑇 ∩ (𝑛, 𝑚)𝛽𝑇 ≠ ∅, 𝑡ℎ𝑢𝑠 (𝑛, 𝑚)𝛽𝑇 ⊂ 𝜑 since 𝑇 syndetic set and 𝛽 compact set 

then (𝑛, 𝑚)𝑇 ⊂ 𝜑 . ∆ 

 

Theorem (2-7) 

     Let (𝑍, 𝑇, 𝜋) be a topological transformation group,(𝑛, 𝑚) are proximal points uf and only 

if  (𝑛, 𝑚) are semi-replete proximal points. 

Proof: Suppose that 𝜇 be compact subset of T , since 𝑛 and 𝑚 are proximal points then for 

each index 𝜑 in 𝑍 there exist a 𝑡 ∈ 𝑇 such that (𝑛, 𝑚)𝑡 ∈ 𝜑  ,we need to prove T be semi-

replete , by hypothesis 𝜇𝑡 ⊂ 𝑇𝑡 ⊂ 𝑇 .Then T be semi-replete proximal thus and 𝑛 and 𝑚 are 

proximal points. Conversely let 𝑛 and 𝑚 are semi-replete proximal points ,then for each index 

𝜑 in 𝑍 there exist a semi- replete subset 𝑤 of T such that (𝑛, 𝑚)𝑤 ⊂ 𝜑, since 𝑤 semi-replete 

subset of T then for each compact set 𝜇 of T there exist 𝑡1 ∈ 𝑇 such that 𝑡1𝜇 ⊂ 𝑤 ,and  

(𝑛, 𝑚)𝑡1𝜇 ⊂ 𝜑 so (𝑛, 𝑚)𝑡1𝜇𝑇 ⊂ 𝜑𝑇 by theorem ( 2-5) we obtain (𝑛, 𝑚)𝑡1𝜇𝑇 ⊂ 𝜑 by 

hypothesis  (𝑛, 𝑚)𝜇𝑇 ⊂ 𝜑 since 𝑇 syndetic set and 𝛽 compact set then (𝑛, 𝑚)𝑇 ⊂

𝜑  (𝑛, 𝑚) are proximal points . ∆ 

 

Theorem (2-8) 

     Let (𝑍, 𝑇, 𝜋)  be a topological transformation abelain group,(𝑛, 𝑚) are replete proximal 

points if and only if (𝑛, 𝑚) are semi replete proximal points. 

Proof: let 𝑛 and 𝑚 are replete proximal points ,then for each index 𝜑 in 𝑍 there exist a replete 

subset 𝑤 of T such that (𝑛, 𝑚)𝑤 ⊂ 𝜑, since 𝑤 replete subset of T then for each compact set 𝛽 

of T there exist 𝑡1, 𝑡2 ∈ 𝑇 such that 𝑡1𝛽𝑡2 ⊂ 𝑤 , (𝑛, 𝑚)𝑡1𝛽𝑡2 ⊂ (𝑛, 𝑚)𝑤 ⊂ 𝜑 by hypothesis 

we get 𝛽𝑡 ⊂ 𝑤, for some 𝑡 ∈ T then 𝑤 be semi- replete proximal subset of T thus(𝑛, 𝑚) ∈

𝑆𝑅𝑃 . Conversely let 𝑛 and 𝑚 are semi-replete proximal points ,then for each index 𝜑 in 𝑍 

there exist a semi- replete subset 𝑤 of T such that (𝑛, 𝑚)𝑤 ⊂ 𝜑, since 𝑤 semi-replete subset 

of T then for each compact set 𝜇 of T there exist 𝑡1 ∈ 𝑇 such that 𝑡1𝜇 ⊂ 𝑤 so 𝑡1𝜇𝑒 =

𝑡1𝜇 𝑡. 𝑡−1 ⊂ 𝑤  for some 𝑡−1 ∈ 𝑇 and 𝑡1𝜇 𝑡 ⊂ 𝑤𝑡 then 𝑤𝑡 replete subset of T from theorem 

(1-10) we get 𝑤 be replete set and (𝑛, 𝑚) ∈ 𝑅𝑃. ∆  
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Theorem (2- 9) 

      Let (𝑍, 𝑇, 𝜋) be a topological transformation group,(𝑛, 𝑚) are proximal points then  

(𝑍, 𝑇) are pointwise proximal points. 

