
Int. J. Computer Applications in Technology, Vol. 48, No. 1, 2013 1

Copyright © 2013 Inderscience Enterprises Ltd.

srCE: a collaborative editing of scalable semantic
stores on P2P networks

Hafed Zarzour*
Department of Computer Science,
University of Mohamed Cherif Messaadia,
Souk-Ahras, Algeria
Email: hafed.zarour@gmail.com
*Corresponding author

Mokhtar Sellami
Laboratoire sur la Gestion Electronique de Document (LabGED),
Department of Computer Science,
University of Badji Mokhtar,
Annaba, Algeria
Email: mokhtar.sellami@nasr-dz.org

Abstract: Commutative Replicated Data Type (CRDT) is a convergence philosophy invented as
a new generation of technique that ensures consistency maintenance of replica in collaborative
editors without any difficulty over Peer-to-Peer (P2P) networks. This technique has been
successfully applied to different data representation types in scalable collaborative editing for
linear, tree document structure and semi-structured data types but not yet on set data type
ensuring Causality, Consistency and Intention (CCI) preservation criteria. In this paper, we
propose a srCE approach, a novel CRDT for a set structure to facilitate the collaborative and
concurrent editing of Resource Description Framework (RDF) stores in large scale by different
members of virtual community. Our approach ensures CCI model and is not tied to a specific
case and therefore can be applied for any document that complies to set structure. A prototype
implementation using Friend of a Friend (FOAF) data sets with and without the srCE model
illustrates significant improvement in scalability and performance.

Keywords: collaborative editing; CRDT; CCI model; RDF store; scalability; P2P networks.

Reference paper should be made as follows: Zarzour, H. and Sellami, M. (2013) ‘srCE:
a collaborative editing of scalable semantic stores on P2P networks’, Int. J. Computer
Applications in Technology, Vol. 48, No. 1, pp.1–13.

Biographical notes: Hafed Zarzour is currently working as an Assistant Professor at the
Computer Science Department of Souk-Ahras University in Algeria. He holds an MS degree in
Computer Science from Annaba University since 2008. He is now preparing for his PhD degree
at the University of Annaba. His research interests include development environments,
collaborative distributed systems and semantic web.

Mokhtar Sellami is currently a full Professor and Research Director in Computer Science at the
University of Annaba, Algeria. He received his PhD degree in Computer Science from Grenoble
University, France, in 1979. He later gained his State Doctorate degree in 1989 from the
University of Annaba, Algeria, within the same field. He had worked at the European Scientific
Project in Research and Information Technology (1986–1989). His research interests include
distribute collaborative environment and knowledge engineering, document analysis and
handwriting recognition.

1 Introduction

Collaborative editing systems offer to members of virtual
community that are geographically distributed, flexible
solution to concurrently edit and share data of different types.
This is in order to obtain identical result via large-scale
computer networks, especially for cloud computing and Peer-
to-Peer (P2P) networks, which form a massively parallel

computer system with distributed control, processing and
information (Miriam and Easwarakumar, 2012). The major
benefits include reducing errors and increasing productivity
by minimising task completion time. Moreover, collaborative
editing systems offer flexibility and convenience where it is
easy for users to contribute from anywhere and anytime in the
world with effective and efficient work processes that help in
developing different viewpoints.

2 H. Zarzour and M. Sellami

The semantic web community uses the Resource
Description Framework (RDF) as a universal data model
which stores information as a graph. An RDF is stored as a
set of triples. Each triple has three components <subject,
predicate, object> where the subject is the source, the
predicate and object correspond to its target and label,
respectively. The RDF data model offers the possibility to
derive new knowledge from explicit and background
knowledge (Tsatsanifos et al., 2011). The semantic P2P
platform is considered as an association which couples the
technology of semantic web into P2P networks and keeps
the characteristics of P2P systems. A large number of users
and resources lead to the need for scalable systems
(Masmoudi et al., 2011).

Nowadays, developing an efficient and scalable
system for collaborative editing of RDF triples on P2P
networks becomes a key challenge for many semantic web
environments. The main idea is to replicate RDF data at the
local RDF stores for all peers collaborating together. The
most significant issue in these systems is how to ensure
consistency of replicas. This is a very difficult process to
implement due to the fact that many issues can be
encountered as conflict of editing, reconciliation and
concurrency. Such a system is considered as correct and
sound if it preserves the Causality, Consistency and Intention
(CCI) model (Sun et al., 1998) criteria defined as follows:

1 Causality: the execution order of all operations is
performed in the same way on each copy.

2 Convergence: when the system is idle, all copies are
identical.

3 Intention: The expected effect of a delete and insert
operation must be observed on all copies.

A P2P collaborative editing environment for distributed
semantic stores should take into account the challenging
difficulties discussed earlier to ensure consistency of replicated
data across all collaborating users. This is after conducting
various operations where commutativity, concurrency and
scalability must be addressed. To overcome such challenging
problem, we propose a novel scalable RDF store collaborative
editing approach called srCE. The method is not only for
distributed storing of RDF triples but further for supporting
concurrent editing operations at large scale. The approach is a
new class of Commutative Replicated Data Type (CRDT)
(Preguic et al., 2009) for set structure that ensures the CCI
consistency model explained earlier. In this approach, two
multi-sets are typically used: the first one contains added
triples, whilst the second contains deleted triples. The resulting
set contains coherent data which are obtained by computing
the difference between the multiplicities of both added and
deleted stores.

The remainder of this paper is organised as follows:
Section 2 reviews the most recent background and related
works for RDF collaborative editing systems. Section 3
details the proposed solution that is srCE. Section 4 formally
establishes the correctness of our approach according to CCI
Model. The prototype implementation and experimental

results with analysis are presented in Section 5. Finally,
conclusions along with future works are drawn in Section 6.

2 Background and related work

Because of the importance of collaborative editing systems
and their usage in a number of applications such as social
networks, blogs, wikis and media reporting, it becomes
a necessity for researchers to invest time and efforts
developing a scalable system that helps people to work
together concurrently and consistently.

