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We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown
function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval.
The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of
the method.

1. Introduction

Nonlinear phenomenon appears in many scientific areas
such as physics, fluid mechanics, population models, chem-
ical kinetics, economic systems, and medicine and can be
modeled by system of nonlinear integral equations. The
difficulty lies in finding the exact solution for such system.
Alternatively, the approximate or numerical solutions can
be sought. One of the well known approximate method is
Newton-Kantorovich method which reduces the nonlinear
into sequence of linear integral equations. The the approxi-
mate solution is then obtained by processing the convergent
sequence. In 1939, Kantorovich [1] presented an iterative
method for functional equation in Banach space and derived
the convergence theorem for Newton method. In 1948,
Kantorovich [2] proved a semilocal convergence theorem
for Newton method in Banach space, later known as the
Newton-Kantorovich method. Uko and Argyros [3] proved
a weak Kantorovich-type theorem which gives the same
conclusion under theweaker conditions. Shen and Li [4] have

established the Kantorovich-type convergence criterion for
inexact Newton methods, assuming that the first derivative
of an operator satisfies the Lipschitz condition. Argyros [5]
provided a sufficient condition for the semilocal convergence
ofNewton’smethod to a locally unique solution of a nonlinear
operator equation. Saberi-Nadjafi andHeidari [6] introduced
a combination of the Newton-Kantorovich and quadrature
methods to solve the nonlinear integral equation of Urysohn
type in the systematic procedure. Ezquerro et al. [7] studied
the nonlinear integral equation of mixed Hammerstein type
using Newton-Kantorovich method with majorant principle.
Ezquerro et al. [8] provided the semilocal convergence of
Newton method in Banach space under a modification of the
classic conditions of Kantorovich. There are many methods
of solving the system of nonlinear integral equations, for
example, product integration method [9], Adomian method
[10], RBF network method [11], biorthogonal system method
[12], Chebyshevwaveletsmethod [13], analyticalmethod [14],
reproducing kernel method [15], step method [16], and single
term Wlash series [17]. In 2003, Boikov and Tynda [18]
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implemented theNewton-Kantorovichmethod to the follow-
ing system:

𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) 𝑔 (𝜏) 𝑥 (𝜏) 𝑑𝜏 = 0,

∫

𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) [1 − 𝑔 (𝜏)] 𝑥 (𝜏) 𝑑𝜏 = 𝑓 (𝑡) ,

(1)

where 0 < 𝑡
0
≤ 𝑡 ≤ 𝑇, 𝑦(𝑡) < 𝑡, and the functions ℎ(𝑡, 𝜏),

𝑘(𝑡, 𝜏) ∈ 𝐶
[𝑡0 ,𝑇]×[𝑡0 ,𝑇]

, 𝑓(𝑡), 𝑔(𝑡) ∈ 𝐶
[𝑡0 ,𝑇]

, and (0 < 𝑔(𝑡) < 1).
In 2010, Eshkuvatov et al. [19] used the Newton-Kantorovich
hypothesis to solve the system of nonlinear Volterra integral
equation of the form

𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) 𝑥
2
(𝜏) 𝑑𝜏 = 0,

∫

𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) 𝑥
2
(𝜏) 𝑑𝜏 = 𝑓 (𝑡) ,

(2)

where 𝑥(𝑡) and 𝑦(𝑡) are unknown functions defined on
[𝑡
0
,∞), 𝑡

0
> 0, and ℎ(𝑡, 𝜏), 𝑘(𝑡, 𝜏) ∈ 𝐶

[𝑡0 ,∞]×[𝑡0 ,∞]
, 𝑓(𝑡) ∈

𝐶
[𝑡0 ,∞]

. In 2010, Eshkuvatov et al. [20] developed themodified
Newton-Kantorovich to obtain an approximate solution of
system with the form

𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

𝐻(𝑡, 𝜏) 𝑥
𝑛
(𝜏) 𝑑𝜏 = 0,

∫

𝑡

𝑦(𝑡)

𝐾 (𝑡, 𝜏) 𝑥
𝑛
(𝜏) 𝑑𝜏 = 𝑓 (𝑡) ,

(3)

where 0 < 𝑡
0
≤ 𝑡 ≤ 𝑇, 𝑦(𝑡) < 𝑡, and the functions 𝐻(𝑡,

𝜏), 𝐾(𝑡, 𝜏) ∈ 𝐶
[𝑡0 ,∞]×[𝑡0 ,∞]

, 𝑓(𝑡) ∈ 𝐶
[𝑡0 ,∞]

, and the unknown
functions 𝑥(𝑡) ∈ 𝐶

[𝑡0 ,∞]
, 𝑦(𝑡) ∈ 𝐶

1

[𝑡0 ,∞]
, 𝑦(𝑡) < 𝑡.

In this paper, we consider the systems of nonlinear
integral equation of the form

𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 = 𝑔 (𝑡) ,

∫

𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 = 𝑓 (𝑡) ,

(4)

where 0 < 𝑡
0
≤ 𝑡 ≤ 𝑇, 𝑦(𝑡) < 𝑡, 𝑥(𝑡) ̸= 0, ℎ(𝑡, 𝜏), ℎ

𝜏
(𝑡, 𝜏),

𝑘(𝑡, 𝜏), 𝑘
𝜏
(𝑡, 𝜏) ∈ 𝐶(𝐷) and the unknown functions 𝑥(𝑡) ∈

𝐶[𝑡
0
, 𝑇], 𝑦(𝑡) ∈ 𝐶

1
[𝑡
0
, 𝑇] to be determined, and𝐷 = [𝑡

0
, 𝑇] ×

[𝑡
0
, 𝑇].
The paper is organized as follows, in Section 2, Newton-

Kantorovich method for the system of integral equations (4)
is presented. Section 3 deals with mixed method followed
by discretizations. In Section 4, the rate of convergence of
themethod is investigated. Lastly, Section 5 demonstrates the
numerical example to verify the validity and accuracy of the
proposed method, followed by the conclusion in Section 6.

2. Newton-Kantorovich Method for the System

Let us rewrite the system of nonlinear Volterra integral equa-
tion (4) in the operator form

𝑃 (𝑋) = (𝑃
1
(𝑋) , 𝑃

2
(𝑋)) = 0, (5)

where𝑋 = (𝑥(𝑡), 𝑦(𝑡)) and

𝑃
1
(𝑋) = 𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

ℎ (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 − 𝑔 (𝑡) ,

𝑃
2
(𝑋) = ∫

𝑡

𝑦(𝑡)

𝑘 (𝑡, 𝜏) log |𝑥 (𝜏)| 𝑑𝜏 − 𝑓 (𝑡) .

(6)

To solve (5) we use initial iteration of Newton-Kantorovich
method which is of the form

𝑃

(𝑋
0
) (𝑋 − 𝑋

0
) + 𝑃 (𝑋

0
) = 0, (7)

where 𝑋
0
= (𝑥
0
(𝑡), 𝑦
0
(𝑡)) is the initial guess and 𝑥

0
(𝑡) and

𝑦
0
(𝑡) can be any continuous functions provided that 𝑡

0
<

𝑦(𝑡) < 𝑡 and 𝑥(𝑡) ̸= 0.
The Frechet derivative of 𝑃(𝑋) at the point 𝑋

0
is defined

as

𝑃

(𝑋
0
)𝑋

= ( lim
𝑠→0

1

𝑠
[𝑃
1
(𝑋
0
+ 𝑠𝑋) − 𝑃

1
(𝑋)] ,

lim
𝑠→0

1

𝑠
[𝑃
2
(𝑋
0
+ 𝑠𝑋) − 𝑃

2
(𝑋)])

= ( lim
𝑠→0

1

𝑠
[𝑃
1
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) − 𝑃

1
(𝑥
0
, 𝑦
0
)] ,

lim
𝑠→0

1

𝑠
[𝑃
2
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) − 𝑃

2
(𝑥
0
, 𝑦
0
)])

