International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

On the wb-Separation Axioms

Raad Aziz Hussain¹, Zain AL-Abdeen Abbas Nasser²

Al-Qadisiyah University, College of Computer Science and Mathematics ,Department of Mathematics

Abstract: The main aim of our paper is introduced new type of axiom separation by using the open sets of type ωb – open and studied some it is main concepts, and we proved and explained, some theorems related it, and we introduced definition of spaces $\omega b - R_0$ – space, $\omega b - R_1$ – space., also Explained between them.

Keywords: axiom separation, $\omega - open, b - open, \omega b - open, \omega b - R_0$ -space, $\omega b - R_1$ -space

1. Introduction and Preliminaries

The concept of ω -open sets in topological spaces was introduced in1982 by Hdeib [10], In1996 Andrjivic [12] gave a new type of generalized open set In topological space called b-open sets, In 2008, Noiri, Al-Omari and Noorani introduced the conceptof ωb – open and [11] The complement of $an\omega b - open$ set is said to be $\omega b - \omega b$ closed [11] the intersection of all ωb – closed sets of X containing A is called the wb-closure of A and is denoted by $\overline{A}^{\omega b}$ The union of all $\omega b - open$ sets. of X contained in A is called the ωb -interior of A and is denoted by $A^{\circ \omega b}$, In this work we gave a different conceptof the separation axiom using by $\omega b - openset$ and we introduced proposition, remarks, theorems of this concept, also we study relation between ωb – separation axiom and $\omega b - R_i - spaces$. In order to proved our result we need the following Definitions and result.

Definition (1.1): [10] A subset A is said to be ω -open set if for each $x \in A$, there exists an open set U_x such that $x \in U_x$ and $U_x - A$ is countable the complement of ω -open set is called ω -closed set

Definition (1.2): [12] Let X be topological space and A is called b-open set in X, if and only if $A \subseteq \overline{A^\circ} \cup \overline{A^\circ}$ the complement of b-open set is called b-closed and it is easy to see that A is b- closed set iff $\overline{A^\circ} \cap \overline{A^\circ} \subseteq A$

Definition (1.3):[11] A subset A of a space X is said to be ω b-open if for every $x \in A$, there exists a b-open subset $U_x - X$ containing x such that $U_x - A$ is countable, the complement of an ω b-open subset is said to be ω b-closed.

Definition (1.4):[13] Let $f: X \to Y$ be a function of a space X, into a space Y then f is called an open function if f(A) is an open set in Y for every open set A in X.

Definition (1.5): [13] Let $f:X \rightarrow Y$ be a function of a space X, into a space Y, then f is called an closed function if f(A) is an closed set in Y for every closed set A in X.

Definition(1.6):[2] A space X is called T_1 -space if for each $x \neq y$ in X There exists open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Definition (1.7):[3] A space X is called bT_1 -space if for each $x \neq y$ in X There exists b-open sets such that U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Definition (1.8): [4] A space (X,T) is called a door space if every subset it is either open or closed

Example (1.9): The space (X, T) for $X = \{a, b\}$ and $\tau = \{X, \emptyset, \{a\}\}$, is a door space.

Definition (1.10): [14] A topological space (X,T) is said to be R_0 if every open set contains the closure of each of its single tons.

Definition (1.11):.[5] A space X is called T_2 space (Hausdorff space) if for each $x \neq y$ in X there exists disjoint an open sets U, V such that $x \in U, y \in V$

Definition (1.12):[3] A space X i called bT_2 -space (b-Hausdorff space) if for each $x \neq y$ in X there exists disjoint an b-open sets U, V such that $x \in U, y \in V$.

Proposition (1.13): [7] It is Clear that every Hausdorff space is b-Hausdorff space

Definition(1.14): [14] A topological space (X, τ) is said to be R_1 space if for x and y in X, with $\overline{(\{X\})} \neq \overline{(\{y\})}$, there exists disjoint open set U and V such that $\overline{\{X\}} \subset U$ and $\overline{\{y\}} \subset V$

Definition (1.15): [6] A space X is said to be regular space if for each $x \in X$ and A closed subset such that $x \notin A$ there exist disjoint open sets U, V such that $x \in U$ and $A \subseteq V$

Definition (1.16) [3] A space X is said to be b-regular space if for each $x \in X$ and A closed subset such that $x \notin A$ there exist disjoint b-open sets U, V such that $x \in U$ and $A \subseteq V$.

