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Abstract 

      In this work, we focus  the impact of rotation on the streamline patterns and 

their  local and global bifurcation on the symmetric peristaltic flow of non-

Newtonian fluid in 2_dimensional coordinates. The analytical solution depending 

the conditions to find the stream function under incompressible Bingham fluid, 

long-wavelength and small Reynolds number. This problem is solution in a move 

the planer system when the system nonlinear autonomous differential equations. 

There are three cases of flow  appear themselves, backward, trapping and augment 

flow,  will be  discussing  in  this  research. We have discussed different values of 

rotation, wave rate and amplitude ratio and effects on the bifurcation and their 

topological changes graphically through the set of figures. All these bifurcations 

are summarized through global bifurcation diagram. Numerical results have been 

computed by using MATHEMATICA software via perturbation method.  

Keywords: peristaltic flow, bifurcation, stability, rotation, velocity, stream 

function , stress, viscoplastic.  

1- Introduction 

       Topological fluid dynamics is a mathematical specialty that studies topological 

countenance of flows with complex trajectories and their implementations to 

motions fluid, and evolve  group theoretic and geometric points of opinion on 

many problems of  hydrodynamical origin. It is located at intersection of different 

specialty, including Lie group, stability theory, partial differential equations, knot 

theory , integrable systems and geometric inequalities. The peristaltic pumping is 

known with special type pumping when it can easily be transported the variety of 

complex rheological fluids from one place to another place. This pumping precept 

is called peristaltic. This mechanism responsible for the flow of blood in arterioles, 

transport of urine from the kidney to the bladder through the ureter and passage of 

lymph through lymphatic vessels. Applications of peristaltic in industrial fluid 

mechanics are like aggressive chemical, high solid slurries, noxious (nuclear 

industries) and several experimental and theoretical studies the peristaltic transport 

in both the physiological and mechanical situation under various approximation. 

The vast applications of peristalsis has been attracting the interests of researchers 

after the seminal work of Latham[1]. Jaffrin, M.Y., Shapiro [2] investigated 

peristaltic transport in a move frame for Newtonian fluid under long-wavelength. 



 
 

Abd-Alla and Abo-Dahab [3,4] Investigate the effect the rotation and initial stress 

on the peristaltic flow of an incompressible. In physiology, peristalsis is used to 

transport the biofluid from a region of lower pressure to higher pressure in the 

living body [5]. Peristaltic pumps have become popular to pump and/or dose 

complex fluids, due to their robustness [6]. Analyze the behavior of second-grade 

dusty fluid flowing through a flexible tube whose walls are induced by the 

peristaltic movement [7]. The peristaltic transport of power-law fluid in an elastic 

tapered tube with variable cross-section induced by dilating peristaltic wave [8] 

peristaltic transport of a Herschel–Bulkley fluid in an axisymmetric tube. The 

governing equations are solved using the long wavelength and small Reynolds 

number approximation [9]. 

        What was done mentioned earlier is clarify the trapping phenomenon cases, 

but not did touch on or discussed or using method dynamical system with respect 

of the bifurcations and stability of equilibrium points. In peristaltic transport the 

bifurcation exist when small change in interested of parameters causes a surprising 

topological change in its flow demeanor. Some may have preceded us in studying, 

Joel Jiménez-Lozano and Mihir Sen [10] studied the streamline topologies of two-

dimensional peristaltic flow and their bifurcations for the symmetric channel. 

Asghar and Ali [11,12] extended the study of Joel Jiménez-Lozano and Mihir Sen 

by explaining convective and slip effects. Ali and Ullah [13,15] investigated the 

bifurcation analysis for peristaltic transport of a power-law fluid. Ullah et al. [14] 

explained the bifurcation and stability analysis of critical/stagnation points for 

peristaltic transport of a power‑law fluid in a tube. Ullah,  and Ali [16] expanded to 

A study on bifurcation of stagnation points for a peristaltic transport of micropolar 

fluids with slip condition. Ullah et al. [14] explained the bifurcation and stability 

analysis of critical/stagnation points for peristaltic transport of a power‑law fluid in 

a tube. M. A. Murad [17] applied the bifurcation and stability for Bingham fluid.    

       In this paper, we will study the rotation effects on the bifurcation and stability 

of the equilibrium points by giving different values of rotation, amplitude ratio, 

rate of flow. Applied this work on the Bingham fluid with the axisymmetric 

peristaltic flow with dynamic system. Display changes in bifurcation through many 

graphs.  