2.1 Problem description

To illustrate the challenging nature of this problem, we will
identify a conflict in a collaborative editing system of an
RDF set structure and show the counter example of existing
solutions proposed in this context.

Let us consider three users on three different peers who
are working concurrently for editing an RDF store. The RDF
store is described as a set of RDF triples where each
triple contains three components <subject, predicate,
object>.

The users are working in their peers being called peer-1,
peer-2 and peer-3, respectively, as illustrated in Figure 1,
with their sequential activities. Initially, each peer owns a
copy of the same shared RDF store. The first user performs
the operations as Op1 = insT(T1) for inserting the triple T1
and Op2 = delT(T1) in order to delete T1, these operations
are broadcast to peer-2 and peer-3. In peer-2, Op1 and Op2
are executed sequentially. After that the second user updates
his local copy of the RDF store by Op3 = insT(T1) which
inserts a new triple T1. This operation is published
immediately. In peer-3, when Op1 is executed, the third
user performs Op4 = delT(T1) before Op2. During this step,
Op4 is sent to peer-2. Then, Op3 and Op4 are executed,
respectively, on peer-2 and peer-3.

Figure 1 Scenario of RDF set editing conflict (see online version
for colours)

 srCE: a collaborative editing of scalable semantic stores 3

At the end of the execution of concurrent modifications, the
copies of the RDF store diverge. That is because insert and
delete for the same triple in the context of set structure are
not commutative. In addition, the intentions of insert and
delete operations are not preserved.

The conflicts of RDF collaborative editing systems
occur when a pair of users concurrently modifies the same
triple of an RDF repository. This is because the removal and
insertion of the same triple do not commute. This can be
expressed as follows:

          . : ins T del T del T ins T followed by  

If two operations affect the same element, they are
potentially in conflict. To resolve this conflict, it must be
decided which of the operations is to be taken into account,
while the other will be ignored or preserved in the same
order of execution for all peers. Indeed, this does not make
sense as the result will correspond to neither of the authors’
intentions.

2.2 From operation transformation to CRDT
approach

For the context of collaborative editing systems, the
Operation Transformation (OT) (Ellis and Gibbs, 1989) has
been identified as an optimistic consistency control approach
that maintains coherence of the replicas of the shared data. To
repair the inconsistency, each remote operation is transformed
before execution when users generate and perform an
operation locally. Sun et al. (1998) proved that the
mechanism of transformation functions must satisfy two
conditions C1 and C2 (Ressel et al., 1996) to achieving
convergence. A number of algorithms have been proposed
based on OT approach. The most well-known of these
algorithms include GOTO (Sun and Ellis., 1998), GOT (Sun
et al., 1998), SOCT2 (Suleiman et al., 1998), SOCT4 (Vidot
et al., 2000) and MOT2 (Cart and Ferri, 2007). While these
algorithms have significant differences, all of them use a state
vector associated with any element at any site.

Because of the use of vector clocks, such algorithms are
known for their inability to scale as well as the fact that their
correctness is hard for verification (Preguic et al., 2009).
This is mainly because remote operations are inefficient as
well as history buffers are likely to grow for larger
memberships (Roha et al., 2011). To ensure consistency,
MOT, GOTO and SOCT2 require that their transformation
functions satisfy both conditions C1 and C2 (Ressel et al.,
1996). The GOT method imposes neither of these
conditions, but a relation of total order is required between
operations and an undo/do/redo scheme. In SOCT4
framework, only C1 is necessary and C2 is replaced by a
continuous global order of operations execution. SOCT2 is
typically peer-to-peer collaborative environment that
ensures the CCI model defined earlier. However, SOCT2 is
designed only for text document structure. Further, there are
no transformation functions for semantic data are available
particularly for set structure.

Recently, CRDT (Preguic et al., 2009) framework is
proposed as a new approach that is scalable and ensures
consistency of replicas without synchronising. The approach
offers control for complex concurrency by defining specific
types appropriated to each data type that are commutative for
any performed set of operations in order to guarantee
identical results. CRDT algorithms initially designed for
P2P asynchronous collaboration are suitable for real-time
collaboration (Ahmed-Nacer et al., 2011).

Weiss et al. (2010) suggest Logoot a CRDT for linear
structure, which provides a unique position identifier for
each line in order to allow operations to commute. When an
insert operation is performed, a new position is generated
between the position of the previous line and next line. To
achieve convergence on this data type, a total order is used
between lines in the document. Unfortunately, Logoot
data model uses tombstones that make the document grow
without limits.

TreeDoc (Preguic et al., 2009) is another sequence
CRDT designed for cooperative text editing. It uses a binary
tree to represent and store the document. In this method,
tombstones are used to keep track of the deleted lines. Since
the complexity of the proposed technique of delete
tombstones, it cannot be integrated in P2P networks.

Martin et al. (2010) present a CRDT for semi-structured
data type to edit XML data. This proposition treats both
components of XML structure, children elements and
attributes. To allow concurrent operations to commute, a
timestamp identifier is used and defined as a couple of site
identifier and generated operation number. In this approach,
it is demonstrated how to ensure the consistency but not
how to preserve the intention and the causality of CCI
model.

In summary, operation transformation-based algorithms
are not suitable for P2P network and they can be applied
only for applications that use a linear representation of the
document (Ignat and Norrie, 2002). Therefore, there is no
transformation defined for semantic stores. CRDT has been
successfully applied to different data representation types in
scalable collaborative editing for linear data type (text
document) (Weiss et al., 2010), tree document structure data
type (Preguic et al., 2009) and semi-structured data type
(Martin et al., 2010) but not yet on semantic data type
having a set structure and ensuring CCI model.