Remark (1.17): [7] It is clear that each regular space is b-regular space However, a b-regular space is notregular in general and a as is the following

Example (1.18)

Let X = {1,2,3,4}, $\tau = \{X, \emptyset, \{4\}, \{2.3\}, \{2,3,4\}\}$ then BO(X) = X, $\emptyset, \{2\}, \{3\}, \{2,4\}, \{3,4\}, \{1,2,4\}, \{1,3,4\}, \{4\}, \{2,3\}, \{2,3,4\}, \{1,4\}, \{1,2,3\}$

is b-regular space , but Xis not regular since $\{1,2,3\}$ is closed set 4 \notin $\{1,2,3\}$ and thus do

Volume 6 Issue 2, February 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20164120

not exists disjoint open sets which separate them in X,

Definition (1.19): [1] Let X be a space and $A \subseteq X$, A is called regular open set in X if $A = \overline{A}$ The complement of regular open set is called regular closed and it is easy to see that A is regular closed if $A = \overline{A^{\circ}}$.

Definition(1.20): [8]A Topological space X is called almost regular space if for each x in X and regular closed set C such that $x \notin C$, there exist disjoint open sets U, V such that $x \in$ $U, C \subseteq V$

Definition (1.21): [9]A Topological space X is called normal space if where every C₁ and C₂ are disjoint closed subset in X there exists disjoint open sets V_1 , V_2 , with $C_1 \subseteq$ V_1 , and $C_2 \subseteq V_2$

Definition (1.22): [3] A topological space X is called bnormal space if for every disjoint closed set C_1 , C_2 there exist disjoint b-open sets V_1 , V_2 such that $C_1 \subseteq V_1$, $C_2 \subseteq V_2$

Remark (1.23): [7] It is clear that every normal space is bnormal, but the converse is not true in general.

Example (1.24): Let ={1,2,3,4,5} Х $, \tau = \{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}, \{1,2,4,5\}, \{4\}, \{1,4\}\}$ BO(X) =

[1:3.A.En; (Rat &)is 2310.51 hal 1562c (204), is 4.53, is $x \neq y$ in X There exists ωb -open sets U and V such that the disjoint closed sets {3}, {2,5} cannot be separated by $x \in U, y \notin U$ and $y \in V, x \notin V$. open sets in X.

2. wb-Separation Axiom

Definition (2.1) A function f: $X \rightarrow Y$ is said to be ω b-open for every open subset A of X if f(A) is an ω b-open set in Y.

Definition (2.2) A function $f: X \to Y$ is said to be ω b-closed for every closed subset A of X if f(A) is an ω b-closed set in Υ.

Definition (2.3)Let $f: X \to Y$ be a function of a space X into a space Y then f is called an ωb - continuous function if $f^{-1}(A)$ is an ωb -open set in X for every open set A in Y.

Definition(2. 4):Let $f: X \to Y$ be a function of a topological space (X, τ) into a topological space (Y, τ') , then fis called an ω b-irresolute function if is and $f^{-1}(A)$ is an ω b – open set in X for every ω b-open set A in Y.

Definition (2.5): Let Y be subspace of space X,A subset B of space X is said to be un ωb – open setin Y. if for every $x \in B$ there exists ab - open subset U_x in X contain x such that $U_x - B$ is countable.

Definition (2.6): Let X be a space. and $A \subseteq X$ The intersection of all wb-closed sets of X containing A iscalled the ω b-closure of A defined by

 $\overline{A}^{\omega b} = \cap \{B: B \ \omega b \text{-} closed in X and A \subseteq B\}$

Definition (2.7) Let X be a space and $x \in X, A \subseteq X$. The point x is called wb-limit point of A if every wb-open set containing x contains a point of A distinct from x We call the set of all wb-limit point of A the wb-derived set of A and denoted by $A^{\omega b}$ Therefore $x \in A^{\omega b}$ iff for every ωb -open set V in X, such that $x \in V$ such that $(V \cap A) - \{x\} \neq \emptyset$.