2-  Formulation of the problem 



 
 

       Let us the peristaltic flow of an incomperssiable Bingham fluid in an 

axisymmetric channel of width (2   in a two-dimensional cartesian coordinates 

with flexible walls and. The flow is generated by continously moving sinusoidal 

wave trains on channel walls with speed c. The channel walls are show in figure 

(1) and defined by [10,13]: 
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Where    is total wave heigh,  ̅ the amplitude wave, λ the wavelength and  ̅ is the time. The 

governed equations of the flow by two coupled nonlinear partial differential of continuity and 

momentum which in frame ( ̅ ,  ̅  are expressed as: 
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Where   is fluid density,  ̅     ̅  ̅  velocity components,  ̅ is pressure,   ̅̅ ̅,   ̅̅ ̅ and   ̅̅ ̅ are 

the compenent of extra stress tensor  ̅ ,   is the rotation,    
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  ̅
 ,   is the cauchy stress 

tensor which for the Bingham plastic fluid is defined [19]: 
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  where,                                                                                                                   
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In equation (6)    is the yield stress while the rate of deformation tensor   and   ̂ is the tensor 

are defined: 

Figure 1. Schematic  Diagram 
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in view of equation (6,7) the compenents of extra stress tensor in laboratory frame become 
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Peristaltic motion in natural unsteady phenomenon but it can be assumed steady by using the 

transformation from laboratory fram(fixed frame) ( ̅  ̅) to wave frame(move frame) ( ̅  ̅). The  

relationship between coordinates, velocities and pressure in laboratory fram ( ̅  ̅  and wave 

frame ( ̅  ̅  is provided by the following transformations 

 ̅   ̅    ̅  ̅   ̅  ̅   ̅     ̅   ̅  ̅( ̅  ̅   ̅( ̅  ̅  ̅                                                    (9) 

Where  ̅  ̅      ̅ are velocity compenents and pressure in wave frame. Now, we transform 

equations (1,2,3,4,8) in wave frame with help of equation (9) and normalize the resulting 

equation by using following dimensionless quantities: 
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where 0 <   <1, is the amplitude ratio. Also the equations (2,3,4,8) in dimensionless frams is: 
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In above equations, the dimensionless number,   is the wave number,    is Bingham number,    

Reynolds number. Introduction to the stream function (ψ) by relation: 

     ,          . 

From equations(11-16) show that the continuity equation (11) satisfies identically while other 

equations take the following form: 
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The equations from(17-21) when (           ) are become in the form: 
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Whereas the component of extra stess tensor become in the form: 

                                                                                                                   (24)                  

 substituting equation (24) into (22) and derivting  with respect of y, we  get high nonlinear 

differential equations: 
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And the final equation become to: 

       + 
    

  

 
   =0                                                                                                              (26)                                           

 

the dimensionless volume flow rate and boundary condition in the wave frams are [10,11]: 



 
 

   ψ = 0,                                                                                                                      (27)                                    

   ψ =  q,                                                                                                                    (28)                                     
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q and F are the dimensionless mean flow rate in fixed and wave frams respectively.  

3- Solution of the Problem 

    The solution of equation (26) subject to boundary condition (27,28) is 

  
√        √         √   (        √   

 √      √        √  
                                                                                           (30) 

Where k= 
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        Three different flow situation occure, namely, augmented, trap and backward flow. Where 

the streamline splits to enclose an amount of fluid called a bolus, this situation is trapping, when 

the trapped bolus splits and exist some flows going in the forward direction is said to be 

augmented and when the flow goes in direction opposite to the traveling wave is said backward 

flow. On anslyzing solution (30) clearly the three situation of the flow in figure (2). 

 

 

 

 

 

           

 

 

 

 

 

 

  

(i) Backward flow: q= -2/5 Ω      ϕ    6 (ii) Trapping: q= -0.18 Ω      ϕ    6 

(iii) augmented flow: q   /   Ω      ϕ    6 

Figure 2. Streamlines patterns of various flow situation in the wave frame of reference. 