2.3 Distributed RDF systems on P2P

Many distributed RDF systems have been implemented to
support collaborative storing, indexing and querying RDF
documents (Tummarello et al., 2007). Most of them use
distributed shared RDF repositories. The approach that
supports peer-to-peer semantic wikis is known as SWOOKI
(Skaf-Molli et al., 2009), which allows users to add
semantic annotations in wiki pages. Users collaborate not
only for writing wiki pages but also for writing semantic
annotations. The semantic wiki is deployed on P2P servers
where each peer hosts a copy of all semantic wiki pages as
well as an RDF repository for the semantic data. Two

4 H. Zarzour and M. Sellami

operations on the RDF repositories are defined for updating
the RDF data: the first one for adding a statement and
increments the occurrence associated with it. The second
operation is used for physical deleting from the local RDF
repository when the occurrence is equal to zero. However,
this solution can fail in ensuring the consistency condition
between peers particularly when a delete operation is used.
For instance, when two peers perform the sequence of
operations given in the following order:

Peer1 : insT(T) delT(T) insT(T) delT(T) [T]

Peer2 : insT(t) delT(t)delT(t) insT(t) .[]




  
 

This leads to a divergence of RDF local repositories and
provides inconsistency in two peers in such a way that one
with statement T and the other without T.

C-Set (Aslan et al., 2011) proposes a CRDT for set data
type, where four operations are defined on this set. The delete
operation del(T) can performed locally and sends remote delete
operation rdel(T, i) that is executed remotely. The ins(T) is an
insert operation executed locally. It sends remote insert
operation rins(T, i) that is executed remotely. However, they
did not mention how to ensure the causality and preserve the
intention of operations. In addition, their proposition can lead
to conflicts of replicas and generate divergent executions. This
occurs practically where a delete operation is performed after
executing a remote insert operation as illustrated in Figure 2.

Figure 2 Divergence after executing modifications in C-Set
proposition (see online version for colours)

RDFPeers (Cai and Frank, 2004) is one of the first
distributed RDF repositories, which takes into account the
peer-to-peer constraints using the MAAN (Cai et al., 2004)
method. It stores and indexes each triple by specifying its
subject, predicate and object. However, RDFPeers lacks the
ability for supporting collaborative update operations.

Quilitz and Leser (2008) presented a querying platform
of an RDF graph based on SPARQL that offers a single
interface for querying multiple and distributed SPARQL
endpoints. The architecture of a mediator-based system is
used for providing transparent query access to multiple data
sources and making query federation transparent to the
client. Data sources are described by service descriptions. A
service description language enables the query engine to
decompose a query into sub-queries, each of which can be
answered by an individual service.

SAHA 3 (Kurki and Eero, 2010) is an RDF metadata
editor for collaborative annotation, which can be used to
create and publish semantic content instantly on the semantic
web. SAHA 3 is scalable to large data sets of objects and
incorporates a simple publishing platform for building end
user search portals with full-text and multifaceted search as
well as online chat services. However, it supports only
collaborative simultaneous RDF editing. Hence, when the
user begins to edit resources, these resources are locked for
other users.

Tsatsanifos et al. (2011) propose a distributed P2P
RDF/S store called MIDAS-RDF, that is built on the top
of a distributed multi-dimensional system for a large-
distribution network (Dzafic et al., 2012), where each RDF
triple is represented as a four-dimensional key. Furthermore,
MIDAS-RDF supports a publish-subscribe model that
enables remote peers to selectively subscribe to RDF content
index structure.

Shapiro et al. (2011) present different set CRDTs, Grow
Only Set (G-Set), Last Writer Wins Set (LWW-element-Set)
and Observed Remove Set (OR-Set). In a G-Set, there is
only an insertion operation where each element can be
inserted and not deleted from the set. The reconciliation
principle is based on simple set union, since union is
commutative. In a LWW-element-Set, a timestamp is
attached to each element. If an element does not already
exist, a local operation updates its timestamp and adds it to
the set and cannot be scalable. In an Observed Remove
Set (OR-Set), each element is associated with a set of
unique tags. A local add creates a tag for the element and a
local remove deletes all the tags of the element. However,
G-Set ignores the intention of remove operations, LWW-
element-Set is not allowed to scale since it uses the
tombstone mechanism and OR-Set requires transparent
mechanism of unique tag generation between different
sites.

Recently, SU-Set (Ibanez et al., 2012) is proposed as a
CRDT for RDF graphs based on OR-Set (Shapiro et al.,
2011) that supports the SPARQL 1.1 Update operation and
guarantees consistency. SU-Set is designed to serve as base
for an RDF-Store CRDT that could be implemented in an
RDF engine. Since OR-Set considers only insertion and
deletion of single elements, it is not possible to apply
OR-Set directly to SPARQL Update. Therefore, SU-Set
modifies the operations to send the relevant set of triples to
affect one by one, but that could flood the network with
traffic considering the potential size of an RDF-graph.
However, SU-Set relies on causal delivery of the underlying
network, which is challenging and can pose problems in
highly dynamic platforms. In addition, the intention of
editing operations has not been defined.

Methods reviewed in this section are limited to sharing,
querying and synchronising distributed RDF repositories.
Further, due to the challenging nature of this problem, the
requirements for concurrent updating of RDF triples are not
fully addressed as none of these systems is known to satisfy
the criteria of CCI consistency model.

 srCE: a collaborative editing of scalable semantic stores 5

3 srCE approach

In this research, we present a novel approach for collaborative
editing called the srCE. The proposed method is a new class
of CRDT to collaboratively edit triple stores of RDF in large
scale. The concept of CRDT discussed in the work of Preguic
et al. (2009) ensures scalability and consistency of replicas
without synchronising. The optimistic replication strategy
employed in srCE aims to ensure that peers can access
RDF data without a priori synchronisation. In this framework,
a new data type of RDF is defined where all concurrent
operations of users from different sites are set to be
commutative in a way that they can be performed at any
given order. Every operation is performed locally then
propagated to other peers in order to be executed. The
operations should be executed concurrently in different orders
and converge to the same RDF data in all peers. Our approach
is not tied to a specific case and therefore can be applied for
any document that complies to set structure such as database
systems.

3.1 Data model

As opposed to previously defined approaches, the notion of
multiplicity for RDF triples is introduced in our research as
explained in this section. The multiplicity bears the number
of occurrences for a given function performed by a peer.

Definition 1: An RDF store is a repository used for storing
RDF triples. It is a multi-set defined as a pair (T, f), where T
is set of triples and f is a multiplicity function. For any t  T
then f(t) is the multiplicity of t where f:TN, N = 1, 2, 3, ….