= ( lim
𝑠→0

[
𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑥
𝑠𝑥 +

𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑦
𝑠𝑦

+
1

2
(
𝜕
2
𝑃
1

𝜕𝑥
2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥
2

+ 2
𝜕
2
𝑃
1

𝜕𝑥𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥𝑦

+
𝜕
2
𝑃
1

𝜕𝑦
2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠𝑦

2
)] ,
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lim
𝑠→0

1

𝑠
[
𝜕𝑃
2

𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕𝑃
2

𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(
𝜕
2
𝑃
2

𝜕𝑥
2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥
2

+ 2
𝜕
2
𝑃
2

𝜕𝑥𝜕𝑦
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥𝑦

+
𝜕
2
𝑃
2

𝜕𝑦
2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠𝑦

2
)])

= (
𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑥
𝑥 +

𝜕𝑃
1
(𝑥
0
, 𝑦
0
)

𝜕𝑦
𝑦,

𝜕𝑃
2
(𝑥
0
, 𝑦
0
)

𝜕𝑥
𝑥 +

𝜕𝑃
2
(𝑥
0
, 𝑦
0
)

𝜕𝑦
𝑦) .

(8)

Hence,

𝑃

(𝑋
0
)𝑋 = (

𝜕𝑃
1

𝜕𝑥

(𝑥0 ,𝑦0)

𝜕𝑃
1

𝜕𝑦

(𝑥0 ,𝑦0)

𝜕𝑃
2

𝜕𝑥

(𝑥0 ,𝑦0)

𝜕𝑃
2

𝜕𝑦

(𝑥0 ,𝑦0)

)(
𝑥

𝑦
) . (9)

From (7) and (9) it follows that

𝜕𝑃
1

𝜕𝑥

(𝑥0 ,𝑦0)

(Δ𝑥 (𝑡)) +
𝜕𝑃
1

𝜕𝑦

(𝑥0 ,𝑦0)

(Δ𝑦 (𝑡))

= −𝑃
1
(𝑥
0
(𝑡) , 𝑦
0
(𝑡)) ,

𝜕𝑃
2

𝜕𝑥

(𝑥0 ,𝑦0)

(Δ𝑥 (𝑡)) +
𝜕𝑃
2

𝜕𝑦

(𝑥0 ,𝑦0)

(Δ𝑦 (𝑡))

= −𝑃
2
(𝑥
0
(𝑡) , 𝑦
0
(𝑡)) ,

(10)

where Δ𝑥(𝑡) = 𝑥
1
(𝑡)−𝑥

0
(𝑡), Δ𝑦(𝑡) = 𝑦

1
(𝑡)−𝑦

0
(𝑡), and (𝑥

0
(𝑡),

𝑦
0
(𝑡)) is the initial given functions. To solve (10) with respect

to Δ𝑥 and Δ𝑦 we need to compute all partial derivatives:

𝜕𝑃
1

𝜕𝑥

(𝑥0 ,𝑦0)

= lim
𝑠→0

1

𝑠
(𝑃
1
(𝑥
0
+ 𝑠𝑥, 𝑦

0
) − 𝑃
1
(𝑥
0
, 𝑦
0
))

= lim
𝑠→0

1

𝑠
[𝑠𝑥 (𝑡)

− ∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏) (log 𝑥0 (𝜏) + 𝑠𝑥 (𝜏)


− log 𝑥0 (𝜏)
) 𝑑𝜏]

= 𝑥 (𝑡) − ∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏)
𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏,

𝜕𝑃
1

𝜕𝑦

(𝑥0 ,𝑦0)

= lim
𝑠→0

1

𝑠
(𝑃
1
(𝑥
0
, 𝑦
0
+ 𝑠𝑦) − 𝑃

1
(𝑥
0
, 𝑦
0
))

= lim
𝑠→0

1

𝑠
[∫

𝑦0(𝑡)+𝑠𝑦(𝑡)

𝑦0(𝑡)

ℎ (𝑡, 𝜏) log (𝑥0 (𝜏))
 𝑑𝜏]

= ℎ (𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))

 𝑦 (𝑡) ,

(11)

and in the same manner we obtain

𝜕𝑃
2

𝜕𝑥

(𝑥0 ,𝑦0)

= ∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏)
𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏,

𝜕𝑃
2

𝜕𝑦

(𝑥0 ,𝑦0)

= −𝑘 (𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))

 𝑦 (𝑡) .

(12)

So that from (10)–(12) it follows that

Δ𝑥 (𝑡) − ∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ℎ (𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))

 Δ𝑦 (𝑡)

= ∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏) log 𝑥0 (𝜏)
 𝑑𝜏 − 𝑥

0
(𝑡) + 𝑔 (𝑡) ,

∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏)
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏

− 𝑘 (𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))

 Δ𝑦 (𝑡)

= −∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏) log 𝑥0 (𝜏)
 𝑑𝜏 + 𝑓 (𝑡) .

(13)

Equation (13) is a linear, and, by solving it for Δ𝑥 and Δ𝑦, we
obtain (𝑥

1
(𝑡), 𝑦
1
(𝑡)). By continuing this process, a sequence

of approximate solution (𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡)) can be evaluated from

𝑃

(𝑋
0
) Δ𝑋
𝑚
+ 𝑃 (𝑋

𝑚
) = 0, (14)

which is equivalent to the system

Δ𝑥
𝑚
(𝑡) − ∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ℎ (𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))

 Δ𝑦𝑚 (𝑡)

= ∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏) log 𝑥0 (𝜏)
 𝑑𝜏 − 𝑥

0
(𝑡) + 𝑔 (𝑡) ,

∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

− 𝑘 (𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))

 Δ𝑦𝑚 (𝑡)

= −∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏) log 𝑥0 (𝜏)
 𝑑𝜏 + 𝑓 (𝑡) ,

(15)

whereΔ𝑥
𝑚
(𝑡) = 𝑥

𝑚
(𝑡)−𝑥
𝑚−1

(𝑡) andΔ𝑦
𝑚
(𝑡) = 𝑦

𝑚
(𝑡)−𝑦
𝑚−1

(𝑡),
𝑚 = 1, 2, 3, . . ..
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Thus, one should solve a system of two linear Volterra
integral equations to find each successive approximation.
Let us eliminate Δ𝑦(𝑡) from the system (13) by finding the
expression of Δ𝑦(𝑡) from the first equation of this system and
substitute it in the second equation to yield

Δ𝑦 (𝑡) =
1

𝐻 (𝑡)
[∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏) [
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

+ log 𝑥0 (𝜏)
] 𝑑𝜏

− [Δ𝑥 (𝑡) + 𝑥
0
(𝑡) − 𝑔 (𝑡)]] ,

𝐺 (𝑡) [∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏) [
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

+ log 𝑥0 (𝜏)
] 𝑑𝜏

− [Δ𝑥 (𝑡) + 𝑥
0
(𝑡) − 𝑔 (𝑡)]]

= ∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏)
Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝑑𝜏

− ∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏) log 𝑥0 (𝜏)
 𝑑𝜏 + 𝑓 (𝑡) ,

(16)

where 𝐺(𝑡) = 𝑘(𝑡, 𝑦
0
(𝑡))/ℎ(𝑡, 𝑦

0
(𝑡)) and 𝐻(𝑡) = 1/[ℎ(𝑡,

𝑦
0
(𝑡)) log |𝑥

0
(𝑦
0
(𝑡))|], and the second equation of (16) yields

Δ𝑥 (𝑡) − ∫

𝑡

𝑦0(𝑡)

𝑘
1
(𝑡, 𝜏)

Δ𝑥 (𝜏)

𝑥
0
(𝜏)

𝜏 = 𝐹
0
(𝑡) , (17)

where

𝑘
1
(𝑡, 𝜏) = ℎ (𝑡, 𝜏) −

𝑘 (𝑡, 𝜏)

𝐺 (𝑡)
,

𝐺 (𝑡) =
𝑘 (𝑡, 𝑦

0
(𝑡))

ℎ (𝑡, 𝑦
0
(𝑡))

, 𝑘 (𝑡, 𝑦
0
(𝑡)) ̸= 0 ∀𝑡 ∈ [𝑡

0
, 𝑇] ,

𝐹
0
(𝑡) = ∫

𝑡

𝑦0(𝑡)

𝑘
1
(𝑡, 𝜏) log 𝑥0 (𝜏)

 𝑑𝜏 − 𝑥
0
(𝑡) + 𝑔 (𝑡) +

𝑓 (𝑡)

𝐺 (𝑡)
.