 Proof: Let (𝑛, 𝑚) ∈ 𝑃 ,it follows that  (𝑛, 𝑚)𝑇 ⊂ 𝑃𝑇  clearly by remark (2-4) that  (𝑛, 𝑚)𝑇 ⊂

𝑃  so (𝑛, 𝑚)𝑇𝑇 ⊂ 𝑃𝑇, (𝑛, 𝑚)𝑇2 ⊂ 𝑃 again (𝑛, 𝑚)𝑇2𝑇 ⊂ 𝑃𝑇, (𝑛, 𝑚)𝑇3 ⊂ 𝑃 after n- time we 

get  (𝑛, 𝑚)𝑇𝑛 ⊂ 𝑃 then we obtain that  (𝑍 × 𝑍, 𝑇) are proximal  for each point in 𝑍 × 𝑍 

therefore (𝑍, 𝑇) are pointwise proximal points. ∆  

 

Theorem (2-10) 

      Let (𝑍, 𝑇, 𝜋) be a topological transformation abelain group , 𝐹 ⊂ 𝑇 𝑎𝑛𝑑 (𝑛, 𝑚) ∈ 𝑃 

 𝑡ℎ𝑒𝑛 𝐹 syndetic set . 

Proof: Let 𝐹 be subset  of  𝑇  ,since (𝑛, 𝑚) are proximal points then for each index 𝜑 in 𝑍 

there exist  𝑡 ∈ 𝑇 such that (𝑛, 𝑚)𝑡 ∈ 𝜑 by theorem  (2-5) we have 𝜑𝑇 = 𝜑 and 𝜑𝑇𝐹 = 𝜑𝐹 

since 𝑇 be syndetic there exist compact set 𝛽 of T  such that 𝜑𝑇𝐹𝛽 = 𝜑𝐹 𝛽 since  

𝑇 𝑏𝑒 𝑎𝑏𝑒𝑙𝑖𝑛𝑒  then  𝜑𝑇𝐹 ∩  𝜑𝐹𝛽 ⊂ 𝜑𝑇 ∩  𝜑𝐹𝛽  and 𝜑𝑇𝐹 ∩  𝜑𝐹𝛽 ≠ ∅,Thus 𝜑𝑇 ∩  𝜑𝐹𝛽 ≠ ∅ 

so 𝑇 ⊂ 𝐹𝛽 by hypothesis  𝑇 = 𝐹𝛽 then 𝐹 syndetic set.∆ 

 

Theorem (2-11) 

      Let (𝑍, 𝑇, 𝜋) be a topological transformation abelain group , 𝐹 ⊂ 𝑇 𝑎𝑛𝑑 (𝑛, 𝑚) ∈ 𝑅𝑃 

 𝑡ℎ𝑒𝑛 𝐹 syndetic set . 

Proof: Let (𝑛, 𝑚) are replete proximal points then for each index 𝜑 in 𝑍 there exist replete 

subset E of  𝑇 such that (𝑛, 𝑚)𝐸 ⊂ 𝜑 since 𝐸 replete set then for each compact set  𝐾 in T 

there exist 𝑔1𝑔2 ∈ 𝑇 such that 𝑔1𝐾𝑔2 ⊂ 𝐸 since T by syndetic and 𝐾 by remark (1-11 number 

(1)) we have   𝑇𝑔2 ⊂ 𝐸  and  𝑇𝑔2𝐾 ⊂ 𝐸𝐾 so 𝑇 ⊂ 𝐸𝐾 by hypothesis  we obtain 𝑇 = 𝐸𝐾 

therefore 𝐸 be syndetic set. ∆ 

 

Remark (2-12) 

      Let (𝑍, 𝑇, 𝜋)  be a topological transformation abelain group , 𝐹 ⊂ 𝑇 , 𝑖𝑓(𝑛, 𝑚) ∈ 𝑆𝑅𝑃 

 𝑡ℎ𝑒𝑛 𝐹 syndetic set . 

Theorem (2-13) 

      Let (𝑍, 𝑇, 𝜋) be a topological transformation group then P(X,T) is minimal set. 

Proof: Let (𝑛, 𝑚) ∈ 𝑃 and (𝑛, 𝑚)𝑇 ⊂ 𝑃𝑇 by remark (2-4 number (1)) we obtain (𝑛, 𝑚)𝑇 ∈ 𝑃 

, so (𝑛, 𝑚)𝑇 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊂  �̅� then  (𝑛, 𝑚)𝑇 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊂ 𝑃 by remark (2-4 number (2)) since (𝑛, 𝑚)𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be least 
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closed invariant  subset 𝑍 ×Z contain (𝑛, 𝑚) therefore  𝑃 ⊂ (𝑛, 𝑚)𝑇 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,thus 𝑃 ⊂ (𝑛, 𝑚)𝑇 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ then 

𝑃 be minimal set and (𝑛, 𝑚) be minimal points . ∆ 

 

Theorem (2-14) 

     Let (𝑍, 𝑇, 𝜋)be a topological transformation group then (𝑛, 𝑚)is fixed points. 