Proposition (2.8):Let *X* be a space and $A \subseteq B \subseteq X$ then $1 - \overline{A}^{\omega b} = A \cup \hat{A}^{\omega b}$

 $2 - A\omega b$ -closed set iff $\hat{A}^{\omega b} \subseteq A$

Proof:

1 – Let $x \in \hat{A}^{\omega b}$, $x \notin \overline{A}^{\omega b}$ there exists ωb – open set U such that $U \cap A = \emptyset$, $(U \cap A) - \{x\} = \emptyset$ therefore $x \notin \hat{A}^{\omega b}$ is contradiction thus $x \in \overline{A}^{\omega b}$ hence $\hat{A}^{\omega b} \subseteq \overline{A}^{\omega b}$ where $\hat{A}^{\omega b} \cup$ $\overline{A}^{\omega b} \subseteq \overline{A}^{\omega b}$ Conversely: Let $x \in \overline{A}^{\omega b}$ Then either $x \in$ A or $x \notin A$, if $x \in A$ then $x \in A \cup A^{\omega b}$, complete $x \notin A$, since $x \in \overline{A}^{\omega b}$ then for all U ωb – open set contains x such that, $U \cap A \neq \emptyset$ since $x \notin A$ then $(U \cap A) - \{x\} \neq \emptyset$ \emptyset ,Then $x \in \hat{A}^{\omega b}$, then $.x \in A \cup \hat{A}^{\omega b}$ hence $\overline{A}^{\omega b} \subseteq$

 $AU\dot{A}^{\omega b}$, then $\dot{A}^{\omega b} = AU\dot{A}^{\omega b} 2 - Let A$ be an ωb -closed set .To prove $A^{\omega b} \subseteq A$, Let $x \notin A$ then $x \in A^c$, since A ωb -closed set then A^c ωb -open set A \cap A^c =

$$\emptyset$$
, then $(A \cap A^c) - \{x\} = \emptyset$, then $x \notin \hat{A}^{\omega b}$ thus $\hat{A}^{\omega b} \subseteq$

A Conversely : Let $\hat{A}^{\omega b} \subseteq A$, To prove A ωb -closed $\{X, \emptyset, \{1\}, \{3,4\}, \{1,3,4\}, \{1,2,4,5\}, \{4\}, \{1,4\}, \{1,2,4\}, \{1,4,5\}, \{1,2s \}$

Proposition (2.10): Every T_1 -space is bT_1 -space

Proof:

Let (X, τ) be bT_1 -space and $x, y \in X \ni x \neq y$. Then there exists two open sets U,V such that

 $y \in V, x \notin V$ since $x \in U, y \notin U$ and every open set is b - open set, thus. U, V are two b-open set such that $x \in U, y \notin U$ and $y \in V, x \notin V$ therefore (X,τ) be bT_1 -space.

Remark (2.11): but the .converse is not true in general, in fact from **Example(2.12**)

Let $X = \{1,2,3\}, \tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}, BO(X) =$ $\{ \emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\} \}, \text{then} \quad 1,3 \in X \; \exists U \in \tau \ni 1 \in$ Uand $3 \notin Ubut \nexists V \in \tau \ni 3 \in V$ and $1 \notin V$ thus (X, τ) is not T_1 -spacesuch that $\forall x, y \in X \exists U, V$ are two b-open set such that $x \in U$, $y \notin U$, $y \in V$, $x \notin V$ therefore (X, τ) is bT_1 space

Proposition (2.13): Every T_1 -space is ωbT_1 -space

Proof:

Similar to prove of **Proposition** (2.10) But the converse is not true in general , in fact from **Example(2.12)** it is easy to check that is ωbT_1 -space but not T_1 -space

Proposition (2.14): Every bT₁-space is ωbT₁-space

Volume 6 Issue 2, February 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20164120

Proof:

Similar to prove of **Proposition** (2.10). But the converse is not true in general ,in fact from **Example** (2.15)it is easy to check that is ωbT_1 -space but not bT_1 -space.

Let $X = N, \tau = \{G: 1 \in G\} \cup \{\emptyset\}, BO(X) = \{\emptyset, N, 1 \in G, 1, 3 \in N, \text{ is not exists two b-open sets } \exists 1 \in U \text{ and } 3 \notin U \text{but} \\ 3 \in V \text{ and } 1 \notin V \text{ then is notb} T_1 - \text{space since } \omega BO(X) = \{A \subseteq N\} \text{therefore is} \omega BT_1 - \text{space.}$

Theorem (2.16): If M subspace of X (where M is open subset of X), Then M is ωbT_1 -space if X is ωbT_1 -space

Proof:

Let x, $y \in M \ni x \neq y$ since X is ωbT_1 -space then \exists two ωb open sets U,V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$ Let $A = U \cap M, B = V \cap M$, thus A,B are ωb -openset in M and $x \in A$ but $y \notin A$ and $y \in B$ but $x \notin B$ therefore M is ωbT_1 -space.