(18)

In an analogous way,Δ𝑦
𝑚
(𝑡) andΔ𝑥

𝑚
(𝑡) can be written in the

form

Δ𝑦
𝑚
(𝑡)

=
1

𝐻 (𝑡)
[∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫

𝑡

𝑦𝑚−1(𝑡)

ℎ (𝑡, 𝜏) log 𝑥𝑚−1 (𝜏)
 𝑑𝜏

−Δ𝑥
𝑚
(𝑡) − 𝑥

𝑚−1
(𝑡) + 𝑔 (𝑡)] ,

(19)

Δ𝑥
𝑚
(𝑡) − ∫

𝑡

𝑦0(𝑡)

𝑘
1
(𝑡, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏 = 𝐹
𝑚−1

(𝑡) , (20)

where

𝐹
𝑚−1

(𝑡) = ∫

𝑡

𝑦𝑚−1(𝑡)

𝑘
1
(𝑡, 𝜏) log 𝑥𝑚−1 (𝜏)

 𝑑𝜏 − 𝑥
𝑚−1

(𝑡)

+ 𝑔 (𝑡) +
𝑓 (𝑡)

𝐺 (𝑡)
.

(21)

3. The Mixed Method (Simpson
and Trapezoidal) for Approximate Solution

At each step of the iterative process we have to find the
solution of (18) and (20) on the closed interval [𝑡

0
, 𝑇]. To do

this the grid (𝜔) of points 𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ, 𝑖 = 1, 2, 3, . . . , 2𝑁,

ℎ = (𝑇−𝑡
0
)/2𝑁 is introduced, and by the collocationmethod

with mixed rule we require that the approximate solution
satisfies (18) and (20). Hence

Δ𝑥
𝑚
(𝑡
0
) = −𝑥

𝑚−1
(𝑡
0
) + 𝑔 (𝑡

0
) +

𝑓 (𝑡
0
)

𝐺 (𝑡
0
)
, (22)

Δ𝑥
𝑚
(𝑡
2𝑖
) − ∫

𝑡2𝑖

𝑦0(𝑡2𝑖)

𝑘
1
(𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

= 𝐹
𝑚−1

(𝑡
2𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(23)

On the grid (𝜔) we set V
2𝑖
= 𝑦
0
(𝑡
2𝑖
), suct that

𝑡V2𝑖 = {
𝑡V2𝑖 , 𝑡

0
≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖−2

,

𝑡
2𝑖
, 𝑡
2𝑖−2

≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖
.

(24)

Consequently, the system (23) can be written in the form

Δ𝑥
𝑚
(𝑡
2𝑖
) − ∫

𝑡V2𝑖

𝑦0(𝑡2𝑖)

𝑘
1
(𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

−

𝑖−1

∑

𝑗=V2𝑖

∫

𝑡2𝑗+2

𝑡2𝑗

𝑘
1
(𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

= 𝐹
𝑚−1

(𝑡
2𝑖
) , 𝑖 = 1, 2, . . . , 𝑁.

(25)

By computing the integral in (26) using tapezoidal formula
on the first integrals and Simpson formula on the second
integral, we consider two cases.

Case 1.When V
2𝑖

̸= 2𝑖, 𝑖 = 1, 2, . . . , 𝑁, then

Δ𝑥
𝑚
(𝑡
2𝑖
) =

𝐹
𝑚−1

(𝑡
2𝑖
) + 𝐴 (𝑖) + 𝐵 (𝑖) + 𝐶 (𝑖)

1 − ((𝑡
2𝑖
− 𝑡
2𝑖−2

) /6 ⋅ 𝑥
0
(𝑡
2𝑖
)) 𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖
)
,

(26)
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where

𝐴 (𝑖) = 0.5 (𝑡V2𝑖 − 𝑦
0
(𝑡
2𝑖
))

× [𝑘
1
(𝑡
2𝑖
, 𝑡V2𝑖)

Δ𝑥
𝑚
(𝑡V2𝑖)

𝑥
0
(𝑡V2𝑖)

+ 𝑘
1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

×

Δ𝑥
𝑚
(𝑡V2𝑖) (𝑡V2𝑖 − 𝑦

0
(𝑡
2𝑖
))

(𝑡V2𝑖 − 𝑡V2𝑖−2) (𝑥0 (𝑦0 (𝑡2𝑖)))

+ 𝑘
1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

×

Δ𝑥
𝑚
(𝑡V2𝑖−2) (𝑦0 (𝑡2𝑖) − 𝑡V2𝑖−2)

(𝑡V2𝑖 − 𝑡V2𝑖−2) (𝑥0 (𝑦0 (𝑡2𝑖)))
] ,

𝐵 (𝑖) =

𝑖−2

∑

𝑗=V2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× [𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑗
)

Δ𝑥
𝑚
(𝑡
2𝑗
)

𝑥
0
(𝑡
2𝑗
)

+ 4𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑗+1

)

Δ𝑥
𝑚
(𝑡
2𝑗+1

)

𝑥
0
(𝑡
2𝑗+1

)

+ 𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑗+2

)

Δ𝑥
𝑚
(𝑡
2𝑗+2

)

𝑥
0
(𝑡
2𝑗+2

)

] ,

𝐶 (𝑖) =
(𝑡
2𝑖
− 𝑡
2𝑖−2

)

6
[𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖−2

)
Δ𝑥
𝑚
(𝑡
2𝑖−2

)

𝑥
0
(𝑡
2𝑖−2

)

+ 4𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖−1

)
Δ𝑥
𝑚
(𝑡
2𝑖−1

)

𝑥
0
(𝑡
2𝑖−1

)
] .

(27)

Case 2.When V
2𝑖
= 2𝑖, 𝑖 = 1, 2, . . . , 𝑁, then

Δ𝑥
𝑚
(𝑡
2𝑖
) =

𝐷
1
(𝑖)

𝐷
2
(𝑖)

, (28)

where

𝐷
1
(𝑖) = 𝐹

𝑚−1
(𝑡
2𝑖
) + 0.5𝑘

1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

× [
Δ𝑥
𝑚
(𝑡
2𝑖−2

)

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

(𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
)) (𝑦
0
(𝑡
2𝑖
) − 𝑡
2𝑖−2

)

𝑡
2𝑖
− 𝑡
2𝑖−2

] ,

𝐷
2
(𝑖) = [1 − 0.5 (𝑡

2𝑖
− 𝑦
0
(𝑡
2
))

𝑘
1
(𝑡
2𝑖
, 𝑡
2𝑖
)

𝑥
0
(𝑡
2𝑖
)

− 0.5𝑘
1
(𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

(𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
))
2

𝑥
0
(𝑦
0
(𝑡
2𝑖
)) (𝑡
2𝑖
− 𝑡
2𝑖−2

)
] .

(29)

Also, to compute Δ𝑦
𝑚
(𝑡) on the grid (𝜔), (18) can be re-

presented in the form

Δ𝑦
𝑚
(𝑡
2𝑖
) =

1

𝐻 (𝑡
2𝑖
)

× [∫

𝑡2𝑖

𝑦0(𝑡2𝑖)

ℎ (𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫

𝑡2𝑖

𝑦𝑚−1(𝑡2𝑖)

ℎ (𝑡
2𝑖
, 𝜏) log 𝑥𝑚−1 (𝜏)

 𝑑𝜏

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ] .