 
 

4- Nonlinear dynamical system for flow field 

     In this section we apply the ideas from qualitative theory of dynamical system which employs 

to detect the behavior, stability and bifurcation of equilibrium in the flow. The present proplem 

can obtain the axial and transverse velocity components by reduce to as a system of nonlinear 

autonomous system by using the relation u=
  

  
 and v= - 

  

  
. Equation (30) become to: 
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Where ß=(q,   k),        and        are the domain interest. The value of amplitude ratio 

ranges       and     
  

  
. Sitting f(x,y,ß)= g(x,y,ß)=0 in the flow field to obtain the critical points 

[20] and apply the Hurtman Grobman theorem, by using Jacobian to found the critical point according to 

which the nature of this critical point. If the critical point is degnerate if the determinant of Jacobian at a 

certain critical point is zero. There are two subcategories degeneracies (simple, non-simple). When the 

eigenvalues of the Jacobian are zero  is called simple degeneracy whereas if the Jacobian is a zero matrix 

is called non-simple degeneracy. Using Bakker notation [21] to classification of the critical points in two 

dimension system. The classification of the phase given in terms of trace:         and the Jacobian : 

       , where           are eigenvalues. According [22] a bifurcation point with respect to 

parameter ß is a solution of (x,y, ß) at which the number of equilibrium, periodic or quasi-priodic 

solutions changes when ß passes  through   , with    as critical value. The critical points are given by: 
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               . In next section we will classification of the critical points are present as will 

as the local and global bifurcation diagrams for this points. 

4.1- the stegnation points {    ,     } 

       The critical points {    ,     }, are cropped up under the wave crest. The Jacobian matrix is 
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The nature and stability of the equilibrium points             vary with the value of the parameter 

 , and the value of the flow rate   is taken to lie in the interval (      [10,14]. Qualitative 

changes, clearly in figure (3), as follows: 

 For           , the equilibrium point is a co-dimensional-two saddle points as  

depends on     when        and        in this range; see figure 3(a). 

 Isolated equilibrium points occur when             . These are known as non-

hyperbolic degenerate points [10,20], since        and       , these are 

corresponding to a non-simple degeneracy since    ( ̅     ̅       and its eigenvalues are 

zero at this flow [23]; see figure 3(b). 

 For        ,        and       , therefore each equilibrium point is stable center 

as shown in figure 3(c). 
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Figure 3: Local bifurcation with(ϕ=0.3,Ω 3 5  diagram for wave crest 𝑥  𝑛𝜋, 𝑛  𝑍 and pictorial topological changes 

for (𝑎  𝑞     𝜙, (𝑏  𝑞     𝜙, (𝑐  𝑞     𝜙 



 
 

Depending on the definition of a bifurcation, one occur under wave crest at x=nπ for n  Z. This 

bifurcation is co-dimension three since it  depends on the flow rate parameter q, amplitude 

ratio   and rotation wave  , Figure (3) gives a bifurcation diagram in the q-y plane. Various 

values of the rotation wave and amplitude ratio clearly in figure (4)   

 

 

 

 

 

4.2- the stegnation points {    ,     } 

   Consider the equilibrium points {    ,     } ={ 
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these critical points lie along the axis for (y=0). The Jacobian at these critical points is 
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 Where AA=A+2 B Cos[B]-√  q Cos[2 B]+2 C D Sin[B]+Sin[2 B]; 

BB=√  ϕ (E Cos[B]+Cos[2 B]+ √  (F+2 q Cos[B]) Sin[B]); CC=-4 √ -2 √  q+2 √  ϕ; DD=1-ϕ; GG=-2+ϕ, 

       Acoording to above equation, it observed that the Jacobian matrix at the point {    ,     } 

has a zero eigenvalue, so this point becomes a non-hyperbolic point. Therefore, the linearization  

at this point does not reflect the real dynamical behavior around it. Hence we will confine 

Figure 4: Local bifurcation diagram different values of rotation and amplitude ratio 



 
 

ourselves to investigate the dynamical behavior around this point numerically clear that in figure 

(5). 

 

 

 

 

 

 

 

4.3- the stegnation points {    ,     } 

           The equilibrium points {         }   
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contiguous waves coalesce below wave troughs, therefore the equilibrium points merge on 
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 for       to produce a degenerate point containing six heteroclinic connections. 

For      , the degenerate point bifurcates on the y-branch at   
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 each critical point 

corresponds to a unstable saddle. The critical points {         }, crop up on vertical below the 

wave crest. The Jacobian matrix is 
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Figure 5: Local bifurcation diagram for 𝑦    
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Qualitative changes of critical points for    
√      √  

√ (       √   
 and   

(      

 
 occurs follows: 

 For       ,       and     =0, the critical pointid degenerate with non-simple 

degeneracy since   {         }           =0, see figure 6(b). 

 For   
√      √  

√ (       √   
 ,       and     < 0, the critical points are saddle, see figure 6(c). 

A bifurcation diagram for (q-y) plane and pictorial taployical change sre showing in 

figure(6).  