Theorem (2.17): Let $f: X \to Y$ be a ω b-irresolute injective map, If Y is ωbT_1 -space, then X is ωbT_1 -space.

Proof:

Let $x, y \in X \ni x \neq y$ then $f(x), f(y) \in Y$ and $f(x) \neq f(y)$ SinceY, is ωbT_1 -space. then there . exists two $\omega b - open$ sets U,V in Y such that $f(x) \in U$ but $f(y) \notin U$, and $f(y) \in V$ but $f(x) \notin V$ thus $x \in f^{-1}(u)$ but $y \notin f^{-1}(u)$ and $y \in f^{-1}(v)$, but $x \notin f^{-1}(v)$ since f ωb -irresolute, hence $f^{-1}(u), f^{-1}(v)$ are ωb -open therefore X is ωbT_1 - space.

Proposition(2.18): Let *X* be a Topological space, Then *X* is ωbT_1 – space iff{x} is ωb – closed set for each $x \in X$

Proof:

Let X be ωbT_1 -space and let $x \in X$ and let $y \notin \{x\}$.Since X is ωb - T_1 -space then there exists an ωb - open set V such that then $y \in V, x \notin V$ then $V \cap \{x\} = \emptyset$.It is $(V - y) \cap \{x\} = \emptyset$ and hence, $y \notin \{x\}'^{\omega b}$ thus $\{x\}'^{\omega b} \subseteq \{x\}$ and hence $\overline{\{x\}}^{\omega b} = \{x\} \cup \{x\}'^{\omega b} = \{x\}$ so that, $\{x\}$ is ωb -closed set for each $x \in X$ by Last Proposition(2.8), Conversely: assume that $\{x\}$ is ωb -closed set for each $x \in X$, Let $x \neq y$ in X then $X - \{x\} = V$ is ωb -open set such that $y \in V, x \notin V$

Let $X - \{y\} = U$, hence U is ω b-open set which is contains x, Therefore X ωbT_1 -space.

Theorem(2.19): Let $f: X \to Y$ be an bijective ω b-open function, If X is T_1 -space then Y is ωbT_1 – space

Proof:

Let $y_1, y_2 \in Y \ni y_1 \neq y_2$, since f onto function then $x_1, x_2 \in X \ni f(x_1) = y_1, f(x_2) = y_2, x_1 \neq x_2$ Since X is T_1 - space $\exists U, V$ open sets in $X \ni x_1 \in U$ but $x_2 \notin U$ and $x_2 \in V$ but $x_1 \notin V$ hence f is ω b-open $\ni f(U), f(V)$ two are ω bopen set in Y then $f(x_1) = y_1 \in f(U)$ but $f(x_2) = y_2 \notin f(U)$. and $f(x_2) = y_2 \in f(V)$ but $f(x_1) = y_1 \notin f(V)$ since every open sets is ω b - open thus f(U), f(V) are two ω bopen therefore Y is ωbT_1 - space. **Theorem(2.20):** Let $f: X \to Y$ be an one-to-one ω bcontinuous function. If *Y* is T_1 -space then *X* is ωbT_1 – space

Proof:

Let $x_1, x_2 \in X \ni x_1 \neq x_2$, since $f: X \to Y$ is one-to-one function and $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ and $f(x_1), f(x_2) \in$ Y, since Y is T_1 -space $\exists U, V$ open sets in $Y \ni f(x_1) \in$ U but $f(x_2) \notin U$ and $f(x_2) \in V$ but $f(x_1) \notin$ V since f is , ωb -continuous function then $f^{-1}(U), f^{-1}(V)$ are ωb -open set in X, since $f(x_1) \in U$ thus $x_1 \in f^{-1}(U)$ and since $f(x_2) \notin U$ then $x_2 \notin$ $f^{-1}(U)$ and since $f(x_2) \in V$ then $x_2 \in f^{-1}(V)$ since $f(x_1) \notin$ V, thus $x_1 \in f^{-1}(V)$ therefore X is ωbT_1 -space.