(30)

Let us set V
2𝑖
= 𝑦
0
(𝑡
2𝑖
) and 𝑢

2𝑖
= 𝑦
𝑚−1

(𝑡
2𝑖
) and

𝑡V2𝑖 =
{

{

{

𝑡
2𝑖
, 𝑡
2𝑖−2

≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖
,

𝑡V2𝑖 , 𝑡
0
≤ 𝑦
0
(𝑡
2𝑖
) < 𝑡
2𝑖−2

,

𝑡
𝑢2𝑖

=

{

{

{

𝑡
2𝑖
, 𝑡
2𝑖−2

≤ 𝑦
𝑚−1

(𝑡
2𝑖
) < 𝑡
2𝑖
,

𝑡
𝑢2𝑖
, 𝑡
0
≤ 𝑦
𝑚−1

(𝑡
2𝑖
) < 𝑡
2𝑖−2

.

(31)

Then (30) can be written as

Δ𝑦
𝑚
(𝑡
2𝑖
) =

1

𝐻 (𝑡
2𝑖
)

× [∫

𝑡V2𝑖

𝑦0(𝑡2𝑖)

ℎ (𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+

𝑖−1

∑

𝑗=V2𝑖

∫

𝑡2𝑗+2

𝑡2𝑗

ℎ (𝑡
2𝑖
, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫

𝑡𝑢2𝑖

𝑦𝑚−1(𝑡2𝑖)

ℎ (𝑡
2𝑖
, 𝜏) log 𝑥𝑚−1 (𝜏)

 𝑑𝜏

+

𝑖−1

∑

𝑗=𝑢2𝑖

∫

𝑡2𝑗+2

𝑡2𝑗

ℎ (𝑡
2𝑖
, 𝜏) log 𝑥𝑚−1 (𝜏)

 𝑑𝜏

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ] ,

(32)

and by applying mixed formula for (32) we obtain the follow-
ing four cases.
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Case 1.When V
2𝑖

̸= 2𝑖 and 𝑢
2𝑖

̸= 2𝑖, we have

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡V2𝑖 − 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡V2𝑖)

Δ𝑥
𝑚
(𝑡V2𝑖)

𝑥
0
(𝑡V2𝑖)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)

+

𝑖−1

∑

𝑗=V2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
)

Δ𝑥
𝑚
(𝑡
2𝑗
)

𝑥
0
(𝑡
2𝑗
)

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

)

Δ𝑥
𝑚
(𝑡
2𝑗+1

)

𝑥
0
(𝑡
2𝑗+1

)

+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

)

Δ𝑥
𝑚
(𝑡
2𝑗+2

)

𝑥
0
(𝑡
2𝑗+2

)

)

+ 0.5 (𝑡
𝑢2𝑖

− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
𝑢2𝑖
) log 𝑥𝑚−1 (𝑡𝑢2𝑖)



+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log (𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖)))

 )

+

𝑖−1

∑

𝑗=𝑢2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
) log (𝑥

𝑚−1
(𝑡
2𝑗
))

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

) log 𝑥𝑚−1 (𝑡2𝑗+1)


+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

) log 𝑥𝑚−1 (𝑡2𝑗+2)

)

− Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(33)

Case 2. If V
2𝑖
= 2𝑖 and 𝑢

2𝑖
̸= 2𝑖, then

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
)

Δ𝑥
𝑚
(𝑡V2𝑖)

𝑥
0
(𝑡
2𝑖
)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)

+ 0.5 (𝑡
𝑢2𝑖

− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
𝑢2𝑖
) log 𝑥𝑚−1 (𝑡𝑢2𝑖)



+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖))

 )

+

𝑖−1

∑

𝑗=𝑢2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
) log 𝑥𝑚−1 (𝑡2𝑗)



+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

) log 𝑥𝑚−1 (𝑡2𝑗+1)


+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

) log 𝑥𝑚−1 (𝑡2𝑗+2)

)

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(34)

Case 3.When V
2𝑖

̸= 2𝑖 and 𝑢
2𝑖
= 2𝑖, we get

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡V2𝑖 − 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡V2𝑖)

Δ𝑥
𝑚
(𝑡V2𝑖)

𝑥
0
(𝑡V2𝑖)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)
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+

𝑖−1

∑

𝑗=V2𝑖

(𝑡
2𝑗+2

− 𝑡
2𝑗
)

6

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑗
)

Δ𝑥
𝑚
(𝑡
2𝑗
)

𝑥
0
(𝑡
2𝑗
)

+ 4ℎ (𝑡
2𝑖
, 𝑡
2𝑗+1

)

Δ𝑥
𝑚
(𝑡
2𝑗+1

)

𝑥
0
(𝑡
2𝑗+1

)

+ ℎ (𝑡
2𝑖
, 𝑡
2𝑗+2

)

Δ𝑥
𝑚
(𝑡
2𝑗+2

)

𝑥
0
(𝑡
2𝑗+2

)

)

+ 0.5 (𝑡
2𝑖
− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
) log 𝑥𝑚−1 (𝑡2𝑖)



+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖))

 )

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(35)

Case 4. If V
2𝑖
= 2𝑖 and 𝑢

2𝑖
= 2𝑖, then

Δ𝑦
𝑚
(𝑡
2𝑖
)

=
1

𝐻 (𝑡
2𝑖
)

× [

[

0.5 (𝑡
2𝑖
− 𝑦
0
(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
)
Δ𝑥
𝑚
(𝑡
2𝑖
)

𝑥
0
(𝑡
2𝑖
)

+ ℎ (𝑡
2𝑖
, 𝑦
0
(𝑡
2𝑖
))

Δ𝑥
𝑚
(𝑦
0
(𝑡
2𝑖
))

𝑥
0
(𝑦
0
(𝑡
2𝑖
))

)

+ 0.5 (𝑡
2𝑖
− 𝑦
𝑚−1

(𝑡
2𝑖
))

× (ℎ (𝑡
2𝑖
, 𝑡
2𝑖
) log 𝑥𝑚−1 (𝑡2𝑖)



+ ℎ (𝑡
2𝑖
, 𝑦
𝑚−1

(𝑡
2𝑖
)) log 𝑥𝑚−1 (𝑦𝑚−1 (𝑡2𝑖))

 )

−Δ𝑥
𝑚
(𝑡
2𝑖
) − 𝑥
𝑚−1

(𝑡
2𝑖
) + 𝑔 (𝑡

2𝑖
) ]

]

.

(36)

Thus, (32) can be computed by one of (33)–(36) according to
the cases.

4. The Convergence Analysis of the Method

On the basis of general theorems of Newton-Kantorovich
method [21, Chapter XVIII] for the convergence, we state the
following theorem regarding the successive approximations
described by (18)–(20).

First, consider the following classes of functions:

(i) 𝐶
[𝑡0 ,𝑇]

the set of all continuous functions 𝑓(𝑡) defined
on the interval [𝑡

0
, 𝑇],

(ii) 𝐶
[𝑡0 ,𝑇]×[𝑡0 ,𝑇]

the set of all continuous functions 𝜓(𝑡, 𝜏)
defined on the region [𝑡

0
, 𝑇] × [𝑡

0
, 𝑇],

(iii) 𝐶 = {𝑋 : 𝑋 = (𝑥(𝑡), 𝑦(𝑡)) : 𝑥(𝑡), 𝑦(𝑡) ∈ 𝐶
[𝑡0 ,𝑇]

},

(iv) 𝐶<
[𝑡0 ,𝑇]

= {𝑦(𝑡) ∈ 𝐶
1

[𝑡0 ,𝑇]
: 𝑦(𝑡) < 𝑡}.