The concept of multi-set being proposed in this study is a
generalisation of the set usage. While a set must contain
only one occurrence of a triple, a multi-set may contain
multiple occurrences of the same triple. For instance, the
multi-set M1 is written as:

M1 = {<"bob","knows","alice">,<"bob","knows","alice"
>, <"bob","knows","eve">}

It can be redefined using the multi-set concept as:

M1 = {(< "bob","knows","alice">, 2),

(<"bob","knows","eve">, 1)}

Where in this case, the first RDF triple has a multiplicity of
two meanwhile the multi-set M2 is defined as follows:

M2 = {<"bob","knows","alice">,

<"bob","mbox","bob@example.com">}

is redefined as:

M2 = {(<"bob","knows","alice">,1),

(<"bob","mbox","bob@example.com">, 1)}.

Definition 2: Added RDF store, denoted by A, is an RDF
store which contains all triples added by the user along with
the multiplicity values.

Definition 3: Deleted RDF store, denoted by D, is an RDF
store which contains all triples combined with the multiplicity
f(t) removed by the user.

Added and deleted RDF store can serve as an increment-
only counter. The increment-only counter is useful for our
context; it is used to count the number of insertion or
removal of each triple for intention preservation in
collaborative editing systems.

Definition 4: Resulting RDF store, denoted by R, is the
resulting set that includes all triples contained in the added
RDF store A such that the multiplicity values of such triples
are greater than their corresponding in the deleted RDF
store D in a way that triples that their multiplicity values in
D are greater than or equal to those of A are disregarded.
In other words, R=A–D = {tt  A  fA(t) > fD(t)}, fA(t) and
fD(t) are, respectively, the multiplicity of t in A and D. if
t  D, fD(t) = 0.

Figure 3 shows how to obtain the resulting RDF store
from an added and deleted RDF stores.

All possible cases are presented in this sample, only the
first and the second triples of A appear in R because they
have multiplicity greater than the same triples in D. Thus,
the resulting RDF store contains <bob, name, Bob> and
<bob, mbox,bob@example.com>. The first triple does not
get deleted as its multiplicity is one in the added RDF store
whilst it does not exist in the deleted RDF store. Meanwhile,
the second triple has a multiplicity value in the added RDF
store which is greater than the one in the deleted store.
This mechanism of resulting RDF store construction ensures
convergence and consistency in any case. Therefore,
different users should have the same RDF store when each
triple is added or removed.

3.1.1 Intention model

Intentions of insert and delete operations of semantic data,
particularly in the context of sets and multi-sets, have never
been clearly defined. In fact, we have given below clear and
accurate definitions of intentions of these operations.

Figure 3 Construction example of resulting RDF store (see online version for colours)

6 H. Zarzour and M. Sellami

Definition 5: Intention of insert operation is defined as
f(t) = f(t) + 1 and An+1 = An  {t} where the multiplicity of
triple t is incremented inside the added RDF store A. The
initial value of f(t) is 0, An and An+1 are, respectively, the
added RDF stores in two different consecutive states where
An+1 includes the union of An and the added triple t.

Definition 6: Intention of delete operation is defined as
f(t) = f(t) + 1 and Dn+1 = Dn  {t} where the multiplicity of
triple t is incremented, the initial value of f(t) is 0, Dn and
Dn+1 are, respectively, the deleted RDF stores in two
different consecutive states where Dn+1 includes the union of
Dn and the deleted triple t.

If the triple t to be added or deleted does not exist in A or D
so it is added directly to A or D with multiplicity one
otherwise its multiplicity is incremented.

3.2 Editing operations

There are two basic editing operations that affect an RDF
store in a collaborative editing system: insert and delete.
Meanwhile, the update operation can be considered or made
equivalent as a delete of the existing value to be updated
followed by an insert of the new value.

The insert and delete functions are defined as follows:

1 InsT(t): is an update operation in which the triple t is
added in the added RDF store A.

2 DelT(t): is an update operation in which the triple t is
added in the deleted RDF store D.

To explain these concepts clearly from a point of view of
data structure and concurrent editing operations, the
following scenario is proposed which is shown in Figure 4:
two users at two distributed peers or sites are to edit the
same RDF replica where each user has his own copy.

Let us consider two triples T1=<bob, knows, alice> and
T2=<bob, name, Bob>, the initial state already contains T1
and T2. At the beginning, both copies are identical. The first
user adds T1 and the second removes it.

After executing Op1 on peer-1, the multiplicity of T1 in
A is incremented to 2 and the resulting RDF store R contains
the same triples of R because D is empty. When Op2 is
executed on peer-2, the T1 is inserted to D with multiplicity
one, the R contains only T2. When Op1 and Op2 are
broadcasted and executed mutually, the resulting RDF store
is identical.

Let us consider again the scenario presented in Figure 1.
When the delete operation Op4 is retrieved and performed
on peer-2, the multiplicity of the triple T1 in deleted RDF
store D is incremented to 2. When the insert operation Op3
is integrated on peer-3, the multiplicity of the corresponding
triple is incremented.

The consistency between the two resulting RDF stores
on peer-2 and peer-3 is ensured. We can observe that after
executing concurrent modifications, Peer-2 and Peer-3 now
converge and the last resulting RDF store is the same
(Figure 5).

Figure 4 Convergence states of concurrent operations
(see online version for colours)

Figure 5 Convergence after using srCE method (see online
version for colours)

3.3 Algorithms

Having explained the different concepts for the newly
proposed srCE model, the implementation is discussed in this
section along with the different procedures and functions
being deployed.

 srCE: a collaborative editing of scalable semantic stores 7

The procedure Execute(op) outlined in Algorithm 1
which is defined mainly to perform a given operation and
thereafter dispatch them to other peers. The procedure takes
an operation op as an input argument. The op is defined as a
data structure with two main components that are: the
operation type and the triple. The function Execute runs the
operation op locally and afterwards, it propagates the op
immediately to other peers in order to be executed remotely.
This ensures happens-before execution.