Definition (2.21):A Topological space (X,T) is said to be $\omega b - R_0$ if every ωb – open set contains the ωb –closure of each of its singletons.

Theorem (2.22): The topological door space is $\omega b - R_0$ if and only if it is ωbT_1 – space

Proof:

Let x,y are distinct points in X Since (X,T) is door space then $\{x\}$ is open or closedif $\{x\}$ is openhence ωb – open in X,Let $V = \{X\}$ then $x \in V$ and $y \notin V$ since (X,T) is $\omega b - R_0$ space

thus $\overline{(\{X\})}^{\omega b} \subset V$ hence $X \notin X \setminus V$, $y \in y \setminus V$ Therefore $X \setminus V \ \omega b$ – open subset of X if $\{x\}$ is closedhence it is ωb – closed $y \in X \setminus \{X\}$ and $x \notin X \setminus \{X\}$ is ωb – open set in

X. Since (X,T) is
$$\omega b - R_0$$
 space, then $\overline{(\{y\})}^{\omega b} \subset X \setminus$

 $\{X\} \text{Let } V = X \setminus \overline{(\{y\})}^{\omega b} \text{ thus } x \in V \text{ but } y \notin V \text{ and } V \omega b \text{ -open set in } X, \text{ therefore } (X,T) \text{ is } \omega bT_1 - \text{ spaceConversely: let } (X,T) \text{ be } \omega bT_1 - \text{ space and Let } V \text{ be an } \omega b \text{ -open set of } X \text{ and } x \in V \text{ for each } y \in X \setminus V \text{ there is an } \omega b \text{ -open set } V_y \text{ such that, } x \notin V_y \text{ but } y \in V_y \text{ then } \overline{(X)}^{\omega b} \cap V_y = \phi \text{ for each } y \in X \setminus V \text{ thus } \overline{(X)}^{\omega b} \cap (\bigcup_{y \in x \setminus v} V_y) = \phi \text{ hencey } \in V_y, X \setminus V \subset (\bigcup_{y \in x \setminus v} V_y), \overline{(\{X\})}^{\omega b} \subset V \text{ ,Therefore } (X,T) \text{ is } \omega b - R_0.$

Remark (2.23) :but the converse Proposition (1.13) is not true in general ,as the following **Example (2.24)** shows: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, BO(X) =$ $\{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, c\}, \{b, c\}\}$ then $b, c \in X \exists U \in \tau \ni b \in$ U, but $\nexists V \in \tau \ni C \in V, U \cap V = \phi$ then (X, τ) is not T_2 spacesuch that $\forall x, y \in X \exists U, V$ are two b-open set hence $x \in U, y \in V, U \cap V = \phi$ therefore (X, τ) is bT_2 -space

Definition (2.25): A space X is called ωbT_2 -space (ωb -Hausdorff space) if for each $x \neq y$ in X there exists disjoint an ωb -open sets U, V such that $x \in U, y \in V$

Remark (2.26): It is Clear that every Hausdorff space is ωbT_2 -space but the converse is not true in general as the following **Example(2.24)** it is easy to check that is ωbT_2 -space but not T_2 -space

Remark (2.27): Every bT_2 -space is ωbT_2 -space, but the converse is not true in general asthe following:

Example (2.28):Let X = N, $\tau = \{A \subseteq X : A^c finite\} \cup \emptyset$

 $\{1\} \cup \{1\}^{\circ} = \phi \implies \{1\} \not\leq \overline{\{1\}} \cup \overline{\{1\}^{\circ}} \therefore \{1\} \text{ is not b-open}$ Let $A = \{1\}$ and $1 \in U = N - \{2\}$ then U is b-open set contain 1, since N-B is countable. then A is ωb –open Since 1,2 \in N is not exists to b – open sets U, V such that $1 \in U, 2 \in V$, and $U \cap V = \emptyset$, then is notbT₂ -space since $\omega BO(X) =$ $\{A: A \subseteq N\}$ thusIt is ωbT_2 -space

Theorem (2.29): Let $f: X \rightarrow Y$ be a function

1- If f is a bijection and f ω b-open, X is T_2 -space then Y is ωbT_2 -space

2- If f is injective and ω b-continuous, Y is T_2 -space then X is ωbT_2 -space.