 

Theorem (2-15) 

      Let (𝑍, 𝑇, 𝜋) be a topological transformation group , (𝑛, 𝑚) ∈ 𝑃 , if and only if (𝑛, 𝑚) is 

almost periodic points. 

Proof: Assume that 𝑉 be invariant neighborhood of (𝑛, 𝑚) and 𝐴 subset of  𝑇 It is enough 

to show that 𝐴  be syndetic set ,since (𝑛, 𝑚) are proximal points then for each index 𝜑 in 

𝑍 there exist  𝑡 ∈ 𝑇 such that (𝑛, 𝑚)𝑡 ∈ 𝜑 and (𝑛, 𝑚)𝐴 ⊂ (𝑛, 𝑚)𝑇 ⊂ 𝜑. It follows that 𝐴 

be syndetic set by hypothesis (𝑛, 𝑚)𝐴 ⊂ 𝑉𝐴 ⊂ 𝑉𝑇 ⊂ 𝑉  ,thus (𝑛, 𝑚) is almost periodic 

points .Conversely assume that (𝑛, 𝑚) ∈ 𝜑 since (𝑛, 𝑚) almost periodic point then for 

each invariant neighborhood  𝑉 of (𝑛, 𝑚) there exist syndetic subset 𝐴 of  𝑇 such that 

(𝑛, 𝑚)𝐴 ⊂ 𝑉  , (𝑛, 𝑚)𝐴𝑔 ⊂ 𝑉𝑔 = 𝑉 for some 𝑔 ∈ T .It is enough to show that 𝐴𝑔 be 

semi- replete set ,since 𝐴 be syndetic set then 𝐴𝑔 be syndetic set by remark (1-11 number 

(2))there exist compact subset 𝐾 of  𝑇 such that 𝐴𝑔𝐾 = 𝑇  ,for each 𝑡 ∈ 𝑇 there exist 

𝑎 ∈ 𝐴, 𝑘 ∈ 𝐾 such that 𝑎𝑔𝑘 = t so 𝑎𝑔𝑘 = 𝑡𝑘−1𝑔−1 for some 𝑘−1, 𝑔−1 ∈ 𝑇 ,it follows that 

𝑡𝐾 ⊂ 𝐴𝑔 thus 𝐴𝑔 be semi-replete set by hypothesis it was found (𝑛, 𝑚)𝐴𝑔 ⊂  𝜑, then 

(𝑛, 𝑚) be semi-replete proximal points by theorem (2-7) we obtain (𝑛, 𝑚) ∈ 𝑃. ∆ 

 

Theorem (2-16) 

     Let(𝜏, 𝛾): (𝑍, 𝑇, 𝜋) →  (𝐻, 𝐺, 𝜎) epimorphism , (𝑛, 𝑚) are proximal points under 𝑇 then 

((𝑛)𝜏, (𝑚)𝜏) are proximal points under 𝐺. 

Proof: Let (𝑛, 𝑚) are proximal points then for each index 𝜑 in 𝑍 there exist  𝑡 ∈ 𝑇 such that 

(𝑛, 𝑚)𝑡 ∈ 𝜑.It follows that from define homomorphism we obtain   ((𝑛)𝜏, (𝑚)𝜏)𝑇𝛾 ∈ (𝜑)𝜏 , 

since 𝛾 be onto then we get ((𝑛)𝜏, (𝑚)𝜏)𝐺 ∈ (𝜑)𝜏 therefore  

((𝑛)𝜏, (𝑚)𝜏)𝐺 ⊂ (𝜑)𝜏 thus ((𝑛)𝜏, (𝑚)𝜏) are proximal points under 𝐺. ∆ 

.  

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.6, No.8, 2016 

 

107 

 

 

 

 

 

 

 

 

 

References  

1. Auslander .J, " On the proximal relation in topological dynamics " Proc. Amer. Math 

.Soc. II (1960) ,88- 86. 

 

2. Clay. J, " Proximity relations in transformation groups, Trans. Amer. Math. Soc 

.108(1963),88-96. 

 

3. Dikranjan .D,  and  Megrelishvili. M ," Minimality conditions in topological groups in 

:recent progress in general topology , springer ,atlantis  press ,III(2014) ,229-327,  

 

4. Ellis. R ," Lectures on topological dynamics " ,W.A. Benjamin ,New York, 1969. 

 

5. Ellis. R and Gottschalk .W ," Homomorphism of transformation groups" Trans. Amer 

.Math .Soc .94(1960),258-271.  

 

6. Keynes. H , " On the proximal relation being closed "  Proc. Amer. Soc.81(1967),518-

522. 

 

 

 

 

Proximal point 

Semi-Replete 

proximal point 

Replete proximal 

point 

Minimal point 

Fixed point 

Almost periodic point 

http://www.iiste.org/