 

 

 

 

 

 

4. Global bifurcation and streamline patterns 

     For y=0, the associative vector field reduce  to    ̇  ̇   
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The global bifurcation diagram has the following curves: 

Figure 6: Local bifurcation diagram for wave below crest 𝑥  
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Along the bifurcation curve  , a non-simple degenerate point exist under the wave crests, which 

is an isolated non-hyperbolic degenerate point. Whereas along the bifurcation curve  , adjacent 

equilibrium points join together below the wave troughs and form connections of non-simple 

degenerate points. Equilibrium points that combine on   to produce a degenerate saddle have six 

heteroclinic paths. Figure (7) is traced to show the bifurcation curves. The region of flow is 

classified as follows: 

 When all flow fluid to opposite direction of the wave motion then is called backward 

flow.  

 the trapping is occur when the critical points, which is saddle,  linked by  heteroclinic 

connections and the interaction of two vortices opposite rotation exist. 

 The flow is called augmented, when the eddies below of the crests wave combine and 

compose heteroclinic connection with the neighbors and the transport some fluid  

through the centerline in the wave direction. 

5-  Results and Discussions 

       when we applied our problem to a Bingham fluid and plotted various types of streamline 

topology and their bifurcation clearly in figures (3-9). The stability and nature of equilibrium 

points             and their bifurcations shown in figure (3). It is shown that, at      , an 

unstable equilibrium points bifurcates into two stable centers below wave crest. Figure (4) shown 

the bifurcation of different values of the rotation and amplitude ratio. Clear that in figure (5) the 

point becomes a non-hyperbolic point  the linearization  at this point does not reflect the real dynamical 

behavior around it. Hence we will confine ourselves to investigate the dynamical behavior around this 

point numerically. When flow rate   approaches to, the unstable equilibrium points on the 

longitudinal axis join together and form a non-simple degenerate point with six heteroclinic 

connections as given in figure (6). When fixed the values of (     and given different values of   

q we notes the stability of equilibrium points along with the transitions of streamline patterns for 

Bingham fluid the  streamline patterns for degenerate are given in panels (B, D). two possible 

bifurcations appear as  ,    and   are varied. Panels (A-C) give the transform of stability of 

equilibrium points and formation of vortex region below wave crest. The uniting of these 

neighboring vortex regions are indicated in figure 7 (C-E). The unstable saddle nodes on the 

longitudinal axis coincide under wave trough and lift up to produce heteroclinic connections 

between saddles. In figure (8) the eddying increasing when the value of   is increasing and 

centuries around the point with fixed values of (q,   . The value of   active to moves of eddying 

and number of this eddying clearly in figure (9). 
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Figure 8:Global bifurcation diagram for planer flow. (a-e) corresponding to (ϕ    6 and q= -0.18) with 

different value of Ω:. (a)=0.2, (b)= 2.0, (c)= 3.0, (d)= 5.0 and (e)= 6.0 

 



 
 

 

 

 

 

 

 

 

 

 

6-  Conclusion 

     In this reseach, we studied the effect of the rotation on the streamline patterns and their 

bifurcaions in 2-dimension peristaltic flow of non-Mewtonian fluid in symmetric channel 

therefore the possible nature of critical points were either saddle or center. using by inspection of 

eigenvalues of the Jacobian matrix,  it was  classification of the critical points. The apply this 

principle  till to the detected the local bifurcation of the critical points obverse for different flow 

case. Three different flow cases manifest themselve: backward, trapping and augmented flow. 

The key findings of the performed analysis are: 

a- Saddle, saddle or center nodes are found on the center line, down of the wave peaks and wave 

throughs the channel walls. 

b- Three different flow cases manifest themselve: backward, trapping and augmented flows are 

found. 

c- Observed that the Jacobian matrix at the point {    ,     } has a zero eigenvalue, so this point 

becomes a non-hyperbolic point. Therefore, the linearization  at this point does not reflect the real 

dynamical behavior around it. 

d-  The increasing  in the q up to an best value causes the backward region to retract and after that an 

opposite demeanor is recorded. 

e- The increasing of the rotation value implies that increasing of number of blouse and reduce trapping 

and it near to the centerline. 

f- When arrived  amplitude ratio  to best value implies that  number of blouse are increasing and near to 

centerline otherwise it is near the channel walles. 

Figure 9:Global bifurcation diagram for planer flow. (a-f) corresponding to ( Ω      and q= -0.18) with 

different value of ϕ:. (a)=0.1, (b)= 0.3, (c)= 0.5, (d)= 0.7, (e) = 0.85 and (f)= 0.95 
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