Proof:

Let $f: X \to Y$ be a function

1- suppose f is ω b-open and X is T_2 -space Let $y_1 \neq y_2 \in Y$ since f is bijective

Then there exist x_1 , x_2 in X such that $f(x_1) =$

 y_1 and $f(x_2) = y_2$ and $x_1 \neq x_2$

Since Χ *T*₂-space then is there exists disjointopen sets U and V in X, such that

 $(x_1 \in U \text{ and } x_2 \in V)$ Since f ω b-open f(U) and f(V) are ω bopen sets in Yhence $f(x_1) \in f(U)$ and $y_2 = f(x_2) \in$ f(V) Again since f is bijective f(U) and f(V) are disjoint in Y, thus Y is ωbT_2 -space

2- suppose $f: X \longrightarrow Y$ is ωb-continuous and T_2 space, Let $x_1, x_2 \in X$ with $x_1 \neq x_2$, $f(x_1) = y_1$ and $f(x_2) = y_1$ y_2 since f is one-to-one Since f is , $y_1 \neq y_2$ since Y is $T_2 -$

continuous bijective $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint ωb – open.

 x_2 respectively thus X is ωbT_2 – containg x_1 and space. respectively

thus X is ωbT_2 – space.

Theorem (2.30): Every ωbT_2 – space is ωbT_1 – space Let (X,τ) be a ωbT_2 – space ,let x and y be two disjoint distinct in X since X. ωbT_2 – spacethere exists disjoint ωb -open set U and V such that $x \in U$ and $y \in V$ since U and V are disjoint $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$ hence X is $\omega bT_1 - space$

Theorem (2.31):Let M be open subspace of X, Then M is ωbT_2 – space if X is ωbT_2 – space **Proof:**

 $y \in M, x \neq y$ then $x, y \in X$ SO $\exists B_1, B_2$ such Let Х that $B_1 \cap B_2 = \phi \ni x \in B_1$

 $y \in B_2$ where B_1, B_2 are ωb - open set set in X Let $E_1 =$ $B_1 \cap M E_2 = B_2 \cap M$

are ωb – open set *subset* in *M* and $x \in E_1$, *y* $\in E_2 then E_1 \cap E_2 = (B_1 \cap M)$ $\cap (B_2 \cap M) = (B_1 \cap B_2) \cap M = \phi \cap M$ $= \phi$ hence *M* is ωbT_2 – space

(2.3): Let $f: X \to Y$ be bijective ωb – Theorem irresolute function and X is ωbT_2 – space, then (X, τ_2) is ωbT_2 – space

Proof:

Suppose $f: (X, \tau) \rightarrow (Y, \tau)$ is bijective and f is ωb irresolute and (Y, τ_2) is ωbT_2 – space

Let $x_1, x_2 \in X$ with $x_1 \neq x_2$ since f is bijective then $y_1 =$ $f(x_1) \neq f(x_2) = y_2$ for some

y₁, y₂ ∈

Y since (Y, τ_2) is ωbT_2 – space there exists disjoint ωb – open set U and V such

that

 $y_1 = f(x_1) \in U$ and $y_2 = f(x_2) \in$ V again f is bijective $x_1 = f^{-1}(y_1) \in f^{-1}(U)$

and
$$x_2 = f^{-1}(y_2)$$

 $\in f^{-1}(V)$ since f is ωb
 $-$ irresolute $f^{-1}(U)$ and $f^{-1}(V) \omega b$
 $-$ irresolute

 $f^{-1}(U)$ and $f^{-1}(V)$ are ωb

- open set in(X, τ) also f is bijective U $\cap V = \emptyset$ implies

that $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\phi)$

 $= \phi$ is follows (X, τ_2) is ωbT_2 – space.