Algorithm 1 The algorithm for local operation execution

1: procedure EXECUTE(op)  op is a local operation

2: Run(op)
3: Broadcast(op)
4: end procedure

The dispatch of a given operation during execution is done
via the broadcast statement which ensures the delivery of an
input operation to all peers. The Broadcast procedure,
which takes an operation as an argument, guarantees that
any local operation is successfully propagated and executed
for all peers. When a remote operation is received by a peer,
it would triggers automatically the function Receive(op)
which performs the operation delivered via the Broadcast at
the remote agent. The Receive(op) listed in Algorithm 2
takes an operation as an argument and invokes the Run(op)
procedure.

Algorithm 2 The algorithm for retrieving remote operation

1: procedure RECEIVE(op)  op is a remote operation

2: Run(op)
3: end procedure

The Run() function listed in Algorithm 3 is the place where
all operations sent or received are executed according to
their type. As every operation has a type which is either
delete or add, the Run procedure initially checks if there is
an addition operation so that the insert function of the triple
is invoked; otherwise, the delete function of the triple is
executed. This is being illustrated in the following pseudo-
code.

Algorithm 3 The algorithm of the execution of local or
remote operation

1: procedure RUN(op)
2: if op.type =Insert then
3: InsertTriple(op.triple)
4: else if op.type =Delete then
5: DeleteTiple(op.triple)
6: end if
7: end procedure

InsertTiple(triple) allows initially to test if the triple already
exists in added RDF store A. If it exists, its multiplicity is
incremented, otherwise it is added to A with multiplicity
one. At the end, the resulting RDF store R is computed
automatically after each execution of local or remote operation.

Algorithm 4 The algorithm for triple insert

1: procedure INSERTTRIPLE(triple)  A is a local added

RDF store
2: if triple A then
3: triple.multiplicity  triple.multiplicity+1;
4: A.setTriple(triple)
5: else
6: insT(triple)
7: end if
8: ConstructResultingRDF(triple)
9: end procedure

The function DeleteTriple outlined in Algorithm 5 has the
same behaviour as the previous function except that the
multi-set used is the deleted RDF store D.

Algorithm 5 The algorithm for triple delete

1: procedure DELETETRIPLE(triple)  D is a local deleted

RDF store
2: if triple D then
3: triple.multiplicity  triple.multiplicity+1;
4: D.setTriple(triple)
5: else
6: insT(triple)
7: end if
8: ConstructResultingRDF(triple)
9: end procedure

The method setTripleMultiplicity(t.multiplicity) used by A
or D allows to update the multiplicity of triple t by a new
value t.multiplicity.

ConstructResultingRDF(triple) returns always a value of
type set for R which includes consistent triples obtained
after integrating concurrent modifications on each state at
different sites.

Algorithm 6 The algorithm for computing result set
1: function CONSTRUCTRESULTINGRDF(triple)
2: R nil  R is empty

3: for each triple of A do
4: if A.getTripleMultiplicity(triple) >

D.getTripleMultiplicity(triple) then
5: insT(triple, R)
6: end if
7: end for

return R
8: end function

The method getTripleMultiplicity(t) of A and D returns the
multiplicity of the triple t. If t does not exist in D, then
getTripleMultiplicity(t) returns 0.

4 Correctness of the approach

In this section, we show that srCE ensures the CCI
consistency model. An interesting property of srCE is that

8 H. Zarzour and M. Sellami

the causality is not required to ensure eventual consistency
since the delete operation can be executed before the start of
the execution for insert operation of the same triple. This is
due to the fact that every pair of operations commutes for
concurrent or non-concurrent operations. A probabilistic
causal broadcast (Eugster et al., 2003) coupled with causal
barriers (Prakash et al., 1997) or a scalable causal broadcast
(Kshemkalyani and Singhal, 1998) can be used to ensure
causality.

The following theorem states that srCE is a CRDT and
ensures consistency criteria. A CRDT is a data type where
all concurrent operations commute with one another
(Preguic et al., 2009).

Theorem 1: If R=A–D then srCE ensures consistency.

We define the precedence function by , for example Op1

 Op2, this means that Op1 happens-before Op2.

Proof: We firstly prove that every concurrent operation
pairs commutes (insert/insert, delete/delete, insert/delete).

Let R0 = A0 – D0 be an initial state. Add a new triple to A
or D is expressed mathematically as union operation, for
example: A0  t1 = A1.

1 Insertion operations commute

 insT(t1)  insT(t2):

insT(t1)  insT(t2)(A0 {t1})t2= A1

So, R1 = A1 – D0

 insT(t2)  insT(t1):

insT(t2)  insT(t1) (A0  t2)  t1 = A2

So, R2 = A2 – Do

We have A1 = A2 because union is commutative. Then
R1 = R2, the resulting RDF store includes exactly the
same set of triples. Therefore, insertion operations
commute.

2 Delete operations commute

 delT(t1)  delT(t2):

delT(t1)  delT(t2)(D0  t1)  t2 = D1

So, R1 = A0 – D1

 delT(t2)  delT(t1):

delT(t2)  delT(t1) (D0  t2)  t1 = D2

So, R2 = A0 – D2

We have D1 = D2 because union is commutative. Then
R1 = R2, after executing the two delete operations, the
deleted RDF store, D, includes the same triples.
Furthermore, the resulting RDF store is the same in two
cases. Thus, delete operations commute

3 Delete and insertion operations commute

 insT(t1)  delT(t2):

insT(t1)=A0  t1 = A1

delT(t2)=D0  t2 = D1

So, R1 = A1 – D1

 delT(t2)  insT(t1):

delT(t2)=D0  t2 = D2

insT(t1)=A0  t1 = A2

So, R2 =A2 – D2

We have A1 = A2 and D1 = D2, then R1 = R2.
Both resulting RDF stores obtained are identical. Thus,

insertion and delete operations commute.
All concurrent operations couples commute. Thus srCE

data type is CRDT. According to Preguic et al. (2009), srCE
ensures consistency.

The following theorem states that insert and delete
operations intentions are respected.

Theorem 2: srCE ensures intentions.

Proof: The main aim to introduce the multiplicity approach
is to ensure intention preservation. The use of the new
concepts of added and deleted RDF stores defined as multi-
sets where the effect of every operation is observed in the
resulting RDF store by a multiplicity counter associated
with each triple added or deleted. Therefore, the intentions
are preserved.

5 Experimental results

In this section, the experiment methodology carried out
during the course of this research is described. Then we
present the results of our extensive evaluation.

5.1 Methodology

In this subsection, we describe the srCE prototype and its
basic principles as well as the experimental set-up.

5.1.1 Prototype description

A prototype of srCE is designed and implemented in Java as
an extension to SPARQL/UPDATE (http://www.w3.org/
TR/sparql11-update/). The current World Wide Web
Consortium (W3C) proposed recommendation for an RDF
update language. It reuses a syntax of the SPARQL Query
Language for RDF and supports updating operations of RDF
data from the target graph. Updating operations are provided
as inserting new triples into an RDF graph and deleting
known triples from a graph.

In particular, we use the ARQ module of the open
source JENA framework (http://jena.sourceforge.net/) that

 srCE: a collaborative editing of scalable semantic stores 9

implements the W3C standard SPARQL/Update language for
data manipulation. It provides a programmatic environment
for RDF, RDFS and OWL, SPARQL and includes a rule-
based inference engine (Yao et al., 2011). The JENA
framework is used for building semantic web applications and
uses a notion of model for dealing with a set of triples that
can be created from the local or remote file. In the ARQ
mechanism, the RDF content created and generated by update
operations can be stored in memory as Turtle (Terse RDF
Triple Language) format. This RDF format is considered as a
set of all triples added or deleted by the users.

The main task of srCE strategy is to maintain consistency
between any two RDF stores performing any two concurrent
operations, such that any triple changed in the first RDF store
will be also changed in the second. To maintain this
consistency, we focus on the following concepts.

In addition to the main file that contains the result of
reconciliation at anytime, there are two other auxiliary files.
The first corresponds to inserted triples and the second
corresponds to removed triples. An integer is added to each
triple to count the occurrence of the latter. In other words,
the integer variable is coupled with a triple to form the
multi-set. These files correspond to added and deleted RDF
store, respectively.

Each local or remote operation is firstly performed in
the first auxiliary files then the main file which is visible by
the user is built from these files based on the function
defined in Section 3.1 to ensure convergence.

5.1.2 Experimental set-up

To facilitate the evaluation of srCE, we used the FOAF (an
acronym of Friend of a friend) data set for editing concurrently
in order to describe social network within a virtual community.
The FOAF project (http://www.foafproject.org/) is about
creating a web of machine-readable homepages describing
people, the links between them and their activities. FOAF is
expressed using RDF data. The creation and editing of
FOAF requires that the sequence of concurrent operations is
performed. Each person is described by their name, email
address denoted as mbox as well as the people that he/she
knows. Thus, there are three elements for a person which
are: name, mbox and knows.

The following listing shows an example of a FOAF
profile written in Turtle format, it states that Bob is the
name of person bob. His email address is bob@exemple.net
and he knows Alice which is a name of person resource.

Listing 1: FOAF profile written in Turtle format
1 @prefix:
2 <http://people.example.com/>.
3 @prefix foaf:
4 <http:// xmlns.com/foaf/0.1/>.
5 : bob
6 foaf : knows : alice;
7 foaf : mbox <mailto: bob@example.net>;
8 foaf : name "Bob"

The Turtle model may be written in direct triple notation
like this:

Listing 2: Triple notation
1 <http://people.example.com/bob>
2 <http://xmlns.com/foaf/0.1/knows>
3 <http://people.example.com/alice>
4 <http://people.example.com/bob>
5 <http://xmlns.com/foaf/0.1/mbox>
6 <mailto:bob@example.net>
7 <http://people.example.com/bob>
8 <http://xmlns.com/foaf/0.1/name>
9 “Bob”

We have assessed the effectiveness of our technique by
examining the size of trace files. Initially, we automatically
generate a set of updating operations that include more than
360,000 operations as a series of inserts and deletes of
triples. Thereafter, we perform these operations and
evaluate the size with and without the srCE approach. For
operation without srCE model, we used directly the ARQ
default execution strategies without any modifications, i.e.
the problem of inconsistency of replicas due to the inherent
difficulty of concurrent modifications is not taken into
account. Using the same revisions, all modifications are
executed using our model and simply re-executed in
SPARQL/update. Finally, we read different information of
the execution from the property files.

5.2 Experimental results

To assess the scalability of the resulting RDF store R in
relationship with both the secondary added and deleted RDF
stores A and D, respectively, the system implemented using
Java is executed to generate the files for the data set stores by
executing a large number of updating operations reaching to
360,000 operations. The experiment is conducted during the
collaborative session of FOAF triples. The sizes of added and
deleted RDF store increase, respectively, with successive
operations. The results of such experiment are shown in
Figure 6. The x-axis represents the number of performed
operations whilst the y-axis represents the size of generated
A, D and R files in bytes.

It can be observed that the size of R grows when the size
of A increases and that of D also increases, but slowly as
shown in the first 100,000 operations. Since there are more
delete operations of the triples, the size of D starts to
increase while the size of R decreases though A
continuously grows. When A and D approach each other, R
reaches its minimum. Once A and D diverge, R increases
again. The increase in size of A and D is related to the
existence of triples inserted or deleted, i.e. if the triple does
already exist, the size of the increase is almost marginal.
So, we can say that R increases proportionally with the
divergence of A and D.

10 H. Zarzour and M. Sellami

Figure 6 Relationship between R, A and D RDF stores (see online version for colours)

To further analyse the relationship between the resulting R,
added A and deleted D RDF stores as well as to show the
effects of A and D against R, another experiment is carried
out to measure the relative size S as the size of FOAF triples
computed as the size of visible RDF triples divided by the
size of multi-set of deleted and inserted RDF triples. This is
expressed in the following equation.

R
S

A D



 (1)

where R , A and D are the sizes of triples for a

resulting, added and deleted RDF stores, respectively. In a
similar way, a large number of operations are applied
increasingly reaching 360,000 updating operations. The
results of such experiment are shown in Figure 7 where the
y-axis shows the value of relative size S. During the life
cycle of RDF store the size of the visible triples is always
inferior to the sum of the sizes for the secondary files. The
triples which are visible represent the consistency state. In

other words, they are identical on all peers of virtual
community. In the interval 20,000 and 70,000 the
percentage reaches its maximum, this is due of minimising
of D and maximising of A. Thereafter, the size of R is
small compared to A and D. Thus, the larger number of
operations, the lesser is the relative size.

To evaluate the effectiveness of the proposed method
compared to existing SPARQL/Update, we conducted a
comparative experiment where we apply an increasingly
large number of updating operations to the FOAF data set
using SPARQL/update as well as SPARQL/Update with the
proposed srCE approach. We measure for both experiments
the metric size of visible resulting RDF store as well as the
size of the generated FOAF data set. The results are shown
in Figure 8. During the editing session, the size of triples for
the store that contains the consistency data, generated by
SPARQL/update with srCE extension, remains inferior to
the triples store created by traditional SPARQL/Update.
This last requires more space for saving and using its triples
store and gives inconsistent results.

Figure 7 Relative size of RDF store (see online version for colours)

 srCE: a collaborative editing of scalable semantic stores 11

Figure 8 Visible resulting RDF store size with and without srCE model (see online version for colours)

Figure 9 Percentage sizes of visible resulting triples obtained from srCE divided by resulting triples without srCE model
(see online version for colours)

Furthermore, a different analysis is derived from the
comparative data obtained in the previous experiment by
generating the relationship between the two cases computed
as the ratio of triples sizes for SPARQL with srCE over
SPARQL/Update without srCE. The results are shown in
Figure 9. Compared with the performed updating operations
of both versions of SPARQL/Update: classical and srCE-
based, the results in Figure 9 prove that the trace size
decides the performance of our approach. Indeed, the srCE
is more efficient when more operations are performed.
Thus, it is scalable when the number of operations largely
grows.

The srCE method scales in terms of the number of
copies. The number of copies is not a factor in each
component of srCE model. There is no total order on
operations and no consensus process. Additionally to this,
the srCE anatomy is independent of the number of peers or

replicas. The only requirement to ensure consistency of the
srCE is to perform the same set of operations in all sites, the
execution order of operations within system is not important
because all operations commute without any control since a
delete operation can be received before or after an insert.

6 Conclusion and further work

This paper presents the srCE method which is a novel
CRDT for RDF set structure that supports collaborative
editing. srCE is designed for large-scale decentralised
networks that ensure CCI consistency model. In a way that
causality, convergence and intention of operations are all
preserved and guaranteed. The major property of the
proposed approach is to ensure the commutativity of the
executed operations by distinguishing between the different

12 H. Zarzour and M. Sellami

operations depending on their type. Introducing the concept
of using added and deleted data set stores for the executed
operations, whilst the final and consistent across all peers’
results should appear in the resulting RDF store R. It is a
general approach that can be used with any set data type and
can be a thrust for future research in this area.

A number of experiments are conducted to assess the
efficiency and scalability of our approach by editing triples
collaboratively and concurrently from the FOAF data set.
A prototype is implemented using Java programming
language as an extension to SPARQL/Update that supports
concurrent operations. The experimental results have
demonstrated that the srCE is scalable and more efficient as it
can cope well when more operations are performed. The
experimentation also shows that SPARQL/Update with srCE
model has better performance than without srCE. Further our
approach is independent from the number of peers, replicas as
well as the number of submitted operations regardless of their
order. This is one of the merits of the approach compared to
existing methods, which require the total order.

For future work, the srCE model can be applied in a
wide range of applications including semantic wikis such as
Semantic MediaWiki (Krtzsch et al., 2007) in order to allow
users to take advantage of semantic technologies. Further, we
plan to develop and integrate the undo component for the
srCE approach. More interesting, our method can be utilised
with a number of tools and systems which therefore enhances
their capabilities for editing structured content in a distributed
and collaborative environment. For instance, DBpedia (Bizer
et al., 2009) a tool used for extracting structure content, can
be extended to further build knowledge by collaboratively
editing content of wikis.

Finally, the integration of the newly proposed srCE
model with SPARQL/Update can be standardised as it takes
into account the collaborative updating aspect in order to
emerge as new generation of Web 2.0 tools that embrace
semantic web technologies.

References

Ahmed-Nacer, M., Ignat, C-L., Oster, G., Roh, H-G. and Urso, P.
(2011) ‘Evaluating CRDTs for real-time document editing’,
ACM Symposium on Document Engineering, pp.103–112.

Aslan, K., Molli, P. and Skaf-Molli, H. (2011) ‘C-Set: a
commutative replicated data type for semantic stores’,
Proceedings of 8th Extended Semantic Web Conference,
pp.123–130.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R. and Hellmann, S. (2009) ‘DBpedia a
crystallization point for the web of data’, Journal of Web
Semantics, Vol. 7, No. 3, pp.154–165.

Cai, M. and Frank, M-R. (2004) ‘RDFpeers: a scalable distributed
RDF repository based on a structured peer-to-peer network’,
Proceedings of International Conference on World Wide
Web, pp.650–657.

Cai, M., Frank, M-R., Chen, J. and Szekely, P-A. (2004) ‘MAAN:
a multi-attribute addressable network for grid information
services’, Journal of Grid Computing, Vol. 2, No. 1, pp.3–14.

Cart, M. and Ferri, J. (2007) ‘Asynchronous reconciliation based on
operational transformation for p2p collaborative environments’,
Proceedings of International Conference on Collaborative
Computing: Networking, Applications and Worksharing,
CollaborateCom, IEEE Computer Society, pp.127–138.

Dzafic, I., Neisius, H-T. and Mohapatra, P. (2012) ‘High
performance power flow algorithm for symmetrical
distribution networks with unbalanced loading’, International
Journal of Computer Applications in Technology, Vol. 43,
No. 2, pp.179–187.

Ellis, C-A. and Gibbs, S-J. (1989) ‘Concurrency control in
groupware systems’, Proceedings of ACM International
Conference on Management of Data, pp.399–407.

Eugster, P-T., Guerraoui, R., Handurukande, S-B., Kouznetsov, P.
and Kermarrec, A-M. (2003) ‘Lightweight probabilistic
broadcast’, ACM Transactions on Computer Systems, Vol. 21,
No. 4, pp.341–374.

Ibanez, L.D., Skaf-Molli, H., Molli, P. and Corby, O. (2012)
‘Synchronizing semantic stores with commutative replicated
data types’, Proceedings of 21st International Conference
Companion on World Wide Web, pp.1091–1096.

Ignat, C-L. and Norrie, M-C. (2002) ‘Tree-based model algorithm
for maintaining consistency in real-time collaborative editing
systems’, Proceedings of 4th International Workshop on
Collaborative Editing, CSCW, IEEE Distributed Systems
online.

Krtzsch, M., Vrandecic, D., Vlkel, M., Haller, H. and Studer, R.
(2007) ‘SemanticWikipedia’, Journal of Web Semantics:
Science, Services and Agents on the World Wide Web, Vol. 5,
No. 4, pp.251–261.

Kshemkalyani, A-D. and Singhal, M. (1998) ‘Necessary and
sufficient conditions on information for causal message
ordering and their optimal implementation’, Distributed
Computing, Vol. 11, No. 2, pp.91–111.

Kurki, J. and Eero, H. (2010) ‘Collaborative metadata editor
integrated with ontology services and faceted portals’,
Proceedings of CEUR Workshop, Workshop on Ontology
Repositories and Editors for the Semantic Web, ORES, the
Extended Semantic Web Conference.

Martin, S., Urso, P. and Weiss, S. (2010) ‘Scalable XML
collaborative editing with undo’, Proceedings of International
Conference on Cooperative Information System, CoopIS,

Masmoudi, N.K., Rekik, C., Djemel, M. and Derbel, N. (2011)
‘Hierarchical control for discrete large-scale complex systems
by intelligent controllers’, International Journal of Computer
Applications in Technology, Vol. 42, No. 1, pp.1–12.

Miriam, D.D.H. and Easwarakumar, K.S. (2012) ‘HPGRID: a new
resource management architecture with its topological
properties for massively parallel systems’, International
Journal of Computer Applications in Technology, Vol. 43,
No. 2, pp.155–167.

Prakash, R., Raynal, M. and Singhal, M. (1997) ‘An adaptive
causal ordering algorithm suited to mobile computing
environments’, Journal of Parallel and Distributed
Computing, Vol. 41, No. 2, pp.190–204.

Preguic, N-M., Marques, J-M., Shapiro, M. and Letia, M. (2009)
‘A commutative replicated data type for cooperative editing’,
Proceedings International Conference On Distributed
Computing Systems, IEEE Computer Society, pp.395–403.

Quilitz, B. and Leser, U. (2008) ‘Querying distributed RDF data
sources with SPARQL’, Proceedings of European Semantic Web
Conference on The Semantic Web: Research and Applications,
pp.524–538.

 srCE: a collaborative editing of scalable semantic stores 13

Ressel, M., Nitssche-Ruhland, D. and Gunzenhuser, R. (1996) ‘An
integrating, transformation-oriented approach to concurrency
control and undo in group editors’, Proceedings of ACM
International Conference on Computer Supported Cooperative
Work, CSCW, Boston, pp.288–297.

Roha, H., Jeon, M., Kim, J-S. and Lee, J. (2011) ‘Replicated abstract
data types: building blocks for collaborative applications’,
Journal of Parallel and Distributed Computing, Vol. 71, No. 3,
pp.354–368.

Shapiro, M., Preguica, N., Baquero, C. and Zawirski, M. (2011) A
Comprehensive Study of Convergent and Commutative
Replicated Data Types, Research Report RR-7506, INRIA.

Skaf-Molli, H., Rahhal, C. and Molli, P. (2009) ‘Peer-to-peer
semantic wikis’, Proceedings of International Conference on
Database and Expert Systems Applications, pp.196–213.

Suleiman, M., Cart, M. and Ferri, J. (1998) ‘Concurrent operations
in a distributed and mobile collaborative environment’,
Proceedings of International Conference on Data
Engineering, IEEE Computer Society, pp.36–45.

Sun, C. and Ellis, C-S. (1998) ‘Operational transformation in real-
time group editors: issues, algorithms, and achievements’,
Proceedings of ACM Conference on Computer Supported
Cooperative Work, pp.59–68.

Sun, C., Jia, X., Zhang, Y., Yang, Y. and Chen, D. (1998) ‘Achieving
convergence, causality preservation, and intention preservation in
real-time cooperative editing systems’, ACM Transactions on
Computer-Human Interaction, Vol. 5, No. 1, pp.63–108.

Tsatsanifos, G., Sacharidis, D. and Sellis, T. (2011) ‘On enhancing
scalability for distributed RDF/S stores’, Proceedings of
International Conference on International Conference on
Extending Database Technology, pp.141–152.

Tummarello, G., Morbidoni, C., Bachmann-Gmur, R. and Erling,
O. (2007) ‘RDFsync: efficient remote synchronization of
RDF models’, Proceedings of International Semantic Web
and Asian Semantic Web Conference, pp.537–551.

Vidot, N., Cart, M., Ferri, J. and Suleiman, M. (2000) ‘Copies
convergence in a distributed real-time collaborative
environment’, Proceedings of ACM Conference on Computer
Supported Cooperative Work, pp.171–180.

Weiss, S., Urso, P. and Molli, P. (2010) ‘Logoot – undo:
distributed collaborative editing system on P2P networks’,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 21, No. 8, pp.1162–1174.

Yao, Q., Sun, Y.Q. and Wang, H.Y. (2011) ‘A novel approach
to global software development for chartered enterprises’,
International Journal of Computer Applications in
Technology, Vol. 40, No. 3, pp.149–159.