And define the following norms

‖𝑥‖ = max
𝑡∈[𝑡0 ,𝑇]

|𝑥 (𝑡)| ,

‖Δ𝑋‖
𝐶
= max {‖Δ𝑥‖

𝐶[𝑡0,𝑇]
,
Δ𝑦

𝐶[𝑡0,𝑇]
} ,

‖𝑋‖
𝐶
1 = max {‖𝑥‖

𝐶[𝑡0,𝑇]
,

𝑥
𝐶[𝑡0 ,𝑇]

} ,


𝑋
𝐶

= max {‖𝑥‖
𝐶[𝑡0,𝑇]

,
𝑦

𝐶[𝑡0 ,𝑇]
}

‖ℎ (𝑡, 𝜏)‖ = 𝐻
1
,


ℎ


𝜏
(𝑡, 𝜏)


= 𝐻


1
,

‖𝑘 (𝑡, 𝜏)‖ = 𝐻
2
,


𝑘


𝜏
(𝑡, 𝜏)


= 𝐻


2
,



1

𝑥
0



= max
𝑡∈[𝑡0 ,𝑇]



1

𝑥
0
(𝑡)



= 𝑐
1
,



1

𝑥
2

0



= max
𝑡∈[𝑡0 ,𝑇]



1

𝑥
2

0
(𝑡)



= 𝑐
2
,



1

𝐺 (𝑡)



= max
𝑡∈[𝑡0 ,𝑇]



1

𝐺 (𝑡)



= 𝑐
3
,

𝑥0
 = max
𝑡∈[𝑡0,𝑇]

𝑥0 (𝑡)
 = 𝐻
3
,


𝑥


0


= max
𝑡∈[𝑡0,𝑇]


𝑥


0
(𝑡)


= 𝐻


3
,

min
𝑡∈[𝑡0,𝑇]

𝑦0 (𝑡)
 = 𝐻
4
,

log
 = max
𝑡∈[𝑡0,𝑇]

log (𝑥 (𝑡))
 = 𝐻
5
,

𝑔
 = max
𝑡∈[𝑡0,𝑇]

𝑔 (𝑡)
 = 𝐻
6
,

𝑓
 = max
𝑡∈[𝑡0,𝑇]

𝑓 (𝑡)
 = 𝐻
7
.

(37)

Let

𝜂
1
= max {𝐻

1
𝑐
2
(𝑇 − 𝐻

4
) ,𝐻
1
𝑐
1
, 𝐻


1
𝐻
5
+ 𝐻
1
𝐻


3
𝑐
1
,

𝐻
2
𝑐
2
(𝑇 − 𝐻

4
) ,𝐻
2
𝑐
1
, 𝐻


2
𝐻
5
+ 𝐻
2
𝐻


3
𝑐
1
} .

(38)
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Let us consider real valued function

𝜓 (𝑡) = 𝐾 (𝑡 − 𝑡
0
)
2

− (1 + 𝐾𝜂) (𝑡 − 𝑡
0
) + 𝜂, (39)

where𝐾 > 0 and 𝜂 are nonnegative real coefficients.

Theorem 1. Assume that the operator 𝑃(𝑋) = 0 in (5) is de-
fined in Ω = {𝑋 ∈ 𝐶([𝑡

0
, 𝑇]) : ‖𝑋 − 𝑋

0
‖ ≤ 𝑅} and has

continuous second derivative in closed ball Ω
0
= {𝑋 ∈ 𝐶([𝑡

0
,

𝑇]) : ‖𝑋 − 𝑋
0
‖ ≤ 𝑟} where 𝑇 = 𝑡

0
+ 𝑟 ≤ 𝑡

0
+ 𝑅. Suppose the

following conditions are satisfied:

(1) ‖Γ
0
𝑃(𝑋
0
)‖ ≤ 𝜂/(1 + 𝐾𝜂),

(2) ‖Γ
0
𝑃

(𝑋)‖ ≤ 2𝐾/(1+𝐾𝜂), when ‖𝑋−𝑋

0
‖ ≤ 𝑡−𝑡

0
≤ 𝑟,

where 𝐾 and 𝜂 as in (39). Then the function 𝜓(𝑡) defined by
(39) majorizes the operator 𝑃(𝑋).

Proof. Let us rewrite (5) and (39) in the form

𝑡 = 𝜙 (𝑡) , 𝜙 (𝑡) = 𝑡 + 𝑐
0
𝜓 (𝑡) , (40)

𝑋 = 𝑆 (𝑋) , 𝑆 (𝑋) = 𝑋 − Γ
0
𝑃 (𝑋) , (41)

where 𝑐
0
= −1/𝜓


(𝑡
0
) = 1/(1 + 𝐾𝜂) and Γ

0
= [𝑃

(𝑋
0
)]
−1.

Let us show that (40) and (41) satisfy the majorizing
conditions [21, Theorem 1, page 525]. In fact

𝑆 (𝑋0) − 𝑋
0

 =
−Γ0𝑃 (𝑋

0
)
 ≤

𝜂

1 + 𝐾𝜂
= 𝜙 (𝑡

0
) − 𝑡
0
, (42)

and for the ‖𝑋−𝑋
0
‖ ≤ 𝑡 − 𝑡

0
with the Remark in [21, Remark

1, page 504] we have


𝑆

(𝑋)


=

𝑆

(𝑋) − 𝑆


(𝑋
0
)


≤ ∫

𝑋

𝑋0


𝑆

(𝑋)


𝑑𝑋 = ∫

𝑋

𝑋0


Γ
0
𝑃

(𝑋)


𝑑𝑋

≤ ∫

𝑡

𝑡0

𝑐
0
𝜓

(𝜏) 𝑑𝜏 = ∫

𝑡

𝑡0

2𝐾

1 + 𝐾𝜂
𝑑𝜏

=
2𝐾

1 + 𝐾𝜂
(𝑡 − 𝑡
0
) = 𝜙

(𝑡) .

(43)

Hence 𝜓(𝑡) = 0 is a majorant function of 𝑃(𝑋) = 0.

Theorem2. Let the functions𝑓(𝑡), 𝑔(𝑡) ∈ 𝐶
[𝑡0 ,𝑇]

, 𝑥
0
(𝑡) ∈ 𝐶

1
[𝑡
0
,

𝑇], 𝑥
0
(𝑦
0
(𝑡)) ̸= 0, 𝑥2

0
(𝑡) ̸= 0, and the kernels ℎ(𝑡, 𝜏), 𝑘(𝑡, 𝜏) ∈

𝐶
1

[𝑡0 ,𝑇]×[𝑡0 ,𝑇]
and (𝑥

0
(𝑡), 𝑦
0
(𝑡)) ∈ Ω

0
; then

(1) the system (7) has unique solution in the interval [𝑡
0
,

𝑇]; that is, there exists Γ
0
, and ‖Γ

0
‖ ≤ ∑

∞

𝑗=1
(𝑐
1
𝐻
1
+

𝑐
1
𝑐
3
𝐻
2
)
𝑗
((𝑇 − 𝐻

4
)
𝑗−1

/(𝑗 − 1)!) = 𝜂
2
,

(2) ‖Δ𝑋‖ ≤ 𝜂/(1 + 𝐾𝜂),

(3) ‖𝑃(𝑋)‖ ≤ 𝜂
1
,

(4) 𝜂 > 1/𝐾 and 𝑟 < 𝜂 + 𝑡
0
,

where 𝐾 and 𝜂 as in (39). Then the system (4) has unique
solution 𝑋

∗ in the closed ball Ω
0
and the sequence 𝑋

𝑚
(𝑡) =

(𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡)),𝑚 ≥ 0 of successive approximations

Δ𝑦
𝑚
(𝑡) =

1

𝐻 (𝑡)
[∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏)
Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏

+ ∫

𝑡

𝑦𝑚−1(𝑡)

ℎ (𝑡, 𝜏) log 𝑥𝑚−1 (𝜏)
 𝑑𝜏

−Δ𝑥
𝑚
(𝑡) − 𝑥

𝑚−1
(𝑡) + 𝑔 (𝑡) ] ,

Δ𝑥
𝑚
(𝑡) − ∫

𝑡

𝑦0(𝑡)

𝑘
1
(𝑡, 𝜏)

Δ𝑥
𝑚
(𝜏)

𝑥
0
(𝜏)

𝑑𝜏 = 𝐹
𝑚−1

(𝑡) ,

(44)

whereΔ𝑥
𝑚
(𝑡) = 𝑥

𝑚
(𝑡)−𝑥
𝑚−1

(𝑡) andΔ𝑦
𝑚
(𝑡) = 𝑦

𝑚
(𝑡)−𝑦
𝑚−1

(𝑡),
𝑚 = 2, 3, . . ., and 𝑋

𝑚
converge to the solution 𝑋

∗. The rate of
convergence is given by

𝑋
∗
− 𝑋
𝑚

 ≤ (
2

1 + 𝐾𝜂
)

𝑚

(
1

𝐾
) . (45)

Proof. It is shown that (7) is reduced to (17). Since (17) is a
linear Volterra integral equation of 2nd kind with respect to
Δ𝑥(𝑡) and since 𝑘(𝑡, 𝑦

0
(𝑡)) ̸= 0, ∀𝑡 ∈ [𝑡

0
, 𝑇] which implies

that the kernel 𝑘
1
(𝑡, 𝜏) defined by (18) is continues it follows

that (17) has a unique solution which can be obtained by
the method of successive approximations. Then the function
Δ𝑦(𝑡) is uniquely determined from (16). Hence the existence
of Γ
0
is archived.

To verify that Γ
0
is boundedwe need to establish the resol-

vent kernel Γ
0
(𝑡, 𝜏) of (17), so we assume the integral operator

𝑈 from 𝐶[𝑡
0
, 𝑇] → 𝐶[𝑡

0
, 𝑇] is given by

𝑍 = 𝑈 (Δ𝑥) , 𝑍 (𝑡) = ∫

𝑡

𝑦0(𝑡)

𝑘
2
(𝑡, 𝜏) Δ𝑥 (𝜏) 𝑑𝜏, (46)

where 𝑘
2
(𝑡, 𝜏) = 𝑘

1
(𝑡, 𝜏)/𝑥

0
(𝜏), and 𝑘

1
(𝑡, 𝜏) is defined in (18).

Due to (46), (17) can be written as

Δ𝑥 − 𝑈 (Δ𝑥) = 𝐹
0
. (47)

The solution Δ𝑥
∗ of (47) is expressed in terms of 𝐹

0
by means

of the formula

Δ𝑥
∗
= 𝐹
0
+ 𝐵 (𝐹

0
) , (48)

where 𝐵 is an integral operator and can be expanded as a
series in powers of 𝑈 [21, Theorem 1, page 378]:

𝐵 (𝐹
0
) = 𝑈 (𝐹

0
) + 𝑈
2
(𝐹
0
) + ⋅ ⋅ ⋅ + 𝑈

𝑛
(𝐹
0
) + ⋅ ⋅ ⋅ , (49)

and it is known that the powers of 𝑈 are also integral opera-
tors. In fact

𝑍
𝑛
= 𝑈
𝑛
, 𝑍
𝑛
(𝑡) = ∫

𝑡

𝑦0(𝑡)

𝑘
(𝑛)

2
(𝑡, 𝜏) Δ𝑥 (𝜏) 𝑑𝜏,

(𝑛 = 1, 2, . . .) ,

(50)

where 𝑘(𝑛)
2

is the iterated kernel.
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Substituting (50) into (48) we obtain an expression for the
solution of (47):

Δ𝑥
∗
= 𝐹
0
(𝑡) +

∞

∑

𝑗=1

∫

𝑡

𝑦0(𝑡)

𝑘
(𝑗)

2
(𝑡, 𝜏) 𝐹

0
(𝜏) 𝑑𝜏. (51)

Next, we show that the series in (51) is convergent uniformly
for all 𝑡 ∈ [𝑡

0
, 𝑇]. Since

𝑘2 (𝑡, 𝜏)
 =



𝑘
1
(𝑡, 𝜏)

𝑥
0
(𝜏)



≤



ℎ (𝑡, 𝜏)

𝑥
0
(𝜏)



+



𝑘 (𝑡, 𝜏)

𝑥
0
(𝜏) 𝐺 (𝑡)



≤ 𝑐
1
𝐻
1
+ 𝑐
1
𝑐
3
𝐻
2
.

(52)

Let 𝑀 = 𝑐
1
𝐻
1
+ 𝑐
1
𝑐
3
𝐻
2
; then by mathematical induction we

get


𝑘
(2)

2
(𝑡, 𝜏)


≤ ∫

𝑡

𝑦0(𝑡)

𝑘2 (𝑡, 𝑢) 𝑘2 (𝑢, 𝜏)
 𝑑𝑢 ≤

𝑀
2
(𝑡 − 𝐻

4
)

(1)!
,


𝑘
(3)

2
(𝑡, 𝜏)


≤ ∫

𝑡

𝑦0(𝑡)


𝑘
2
(𝑡, 𝑢) 𝑘

(2)

2
(𝑢, 𝜏)


𝑑𝑢 ≤

𝑀
3
(𝑡 − 𝐻

4
)
2

(2)!
,

.

.

.


𝑘
(𝑛)

2
(𝑡, 𝜏)


≤ ∫

𝑡

𝑦0(𝑡)


𝑘
2
(𝑡, 𝑢) 𝑘

(𝑛−1)

2
(𝑢, 𝜏)


𝑑𝑢

≤
𝑀
𝑛
(𝑡 − 𝐻

4
)
𝑛−1

(𝑛 − 1)!
,

(𝑛 = 1, 2, . . .) ;

(53)

then

𝑈
𝑛 = max
𝑡∈[𝑡0,𝑇]

∫

𝑡

𝑦0(𝑡)


𝑘
(𝑛)

2
(𝑡, 𝜏)


𝑑𝜏 ≤

𝑀
𝑛
(𝑇 − 𝐻

4
)
(𝑛−1)

(𝑛 − 1)!
.

(54)

Therefore the 𝑛th root test of the sequence yields

𝑛
√‖𝑈
𝑛
‖ ≤

𝑀(𝑇 − 𝐻
4
)
1−1/𝑛

𝑛
√(𝑛 − 1)!

→
𝑛→∞

0. (55)

Hence 𝜌 = 1/lim
𝑛→∞

𝑛
√‖𝑈
𝑛
‖ = ∞ and a Volterra integral

equations (17) has no characteristic values. Since the series
in (51) converges uniformly (48) can be written in terms of
resolvent kernel of (17):

Δ𝑥
∗
= 𝐹
0
+ ∫

𝑡

𝑦0(𝑡)

Γ
0
(𝑡, 𝜏) 𝐹

0
(𝜏) 𝑑𝜏, (56)

where

Γ
0
(𝑡, 𝜏) =

∞

∑

𝑗=1

𝑘
(𝑗)

2
(𝑡, 𝜏) . (57)

Since the series in (57) is convergent we obtain

Γ0
 =

𝐵 (𝐹
0
)
 ≤

∞

∑

𝑗=1


𝑈
𝑗

≤

∞

∑

𝑗=1

𝑀
𝑗 (𝑇 − 𝐻)

𝑗−1

(𝑗 − 1)!
≤ 𝜂
2
. (58)

To establish the validity of second condition, let us represent
operator equation

𝑃 (𝑋) = 0, (59)

as in (41) and its the successive approximations is

𝑋
𝑛+1

= 𝑆 (𝑋
𝑛
) , (𝑛 = 0, 1, 2, . . .) . (60)

For initial guess𝑋
0
we have

𝑆 (𝑋
0
) = 𝑋

0
− Γ
0
𝑃 (𝑋
0
) . (61)

From second condition of (Theorem 1) we have

Γ0𝑃 (𝑋
0
)
 =

𝑆 (𝑋0) − 𝑋
0



=
𝑋1 − 𝑋

0

 = ‖Δ𝑋‖ ≤
𝜂

1 + 𝐾𝜂
.

(62)

In addition, we need to show that ‖𝑃(𝑋)‖ ≤ 𝜂
1
for all

𝑋 ∈ Ω
0
where 𝜂

1
is defined in (38). It is known that the

second derivative 𝑃

(𝑋
0
)(𝑋,𝑋) of the nonlinear operator

𝑃(𝑋) is described by 3-dimensional array 𝑃

(𝑋
0
)𝑋𝑋 =

(𝐷
1
, 𝐷
2
)(𝑋,𝑋), which is called bilinear operator; that is,

𝑃

(𝑋
0
)(𝑋𝑋) = 𝐵(𝑋

0
, 𝑋,𝑋) where

𝑃

(𝑋
0
) (𝑋,𝑋)

= lim
𝑠→0

1

𝑠
[𝑃

(𝑥
0
+ 𝑠𝑋) − 𝑃


(𝑋
0
)]

= { lim
𝑠→0

1

𝑠
[(

𝜕𝑃
1

𝜕𝑥
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
1

𝜕𝑥
(𝑥
0
, 𝑦
0
)) 𝑥

+ (
𝜕𝑃
1

𝜕𝑦
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
1

𝜕𝑦
(𝑥
0
, 𝑦
0
)) 𝑦] ,

lim
𝑠→0

1

𝑠
[(

𝜕𝑃
2

𝜕𝑥
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
2

𝜕𝑥
(𝑥
0
, 𝑦
0
)) 𝑥

+ (
𝜕𝑃
2

𝜕𝑦
(𝑥
0
+ 𝑠𝑥, 𝑦

0
+ 𝑠𝑦) −

𝜕𝑃
2

𝜕𝑦
(𝑥
0
, 𝑦
0
)) 𝑦]}
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= { lim
𝑠→0

1

𝑠
[(

𝜕
2
𝑃
1

𝜕𝑥
2
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕
2
𝑃
1

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(
𝜕
3
𝑃
1

𝜕𝑥
3
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥
2

+ 2
𝜕
3
𝑃
1

𝜕𝑥
2
𝜕𝑦

(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥𝑦

+
𝜕
3
𝑃
1

𝜕𝑦
2
𝜕𝑥

(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑦))𝑥

+ (
𝜕
2
𝑃
1

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕
2
𝑃
1

𝜕𝑦
2
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(

𝜕
3
𝑃
1

𝜕𝑥
2
𝜕𝑦

(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥
2

+ 2
𝜕
3
𝑃
1

𝜕𝑥𝜕𝑦
2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥𝑦

+
𝜕
3
𝑃
1

𝜕𝑦
3
(𝑥
0
+ 𝜃𝑠𝑥, 𝛿𝑠𝑦) 𝑠

2
𝑦
2
))𝑦] ,

lim
𝑠→0

1

𝑠
[(

𝜕
2
𝑃
2

𝜕𝑥
2
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕
2
𝑃
2

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(
𝜕
3
𝑃
2

𝜕𝑥
3
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥
2

+ 2
𝜕
3
𝑃
2

𝜕𝑥
2
𝜕𝑦

(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥𝑦

+
𝜕
3
𝑃
2

𝜕𝑦
2
𝜕𝑥

(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑦))𝑥

+ (
𝜕
2
𝑃
2

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑠𝑥 +

𝜕
2
𝑃
2

𝜕𝑦
2
(𝑥
0
, 𝑦
0
) 𝑠𝑦

+
1

2
(

𝜕
3
𝑃
2

𝜕𝑥
2
𝜕𝑦

(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥
2

+ 2
𝜕
3
𝑃
2

𝜕𝑥𝜕𝑦
2
(𝑥
0
+ 𝜃𝑠𝑥, 𝑦

0
+ 𝛿𝑠𝑦) 𝑠

2
𝑥𝑦

+
𝜕
3
𝑃
2

𝜕𝑦
3
(𝑥
0
+ 𝜃𝑠𝑥, 𝛿𝑠𝑦) 𝑠

2
𝑦
2
))𝑦]}

= (
𝜕
2
𝑃
1

𝜕𝑥
2
(𝑥
0
, 𝑦
0
) 𝑥𝑥 +

𝜕
2
𝑃
1

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑦𝑥

+
𝜕
2
𝑃
1

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑥𝑦 +

𝜕
2
𝑃
1

𝜕𝑦
2
(𝑥
0
, 𝑦
0
) 𝑦𝑥,

𝜕
2
𝑃
2

𝜕𝑥
2
(𝑥
0
, 𝑦
0
) 𝑥𝑥 +

𝜕
2
𝑃
2

𝜕𝑦𝜕𝑥
(𝑥
0
, 𝑦
0
) 𝑦𝑥

+
𝜕
2
𝑃
2

𝜕𝑥𝜕𝑦
(𝑥
0
, 𝑦
0
) 𝑥𝑦 +

𝜕
2
𝑃
2

𝜕𝑦
2
(𝑥
0
, 𝑦
0
) 𝑦𝑥) ,

(63)

where 𝜃, 𝛿 ∈ (0, 1), so we have

𝑃

(𝑋
0
) (𝑋,𝑋) = (𝐷

1
𝐷
2
) (

𝑥

𝑦
)(

𝑥

𝑦
) , (64)

where

𝐷
1
= (

𝜕
2
𝑃
1

𝜕𝑥
2

(𝑥0 ,𝑦0)

𝜕
2
𝑃
1

𝜕𝑦𝜕𝑥

(𝑥0 ,𝑦0)

𝜕
2
𝑃
1

𝜕𝑥𝜕𝑦

(𝑥0 ,𝑦0)

𝜕
2
𝑃
1

𝜕𝑦
2

(𝑥0 ,𝑦0)

),

𝐷
2
= (

𝜕
2
𝑃
2

𝜕𝑥
2

(𝑥0 ,𝑦0)

𝜕
2
𝑃
2

𝜕𝑦𝜕𝑥

(𝑥0 ,𝑦0)

𝜕
2
𝑃
2

𝜕𝑥𝜕𝑦

(𝑥0 ,𝑦0)

𝜕
2
𝑃
2

𝜕𝑦
2

(𝑥0 ,𝑦0)

).

(65)

Then the norms of every components of 𝐷
1
and 𝐷

2
have the

estimate


𝜕
2
𝑃
1

𝜕𝑥
2



= max
‖𝑋‖≤1,‖𝑋‖≤1



∫

𝑡

𝑦0(𝑡)

ℎ (𝑡, 𝜏)
𝑥 (𝜏)

𝑥
2

0
(𝜏)

𝑥 (𝜏) 𝑑𝜏



≤ 𝐻
1
𝑐
2
(𝑇 − 𝐻

4
) ,



𝜕
2
𝑃
1

𝜕𝑥𝜕𝑦



= max
‖𝑋‖≤1,‖𝑋‖≤1



ℎ (𝑡, 𝑦
0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)



≤ 𝐻
1
𝑐
1
,



𝜕
2
𝑃
1

𝜕𝑦𝜕𝑥



= max
‖𝑋‖≤1,‖𝑋‖≤1



ℎ (𝑡, 𝑦
0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)



≤ 𝐻
1
𝑐
1
,



𝜕
2
𝑃
1

𝜕𝑦
2



= max
‖𝑋‖≤1,‖𝑋‖≤1



[ℎ


𝜏
(𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))



+ ℎ (𝑡, 𝑦
0
(𝑡))

𝑥


0
(𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

]

× 𝑦 (𝑡) 𝑦 (𝑡)



≤ 𝐻


1
𝐻
5
+ 𝐻
1
𝐻


3
𝑐
1
,



𝜕
2
𝑃
2

𝜕𝑥
2



= max
‖𝑋‖≤1,‖𝑋‖≤1



∫

𝑡

𝑦0(𝑡)

𝑘 (𝑡, 𝜏)
𝑥 (𝜏)

𝑥
2

0
(𝜏)

𝑥 (𝜏) 𝑑𝜏



≤ 𝐻
2
𝑐
2
(𝑇 − 𝐻

4
) ,



𝜕
2
𝑃
2

𝜕𝑥𝜕𝑦



= max
‖𝑋‖≤1,‖𝑋‖≤1



−𝑘 (𝑡, 𝑦
0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)



≤ 𝐻
2
𝑐
1
,



𝜕
2
𝑃
2

𝜕𝑦𝜕𝑥



= max
‖𝑋‖≤1,‖𝑋‖≤1



−𝑘 (𝑡, 𝑦
0
(𝑡))

𝑥 (𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

𝑦 (𝑡)



≤ 𝐻
2
𝑐
1
,
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𝜕
2
𝑃
2

𝜕𝑦
2



= max
‖𝑋‖≤1,‖𝑋‖≤1



[𝑘


𝜏
(𝑡, 𝑦
0
(𝑡)) log 𝑥0 (𝑦0 (𝑡))



+ 𝑘 (𝑡, 𝑦
0
(𝑡))

𝑥


0
(𝑦
0
(𝑡))

𝑥
0
(𝑦
0
(𝑡))

]

× 𝑦 (𝑡) 𝑦 (𝑡)



≤ 𝐻


2
𝐻
5
+ 𝐻
2
𝐻


3
𝑐
1
.

(66)

Therefore, all the second derivatives exist and are bounded:

𝑃

(𝑋)


≤ 𝜂
1
. (67)

Since 𝜓(𝑡) majorizes operator 𝑃(𝑋) and utilizing the second
condition of (Theorem 1) we get


Γ
0
𝑃

(𝑋)


≤

2𝐾

1 + 𝐾𝜂
. (68)

Let us consider the discriminant of equation 𝜓(𝑡) = 0:

𝐷 = 𝐾
2
𝜂
2
− 2𝐾𝜂 + 1 = (𝑘𝜂 − 1)

2

, (69)

and the two roots of𝜓(𝑡) = 0 are 𝑟
1
= 1/𝐾+𝑡

0
and 𝑟
2
= 𝜂+𝑡

0
;

therefore, when 𝑟
1
< 𝑟 < 𝑟

2
implies

𝜓 (𝑟) ≤ 0, (70)

then under the assumption of the fourth condition, that is,
1/𝐾 + 𝑡

0
is the unique solution of 𝜓(𝑡) = 0 in [𝑡

0
, 𝑇] and the

condition in (70) [21,Theorem 4, page 530] implies that𝑋∗ is
the unique solution of operator equation (5) [21, Theorem 6,
page 532] and

𝑋
∗
− 𝑋
0

 ≤ 𝑡
∗
− 𝑡
0
, (71)

where 𝑡∗ is the unique solution of 𝜓(𝑡) = 0 in [𝑡
0
, 𝑟].

To show the rate of convergence let us write the equation
𝜓(𝑡) = 0 in a same form as in (40) then its successive
approximation is

𝑡
𝑚+1

= 𝜙 (𝑡
𝑚
) , 𝑚 = 0, 1, 2, . . . . (72)

To estimate the difference between 𝑡
∗ and successive approx-

imation 𝑡
𝑚
:

𝑡
∗
− 𝑡
𝑚
= 𝜙 (𝑡

∗
) − 𝜙 (𝑡

𝑚−1
) = 𝜙

(𝑡
𝑚
) (𝑡
∗
− 𝑡
𝑚−1

) , (73)

where 𝑡
𝑚
∈ (𝑡
𝑚−1

, 𝑡
∗
) and

𝜙

(𝑡) = 1 + 𝑐

0
𝜓

(𝑡) =

2𝐾

1 + 𝐾𝜂
(𝑡 − 𝑡
0
) ; (74)

therefore

𝜙

(𝑡
𝑚
) =

2𝐾

1 + 𝐾𝜂
(𝑡
𝑚
− 𝑡
0
)

≤
2𝐾

1 + 𝐾𝜂
(𝑡
∗
− 𝑡
0
) =

2

1 + 𝐾𝜂
;

(75)

then

𝑡
∗
− 𝑡
𝑚
≤

2

1 + 𝐾𝜂
(𝑡
∗
− 𝑡
𝑚−1

) ,

𝑡
∗
− 𝑡
𝑚−1

≤
2

1 + 𝐾𝜂
(𝑡
∗
− 𝑡
𝑚−2

) ;

.

.

.

𝑡
∗
− 𝑡
1
≤

2

1 + 𝐾𝜂
(𝑡
∗
− 𝑡
0
) ,

(76)

consequently,

𝑡
∗
− 𝑡
𝑚
≤ (

2

1 + 𝐾𝜂
)

𝑚
1

𝐾
; (77)

it implies

𝑋
∗
− 𝑋
𝑚

 ≤ (𝑡
∗
− 𝑡
𝑚
) ≤ (

2

1 + 𝐾𝜂
)

𝑚
1

𝐾
. (78)

5. Numerical Example

Consider the system of nonlinear equation

𝑥 (𝑡) − ∫

𝑡

𝑦(𝑡)

𝑡𝜏 log (|𝑥 (𝜏)|) 𝑑𝜏 = 𝑒
𝑡
−
𝑡
2

3
,

∫

𝑡

𝑦(𝑡)

𝜏 log (|𝑥 (𝜏)|) 𝑑𝜏 =
𝑡

3
, 𝑡 ∈ [10, 15] .

(79)

The exact solution is
𝑥
∗
(𝑡) = 𝑒

𝑡
,

𝑦
∗
(𝑡) =

3
√𝑡
3
− 𝑡,

(80)

and the initial guesses are

𝑥
0
(𝑡) = 𝑒

10
(𝑡 − 9) ,

𝑦
0
(𝑡) = 0.6𝑡 + 4.

(81)

Table 1 shows that 𝑥
𝑚
(𝑡) coincides with the exact 𝑥∗(𝑡)

from the first iteration whereas only six iterations are needed
for 𝑦
𝑚
(𝑡) to be very close to 𝑦

∗
(𝑡). Notations used here are

as follows: 𝑁 is the number of nodes, 𝑚 is the number of
iterations, and 𝜖

𝑥
= max

𝑡∈[10,15]
|𝑥
𝑚
(𝑡) − 𝑥

∗
(𝑡)| and 𝜖

𝑦
=

max
𝑡∈[10,15]

|𝑦
𝑚
(𝑡) − 𝑦

∗
(𝑡)|.

6. Conclusion

In this paper, the Newton-Kantorovich method is developed
to solve the system of nonlinear Volterra integral equations
which contains logarithmic function. We have introduced
a new majorant function that leads to the increment of
range of convergence of successive approximation process.
A new theorem is stated based on the general theorems
of Kantorovich. Numerical example is given to show the
validation of the method. Table 1 shows that the proposed
method is in good agreement with the theoretical findings.
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Table 1: Numerical results for (79).

𝑁 = 20, ℎ = 0.25

𝑚 𝜖
𝑥

𝜖
𝑦

1 0.00 0.0029
2 0.00 4.3597𝐸 − 006

3 0.00 3.1061𝐸 − 008

4 0.00 1.0140𝐸 − 009

5 0.00 1.2541𝐸 − 010

6 0.00 3.9968𝐸 − 011
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containing Fréchet-differentiable operators of order at least
two,” Applied Mathematics and Computation, vol. 215, no. 4, pp.
1553–1560, 2009.

[6] J. Saberi-Nadjafi and M. Heidari, “Solving nonlinear inte-
gral equations in the Urysohn form by Newton-Kantorovich-
quadrature method,” Computers & Mathematics with Applica-
tions, vol. 60, no. 7, pp. 2058–2065, 2010.
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