Definition (2.33):

Topological space (X, τ) is said to be $\omega b - R_1$ space if for x and y in Xwith

 $\overline{(\{X\})}^{\omega b} \neq$

 $\overline{(\{y\})}^{\omega b}$ there exists disjoint ωb – open set U. and V such that $\overline{\{X\}}^{\omega b} \subset U \text{ and } \overline{\{y\}}^{\omega b} \subset V$

Theorem (2.3): The Topological door space is $\omega b - R_1$ if and only if it is ωbT_2 – space

Proof:

Let x and y be two distinct points in X, Since X is door space space then there exists open sets U and V containg y_1 and y_2 respectively Since $\{X\}$ is open or closed If $\{X\}$ is open of $\{Y\} = \phi$ then

$$\begin{array}{l} \{X\} \cap \overline{\{y\}}^{\omega b} = \phi \text{Thus} \\ \overline{\{X\}}^{\omega b} \neq \overline{\{y\}}^{\omega b} \text{ If } \{X\} \text{ is closedSo it is } \omega b - \text{closed} \\ \text{and} \qquad \overline{\{X\}}^{\omega b} \cap \{y\} = \{X\} \cap \{y\} = \phi \text{ Therefore } \overline{\{X\}}^{\omega b} \neq \\ \overline{\{y\}}^{\omega b} \text{ We have } (X, \tau) \end{array}$$

is $\omega b - R_1$ space so that there are disjoint ωb -open set U and V such that

$$x \in \overline{\{X\}}^{\omega b} \subset U$$
 and $y \in \overline{\{y\}}^{\omega b} \subset V$ so X is ωbT_2 – space

Conversely:

Let x and y be any points in X with $\overline{\{X\}}^{\omega \nu} \neq$ $\overline{\{y\}}$ by Theorem (2.30) so by so by Proposition (2.18) hence $\overline{\{X\}}^{\omega b} = \{X\}$ and $\overline{\{y\}}^{\omega b} =$ $\{y\}$ this implies $x \neq$ y since X is ωbT_2 – space, there are two disjoint ωb –

open sets U and V such that $\frac{1}{\{X\}}^{\omega b} = \{X\} \subset U$ and $\overline{\{y\}}^{\omega b} = \{y\} \subset V$

proves X is $\omega b - R_1$ space.

Corollary- (2.35): Let (X, τ) be a topological door space Then if X is $\omega b - R_1$ space then it is $\omega b - R_0 space$

Proof:

Let X be an $\omega b - R_1$ door space. Then by Theorem (2.34) then X

Volume 6 Issue 2, February 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

This

is $\omega bT_2 -$

space thus by Theorem (2.30)so that by Theorem (2.22) therefore X is $\omega b - R_0$ space

Definition (2.36):

A space X is said to be ω b-regular space if for each $x \in X$ and A closed set such that $x \notin A$ there exist disjoint ω bopen sets U, V such that $x \in U$ and $A \subseteq V$

Remark (2.37): It is clear that each regular space is ω b-regula but the converse is not true ingeneral, in fact from **Example (1.18)** is easy to check that ω b-regular space is not regular

Proposition (2.38): A Topological space X is ω b-regular space iff for every $x \in X$ and each open set U in Xsuch that $x \in U$ there exists an ω b-open set L such that $x \in L \subseteq \overline{L} \subseteq U$.

Proof:

Let X be ω b-regular space and $x \in X, U$ an open set in X such that $x \in U$ Then U^c an closed set in X and $x \notin U^c$, Then there exists disjoint ω b-open set L, V thus $x \in L$, $U^c \subseteq V$ therefore $x \in L \subseteq L^{-\omega b} \subseteq V^c \subseteq U$ Conversely: let $x \in X$ and M be a closed set in X such that $x \notin M$. Then M^c is an open set in X and $x \in M^c$, Then there exists an ω b-open set L such that $x \in L \subseteq L^{-\omega b} \subseteq M^c$ Thus $x \in L$, $M \subseteq (L^{-\omega b})^c$ and L, $(L^{-\omega b})^c$ are disjoint ω b-open set Therefore X is ω b-regular

Definition (2.39):

A topological space X is called almost ω b-regular space if for each x in X and regular closed set C such that $x \notin C$ there exist disjoint ω b – open sets U, V such that $x \in U, C \subseteq V$

Proposition (2.40):

A space is almost X is ωb -regular space iff for every x in X and each regular open set U in X then $x \in U$ there exists an ωb – open set L such that $x \in L \subseteq L^{-\omega b} \subseteq U$

Proof:

Let X be almost ω b-regular space and $x \in X$, U regular open set in X then $x \in U$, hence U^c regular closed set in X and $x \notin U^c$ thus there exist disjoint ωb – open set V, L such that $x \in V$, U^c \subseteq L, Therefore $x \in V \subseteq V^{-\omega b} \subseteq L^{c-\omega b} = L^c \subseteq U$.

Conversely:

Let $x \in X$ and C be a regular closed set in Xthenx \notin C hence C^c regular open set in X and $x \in C^c$, Thus there exists an ω b-open set V such that $x \in V, C \subseteq (V^{-\omega b})^c$

and V, $(V^{-\omega b})^c$ are disjoint ωb – open set. Therefore X is almost ωb -regular space.

Definition (2.41):

A Topological space X is called ω b-normal space if for every disjoint closed sets C_1, C_2 there exist disjoint ω b-open sets V_1, V_2 such that $C_1 \subseteq V_1, C_2 \subseteq V_2$.

R.emark (2.42): It is clear that every normal space is ω b-normal, but the converse is not true, in fact from :

Example (1.24) it is easy to check ω b-normal space but not normal

Proposition(2.43): Topological space X is ω b-normal space iff for every closed set $D \subseteq X$ and each open set U in Xsuch that $D \subseteq U$ there exists an ω b-open set V such that $D \subseteq V \subseteq V^{-\omega b} \subseteq U$.

Proof:

Let X be ω b-normal space and Let D be closed set and U open set in X \ni D \subseteq U Then D, U^c are disjoint closed sets in X Since X is ω b-normal space then there exists disjoint ω bopen sets V, L such that D \subseteq V, U^c \subseteq L, Thus, D \subseteq V \subseteq V^{- ω b</sub> \subseteq L^{c- ω b} = L^c \subseteq U}

Conversely:

Let D_1 , D_2 be disjoint closed sets in X then D_2^c is open set in X and $D_1 \subseteq D_2^c$ thus there exists an ω b-

open Set V suchthat. $D_1 \subseteq V \subseteq V^{-\omega b} \subseteq D_2^c$ hence $D_1 \subseteq V, D_2 \subseteq (V^{-\omega b})^c$ and V, $(V^{-\omega b})^c$ are disjoint ωb –

open sets Therefore X is ωb – normal space

References

- [1] Arya S.p.,"A noteon nearly paracompact spaces, Matematcki vesnik 8(23),1971),113-115.
- [2] M. C. Gemignani, "Elementary Topology", Reading, Mass: Addison-Wesley Publishing Co.Inc.,(1967).
- [3] Sema Kadhim Gaber ,"On b-Dimension Theory ", M .S.
 c. Thesis.University of AL-Qadissiya ,College of Mathematics and computer Science 2010
- [4] T. Noiri, Al-Omari, and M. S. M. Noorani, "Weak forms of ω-opensets and decomposition of continuity," E.J.P.A.M., vol.2,pp 73-.84, 2009
- [5] M.C. Gemignani, "Elementary Topology", Reading, Mass: Addison-. Wesley Publishing Co. Inc., (1967).
- [6] N.J.Pervin, "Foundation of General Topology" Acadmic press, New York, 1964.
- [7] Ali sami Majid AL-Zamili,"On Some Topological Spaces By Using b-Open Set ",M .S. c. Thesis. University of AL-Qadissiya, College of Mathematics and computerScience,2011.
- [8] M.K. singal and S.P. Arya "On almost regular spaces "Glasnik Matematicki 4(24) (1969).
- [9] S.Willarad , "General Topology ", Addison Wesley Publishing Company Reading . . Mass 1970
- [10] H.Z, Hdeib," ω-closed mapping",Rev.Colomb Math.16(1-2) (1982),65-78
- [11] T. Noiri A. Al-Omari, and Mohd. Salmi Md. Noorani " On ωb-open sets and b-lindelof spaces " European journal of pure and applied mathematics vol.1,N.3,2008,(3-9).
- [12] D. Andrijevic, "On b-open sets", Mat. Vesnik, 48(1996), 59 - 64.
- [13] Bourbaki N. ,Elements of Mathematics, "General topology" chapter 1-4 Spring Verlog,Berlin, Heidelberg ,New-York London Paris, Tokyo,2nd Edition1989
- [14] N. A. Shanin, "On separation in topological spaces," C.
 R. (Doklady), Acad. Sci. URSS (N.S) vol. 38, pp. 110–113, 1943

Volume 6 Issue 2, February 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY