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Abstract: The main objective of this paper is to study the problem of regional 
boundary asymptotic gradient full order observer (Γ∗	
��-observer) in link 
with the structures of sensors and actuators. Important results have been 
obtained related to diverse kinds of measurements and controls, of domains and 
boundary conditions. It has been shown that the structures of measurements and 
feedback controls allow the existence of  Γ∗	
��-observer in order to achieve 
regional boundary gradient closed loop control system (�
���-system). It has 
also been found that there is a dynamical system which does not represent the 
observer in the usual sense, but it could be interpreted as a regional observer. 

Keywords: Γ∗	
��-observer, closed loop, feedback control, �
���-system, 
sensor. 

1. Introduction  

The important of a control system is played a good roll to  simplify some system, and 
controls other systems, as the human civilization is being modernized day by day the 
demand for automation is increasing accordingly. Automation highly requires control 
of devices to achieve desired results [1-2].  

The main purpose of a control system is that there should be a clear mathematical 
relationship between input and output of the system [3-4] . In the case where the input 
and output of the system can be described via  by a linear suitably, the system is 
called a linear control system [5]. One of the most important notion of control systems 
is closed loop control system [6-7]. Control system in which the output has an effect 
on the input measure in such a way that the input measure will regulate itself based on 
the output generated is said to be control system of  closed loop type. A scientific 
example of a closed-loop control system is missile launched and auto tracked by 
radar, An air conditioner and cooling system in car or in house control, estimation and 
optimization of energy efficient buildings [8-10].  

Then we can define the main characteristics of regional closed-loop control  problem 
as being to reduce errors by automatically adjusting the systems input, to improve 
stability of an unstable system [11-13]. Thus, the closed-loop systems are considered 
as fully automatic control system because it is designed in a way that the achieved 
output is automatically compared with the reference input to have the required output 
maybe realize via an associated regional observer and strategic sensor [11-15](figure 
1). 
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Fig. 1: Input, output, system and feedback. 

The purpose of this paper is to extend the previous results in [17-19] demonstrate that 
the structures of measurements and  control allows the existence of �	
��-
0bserver in order to achieve �
���-system.   
The outline of this paper is structured as follow. Section 2 concerns the class of 
considered system and formulation problem. Section 3, devotes to the  �∗	
��-
Observer building problem. Section 4, is linked to extend the regional closed loop 
control system  to the regional boundary gradient  case. Final section, presents various 
results related to different types of measurements and controls have been 
accomplished in order to guarantee the stability of considered system. 
2. Considered system and formulation problem 

Consider a distributed parameter system defined with the following forms: 

⋄  Ω  is an open bounded subset of � with smooth boundary �Ω.  

⋄  Γ is a sub-region of �Ω with positive measure. 

⋄ Symbolize Π = Ω ×]0, ∞[; and Ξ = ∂Ω ×]0, ∞[. 
⋄ Space  � = ��(Ω); � = ��(0, �, ℛ"); and # = ��(0, �, ℛ$) are designed in this 
paper as separable Hilbert spaces and represented as state space, input space and 
measurement space with  % and & are the sensors; actuator numbers [3-5]. 

⋄ ' = ∑ ++-. (/1. ++-.)�1,.2�  with /1.∈ 4('̅) (domain of '̅) is a linear differential 
operator of second order, which produces a semi-group (6'(7))89: of strongly 
continuous kind on ��(Ω).Thus, ' is of self-adjoint kind and compact resolvent [15-
16].  

⋄ The reflected system is given by 

          ⎩⎨
⎧+-+8 (@, 7) = 'A(@, 7) + �C(7)       ΠA(@, 0) = A:(@)                               Ω+-+D (E, 7) = 0                                      Ξ                                                                (1)  

where @ ∈ Ω, E ∈ �Ω, 7 ∈ [0, �] and (@, 7) ∈ Π, (E, 7) ∈ Ξ, (@, 0) ∈  Ω  

⋄ The information can be attained  by utilizing various sensor locations [3, 5]. 
Therefore, corresponding measurement to system (1)  is specified by 

           F (. , 7) = �A(. , 7)                             Π                                                             (2)  
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 where the operators � ∈ �(ℛ", �) and � ∈ �(��(Ω), ℛ$) are depended on the 
structure of controls and information [3] (figure 2). 

 

Fig. 2: Regions Ω, Γ∗, and sensor and control locations. 

⋄ Under the given assumption above, the system (1) has a unique solution given by 
the following form [17].  

          A(@, 7) = 6'(7)A:(H) + ∫ 6'(7 − J)8: �C(J)KJ     Π                                      (3) 

⋄  The problem is how to create a regional boundary closed loop control system  
(���-system) via an appropriate observer to the gradient of state on a given Γ∗.  

For deriving an regional boundary asymptotic gradient estimator of �A(@) on Γ, we 
consider the following points: 

• Now, we consider the operator L given by the form  

         L: � → #   

              A → �6'(. )A  

 where L is bounded linear operator as in [4-5]. Thus, the adjoint operator L∗of L is 
defined by L∗: # → O, and represented by the form  

         L∗: ��(0, �, ℛ$) →  ��(Ω) 

                               F∗ → ∫ 6'∗ (J)�∗F∗(J)KJ8:   

• The transformation gradient ∇ is given by 

          Q ∇: ��(Ω) → (��(Ω))�
A → ∇-= (+-+RS , … , +-+RT) 

with ∇∗ the adjoint of ∇ assumed by 

          U∇∗: (��(Ω))� → ��(Ω)                                           A → ∇-∗ = V                        

where V is a solution of the Dirichlet problem 

         W∆Y = −KZV (\)      ΩV =  0                   �Ω  

• Trace operator is described by [20] 
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          ^:: ��(Ω) → ��/�(�Ω)  

which is linear, subjective and continuous [21-22]. Thus, the extension of the trace 
operator of order zero which is denoted by ^ defined as        

          ^: (��(Ω))� → (��/�(�Ω))�  

with ^:∗ and  ^∗ represent the adjoints. 

 • Intended for a region  Γ∗  of �Ω, contemplate b̀c∗  via the form    

         e b̀c∗ :  ��/�(�Ω) → ��/�(Γ∗ )A → χc∗ A = A│c∗                    
with A│c∗  is the restriction of the state h to Γ∗, and 

         χc∗ : (��(�Ω))� → (�� �i (Γ∗ ))�  

where the adjoints are respectively given by `̃c∗∗  and `c∗∗ .  

• Finally, consider the operator `c∗^∇L∗ from # into (��/�(Γ∗))� and the adjoint of 
this operator given by L ∇∗^∗`c∗∗  .  

• We first recall a sensor is defined by any pair (4, k)  such that 4 be a closed subset 
of  Ω, and which is characterized the sensor spatial supports and k ∈ ��(4) denotes 
the measurements sensing distributions in 4.  

• It may be zone, if  4 ⊂ Ω  and  k ⊂ ��(4). In this case, the operator � is bounded 
[18] and the output function (2) may be given by the form 

           F(7) = ∫ k(@)A(@, 7)K@ = �A(@, 7)  m       Π                                                   (4) 

• It may be pointwise, if  4 = {o} with o ∈ Ω  and k = p(. −o), where p is the mass 
of Dirac, which is concentrated in o. Then, operator � is un bounded and the 
measurement information (2) may be specified by the following  

            F(7) = ∫ A(@, 7)pq(@ − o)K@r           Π                                                          (5) 

In this section, we present some definitions and descriptions of regional boundary 
gradient observability, detectability and strategic sensor, which is derived of [21-23]. 
Thus, deliberate the system  

          ⎩⎨
⎧+-+8 (@, 7) = ' A (@, 7)                       ΠA (@, 0) = A: (@)                              Ω+-+D (E, 7) = 0                                       Ξ                                                               (6)  

The solution of (7) is given by the following form  

           A(@, 7) = 6'(7)A:(H)                      for all 7 ∈ [0, �]                                        (7) 

• The systems (6)-(7) are said to be exactly regionally boundary gradient observable 
(s �∗
-observable) on  Γ∗  if  
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           tu `c∗∇L∗ = (�� �⁄ (Γ∗))� 
• The systems (6)-(7) are said to be weakly regionally boundary gradient observable  
(��∗
-observable)  on  Γ∗  if  
           tu`c∗vL∗=(�� �⁄  (Γ∗))� 
It is equivalent to say that the systems (1)-(2) are ��∗
-observable  if 
          Lwx �∗ = ywxL  v∗`c∗ = {0} 
• If the systems (6)-(7) are is ��∗
-observable, then A:(@, 0) is given by  
          A: = (L∗L)z�L∗F = L|F,                                                                               (8) 
where L| is the pseudo-inverse of the operator  L [15-16].  
• A sensor (4, k) is regional boundary gradient strategic (Γ∗
-strategic)  on Γ∗ if the 
observed system is ��∗G-observable. 
 • The measurements can be obtained by the use of zone or pointwise sensors, which 
may be located in Ω or �Ω [21]. 
• The semi-group (6'(7))89: is regionally boundary asymptotically gradient stable on (�� �⁄ (Γ∗))�  (Γ∗	
-stable), then for all Aₒ ∈ ��(Ω), the  solution  of  autonomous 
system associated  to system (1) coverage to zero when 7 tend to ∞. 
• The system (6) is said to be Γ∗	
-stable if the operator 	 generates a semi-group 
which is Γ∗	
-stable on the space (�� �⁄ (Γ∗))�. 
• A system is said to be Γ∗	
-stable if and only if there exists some positive constants �c∗, �c∗,  such that 
          ‖`c∗γ∇6'(. )‖����S �⁄ (c∗) � T, �S(r) � ≤  �c∗ w��∗  , ∀7 ≥ 0.                                 (9) 
• If the semi-group (6'(7))89: is Γ∗	
-stable, then for all Aₒ ∈ ��(Ω), the  solution  
of autonomous system (6) associated  to system (1) satisfies ‖`c∗γ∇A(. , 7)‖��S �⁄ (c∗) � T =  ‖`c∗γ∇6�(7)A:‖��S �⁄ (c∗) � T 
                                                        ≤  �c∗ w��∗‖A:‖��S �⁄ (c∗) � T 
and then, we have  
              lim8⟶�‖`c∗γ∇ A(7)‖��S �⁄ (c∗) � T = 0.                                              
•The system (1)-(2) is  said to be regionally boundary asymptotically gradient 
detectable (Γ∗	
-detectable) on Γ∗, if there exists an operator  �c∗��: ℛ$ →��� �⁄ (Γ∗) � �, such that the operator ('− �c∗���) generates a strongly continuous 
semi-group �6��∗��(7) � 89:, which is Γ∗	
-stable. 
 
• The dynamical system associated to the considered systems  (1)-(2)  is offered via  

          ⎩⎨
⎧+Y+8 (@, 7) = �c∗��V (@, 7) + 
c∗��C(7) + �c∗��F(7)   ΠV(@, 0) = V (@)                                                                   Ω+Y+D (E, 7) = 0                                                                       Ξ                                        (10)  

where �c∗�� generates a 6�6-group (6��∗��(7))89: which is �c∗��-stable on � and 
c∗�� ∈�(�, �), �c∗�� ∈ �(#, �). The system (10) can be designed Γ∗AG-estimator 
for �c∗��A(@, 7) = `c∇�A(H, 7), where �: � ⟶ �  with 
          �c∗��A(H, 7) = V(H, 7)  
• Require that the process provided byV(. , 7) ∈ �  specific by 

         ⎩⎨
⎧+Y+8  (@, 7) = 	V(@, 7) + �C(7) − �c∗����A(@, 7) − V(@, 7)� ΠV (@, 0) = Vₒ(@)                                                                              Ω+Y+D (E, 7) = 0                                                                                    Ξ                              (11)  
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In this status �c∗�� in system (10) [16-18] is given by �c∗�� = 	 − �c∗��� where �c∗�� =tc∗�� ¡ the operator  of identity type.  Therefore 	 − �c∗��� is generator of  a 6�6 group 
(6�z��∗��§(7))89: on space of Hilbert in separable case   � so that Γ∗GA-stable. 

Hence, ∃ ��z��∗��§ ,��z��∗��§  > 0 such that 

           ª6�z��∗��§(. )ª ≤ ��z��∗��§wz��«¬�∗��ᵗ , ∀7 ≥ 0. 
From the solution of (1) and (11), we get  

          V(@, 7) = 6�z��∗��§(7)V:(@) + ¯∫ 6�z��∗��§(7 − °)8: �C(°) �c∗��F(°)± K° 

• The system (11) defines Γ∗AGFO-estimator such that  

         V(@, 7) = `c∗∇ �c∗�� ¡A(H, 7) = tc∗�� ¡A(@, 7) ∈ (�� �⁄ (Γ∗))� 

with w(@, 7) form the to (1)-(2), for 

         lim8→�‖V (. , 7) − `c∗∇ �c∗�� ¡A(@, 7)‖(�S �⁄ (c∗))T = 0, 
and `c∗ v`c∗∇ tc∗�� ¡ maps 4(	) into 4(	 − �c∗���) where  V(H, 7) form a  solution 
(11). 

• The process (11) form Γ∗AGFO-observer to (1)-(2) such that the next outcome holds: 

1- If there is  

          �c∗�� ¡ ∈ �(, (�� �⁄ (Γ∗)�)) and ć∗�� ¡ ∈ �((�� �⁄ (Γ∗))ⁿ)  

such that  

          �c∗�� ¡� + ć∗�� ¡ = tc∗�� ¡. 

2-  	 − �c∗�� ¡ = �c∗�� ¡� and 
c∗�� ¡ =�. 

3- The system (11) defines Γ∗AGFO-estimator for h(H, 7). 

4- The purpose of  Γ∗AGFO-observer is to supply an estimation to investigated system. This 
estimation is specified via 

          A¶(7) =  �c∗�� ¡F(7)  + ć∗�� ¡ V(7). 
• The system (1)-(2) form Γ∗AGFO -observable, the process be Γ∗AGFO -observer. 

• If a system is Γ∗AGFO –observable then, the corresponding sensor is Γ∗AGFO- strategic 
sensor. 

3. �∗·¸¹º-Observer Building 

As well known in  [16-18], we interested to extend the characterization consequences that 
devote the process Γ∗AGFO-observer and Γ∗AGFO-detectability which is described a 
sufficient condition for Γ∗AGFO-observer in the next main sequel.  

Theorem 3.1:  
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System (1)-(2) form Γ∗AGFO-detectable, then, the process (11) is Γ∗AGFO-observer, i.e. 

   lim8→�‖A(. , 7) −  �c∗�� ¡V(. , 7)‖ ¬S�(�∗) = lim8→�‖A(. , 7) − V(. , 7)‖ ¬S/�(�∗) = 0          (12) 

Proof : From the assumptions of section 2, the system (1) can be decomposed by the 
projections » and t − » on two parts, unstable and stable [14].  

The state vector may be given by where A�(H, 7) is the state component of the unstable part 
of the system (1), may be written in the form 

         

⎩⎨
⎧+-S+8 ( @, 7) = 	A�(@, 7) + �C(7)       ΠA�(@, 7) = A:S(@)                               Ω+-S+D (E , 7) = 0                                        Ξ                                                                   (13)  

with A�(H, 7)  represents stable part of (1)  specific by 

         

⎩⎨
⎧+-�+8 (@, 7) = 	A��(@, 7) + �C(7)   ΠA�(@, 7) = A:�(@)                            Ω+-�+D (E, 7) = 0                                     Ξ                                                                       (14)  

Put  

        w(@, 7) = A(@, 7) − V(@, 7)  

where V(@, 7) is the solution of the system (11). By deriving the above equation and 
substituting equations (1) and (11), we obtain 

+¼+8 (@, 7) = +-+8 (@, 7) − +Y+8 (@, 7)   

              = 	A(@, 7) − 	V(@, 7) − �c∗�� ¡��A(. , 7) − V(@, 7)� 

             = (	 − �c∗�� ¡�)w(@, 7) 

System (4.1)-(4.2) form Γ∗AG-detectable, so �c∗�� ¡ ∈ �($,  ��/�(Γ∗)), is so that 
the transformation (	 − �c∗�� ¡�), described a  generator of 6�6 
group (6��∗½¾¿À(7))89: on the space ��/�(Γ∗), that means ∃ �c∗�� ¡,  �c∗�� ¡ > 0, 
which is satisfied the following inequality  

          ‖`c∗γ∇6�(. )‖ ¬S/�(Á∗) ≤ �c∗�� ¡wz��∗½¾¿À8 

Finally, we have  

           ‖w(. , 7)‖ ¬S/�(Á∗) ≤ ª`c∗γ∇6��∗½¾¿À(. )ª ¬S �i (Á∗)‖w:(. )‖�S/�(Â∗) 
                                    ≤ �c∗�� ¡wz ��∗½¾¿À8‖w:(. )‖ �S/�(Â∗) 
and   

         w:(@, 7) = A(@, 7) − V(@, 7)  
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therefore  

         lim8→�‖w(. , 7)‖ ¬S/�(�∗) = 0.  
Consequently, the process (11) form a Γ∗AGFO-observer to  (1)-(2).■  

Corollary 3.2: If the system is Γ∗AG-detectable, therefore it is can be built Γ∗AGFO-
observer to the same system. 

4. Regional closed loop control system and  �∗·¸¹º-observer 

This section devotes to extend the regional closed loop control system  to the regional 
boundary case. The reconstruction of Γ∗AGFO-observer in distributed parameter 
system gives an estimator of  �A(@, 7) or A(@, 7), it is important to consider the effect 
induced by 

 

 

Fig. 3 Regional boundary closed loop control system 

using this Γ∗AGFO-estimator instead of a feedback control (figure 3). Thus, the 
problem that naturally arises is how to design a regional boundary closed-loop control 
system by using only partial information about the state A(@, 7) through the output 
function (2).  In addition, we use the measurements (partial information) to estimate 
the full state in a region Γ∗ by constructing a Γ∗AGFO-observer and to apply the 
feedback control low on the estimated state �c∗�� ¡A(@, 7) (figure 6). For this 
purpose consider now the system (1) which is excited by regional boundary feedback 
control 

         C(7) = −4c∗A(. , 7),                                                                                         (15)  

where 4c∗ = `c∗γ∇4 is a bounded linear operator defined by  

          −4c∗: (��/�(Γ∗))� → �  

                                      ℎ → Cℎ  

Theorem 4.1: If the whole system (1)-(2), (11), (12) and (15) is given the matrix form 

         Ä+-+8+¼+8
Å = 'c∗ ¯Aw ±                                                                                          (16) 

where the operator 	c∗ is defined by 

          'c∗ = Æ' − �4c∗              −�4c∗0               ' − �c∗�� ¡�Ç 
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then, the spectrum of  system (16) is the reunion of the spectrum of regional boundary 
closed-loop control system (20) and the spectrum of Γ∗AGFO-observer (21) and then, 
achieve the stability of system (1).  

Proof:  Consider again the system (1)-(2), (12), (16) and (23) augmented with the 
related dynamical system (11) represented as  Γ∗AFO-observer by the following 
equations  

         

⎩⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪
⎧+-+8 (@, 7) = 'A(@, 7) + �C(7)                                                            ΠA(@, 0) = A:(@)                                                                                    ΩÉ+-+D (E, 7) = 0                                                                                            ΞF(. , 7) = �A(. , 7)                                                                                  ΠC(7) = −4c∗A(. , 7)                                                                              Πlim8→�‖A(. , 7) − V(. , 7)‖ ¬S/�(�∗) = 0                                             Π+YÊ+8 (@, 7) = 'V(@, 7) + �C(7) − �c∗����Ë��A(@, 7) − V(@, 7)� ΠV(@, 0) = Vₒ(@)                                                                                      Ω+Y+D (E, 7) = 0                                                                                            Ξ

               (17)   

Substituting equations  (2) and (15) in (17), we have the form 

          

⎩⎪
⎪⎪
⎨
⎪⎪⎪
⎧ +-+8 (@, 7) = 'A(@, 7) − �4c∗A(. , 7);                                                           ΠA(@, 0) = A:(@)                                                                                               Ω+-+D (E, 7) = 0                                                                                                       Ξ+Y+8 (@, 7) = 'V(@, 7) − �4c∗A(@, 7) − �c∗�� ¡��A(@, 7) − V(@, 7)�   ΠV(@, 0) = V:(@)                                                                                                 Ω+Y+D (E, 7) = 0                                                                                                        Ξ 

    (18) 

Using theorem 3.8 in equation (18), we obtain 

          

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧+-+8 (@, 7) = (' − �4c∗)A(@, 7) − �4c∗w(@, 7)                ΠA(@, 0) = A:(@)                                                                     Ω+-+D (E, 7) = 0                                                                              Ξẇ(@, 7) = (' − �c∗�� ¡ �)w(@, 7)                                      Πw(@, 0) = w:(@)                                                                        Ω+¼+D (E, 7) = 0                                                                              Ξ 

                           (19) 

 where w(@, 7) = A(@, 7) −  V(@, 7). Now, equation (19) allow to consider the 
following regional boundary control closed loop system 

         Í+-+8 (@, 7) = (' − �4c∗)A(@, 7) − �4c∗w(@, 7) ΠA(@, 0) =  A:(@) ΩA(E, 7) = 0 Ξ                                    (20) 

From the proof of theorem 3.8, we can get the system 
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         ⎩⎨
⎧+¼+8 (@, 7) = (' − �c∗�� ¡ �)w(@, 7) Πw(@, 0) =  w:(@) Ω+¼+D (E, 7) = 0 Ξ                                                    (21) 

Thus, the combining systems (20)-(21) can be written by the matrix form 

         Ä+-+8+¼+8
Å = 'c∗ ¯Aw ±                                                                                          (22) 

where the operator 	c∗ is defined by 

          'c∗ = Æ' − �4c∗              −�4c∗0               ' − �c∗�� ¡�Ç                                                             (23) 

Consider the previous results  as ', �, and 4c∗ are  bounded linear operators, then, by 
using perturbation theory linear operator, we can deduce that the operator  'c∗ 
generates a strongly continuous semi-group. Therefore, the resolvent Î(	c∗) is non-
empty and can be expressed by  
          Î('c∗) = Î(' − �4c∗) ⋂ Î(�4c∗)  

Finally, we have  

          Ð('c∗) = Ð(' − �4c∗) ∪ Ð(�4c∗)  

where Ð('c∗) denotes the spectrum of 'c∗. Hence the semi group of  'c∗ 

 

         (6'�∗(7))89: = Ò6'zÓm�∗(7)            6Óm�∗(7)0                  6'z��∗¾½¿À(7)Ô  

is stable on the space 
          (��/�(Γ∗))�  ⊕ (��/�(Γ∗))� [5],    
such that 
 

 ÖA(. , 7)w(. , 7) Ö(�S/�(c∗))T ⊕(�S/�(c∗))T ≤ �'�∗wz�'�∗Ø ÖA:(. )w:(. ) Ö(�S(r))T ⊕(�S(r))T 

 
Consequently, we have  
          ‖A(. , 7)‖(�S/�(c∗))T ≤ �É'wz�É�8‖A:‖(�S(r))T 
where  �É' , �Ù'  >  0 and therefore the system (1) is Γ∗GAFO-stable.∎ 
 

5. Application to sensors and controls structures 

In this section we consider the distributed diffusion systems defined on Ω =]0, 1[×]0, 1[. Various results related to different types of measurements and controls 
have been explored; domains and boundary conditions.  

5.1 Case of a zone sensor  

5.1.1 Rectangular domain.  In view of example 3.9 and theorem 3.8 the system (1) 
augmented with output function (2)  with internal zone sensor and control is described 
by 
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⎩⎪⎨
⎪⎧+-+8 (@�, @�, 7) = ΔA(@�, @�, 7) + `mÉÝ(@�, @�)C(7)      ΠA(@�, @�, 7) = A:(@�, @�)                                             Ω+-+D (E�, E�, 7) = 0                                                           ΞF(7) =  `mk(@�, @�)A(@�, @�, 7)                                  Π

                                   (24)  

where  

4 =  [@:S − Þ�, @:S + Þ�] × [@:� − Þ�, @:� + Þ�] ⊂ Ω 

and  

4É  =  [@:̅S − Þ�, @:̅� − Þ�]  ×  [@:̅� − Þ�, @:̅� + Þ�]  ⊂  Ω 

are the locations of the zone sensor (actuator) (figure 4). Since the zone sensor is 
couple (4, k) of  4 and k, then   

                F(7) = �A(@, 7) =  `mk(@�, @�)A(@�, @�, 7)                                              (25) 

 

Fig.4:  4 and  4É  internal  zone sensor and control locations. 

In this case, the considered region   Γ∗ is defined by 

         Γ∗ = {0}  ×]0,1[ ⊂ ]0,1[  ×]0,1[. 

and  the operator �C(7) in system (24) is given by  

         �C(7) =  `mÉÝ(@�, @�)C(7)                                                                                (26) 

and by regional boundary feedback control in (15) is defined by                                                      

          �C(7) = −`mÉÝ(@�, @�)4c∗A(. , 7)                                                    

and then, 

          �4c∗ßàÉ á =  `mÉÝ4c∗                                                                                        (27)      

Under the condition of example 3.9 the corresponding dynamical system (24) 
represented by  

         

⎩⎪⎨
⎪⎧+Y+8 (@�, @�, 7) = ΔV(@�, @�, 7) + `mÉÝ(@�, @�)C(7)         −�c∗���Ë`mk(A(@�, @�, 7) − V(@�, @�, 7))                ΠV(@�, @�, 0) = V:(@�, @�)                                               Ω+Y+D (E�, E�, 7) = 0                                                            Ξ

                                    (28) 
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and Γ∗AGFO-observer, 

Proposition 4.2: If the whole system (24), (25), (28) and (12)  is given the matrix 
form 

         Ä+-+8+¼+8
Å = Δm�∗ ßàÉ á ¯Aw ±                                                                                   (29) 

where the operator 	m�∗ ßàÉ á is defined by 

          Δm�∗ ßàÉ á = Æ	 − `mÉÝ4c∗ ßàÉ á      − `mÉÝ4c∗ ßàÉ á0                             	 − �c∗�� ¡`mkÇ 
then, the spectrum of  system (24) is the reunion of the spectrum of regional boundary 
closed-loop control system (33) and the spectrum of Γ∗AGFO-observer (34) and then, 
achieve the stability of system (28).  

Proof:  The system (24), (25) and (12) augmented with the related dynamical system 
(36) described as  Γ∗AFO-observer by the form 

          

⎩⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎧

+-+8 (@, 7) = ΔA(@, 7) + `mÉÝ(@�, @�)C(7)                        ΠA(@, 0) = A:(@)                                                                Ω+-+D (E, 7) = 0                                                                       ΞF(. , 7) = `mkA(. , 7)                                                         ΠC(7) = −4c∗ ßàÉ áA(. , 7)                                                  Πlim8→�‖A(. , 7) − V(. , 7)‖ ¬S/�(�∗) = 0                        Π+YÊ+8 (@, 7) = ΔV(@, 7) + `mÉÝ(@�, @�)C(7)                            −�c∗����Ë`mk�A(@, 7) − V(@, 7)�                              ΠV(@, 0) = Vₒ(@)                                                                Ω+Y+D (E, 7) = 0                                                                      Ξ

                               (30) 

inserting equations  (24) and (25) in (30), we have the form 

          

⎩⎪
⎪⎪⎪
⎨
⎪⎪⎪
⎪⎧

+-+8 (@, 7) = ΔA(@, 7) − �4c∗ ßàÉ áA(. , 7);                ΠA(@, 0) = A:(@)                                                          Ω+-+D (E, 7) = 0                                                                 Ξ+Y+8 (@, 7) = ΔV(@, 7) − �4c∗ ßàÉ áA(@, 7)                    −�c∗�� ¡`mk�A(@, 7) − V(@, 7)�                           ΠV(@, 0) = V:(@)                                                           Ω+Y+D (E, 7) = 0                                                                 Ξ 

                                     (31)  

From theorem 3.8 and equation (31), we can get 
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⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧+-+8 (@, 7) = �Δ − �4c∗ ßàÉ á�A(@, 7) − �4c∗ ßàÉ áw(@, 7)      ΠA(@, 0) = A:(@)                                                                        Ω+-+D (E, 7) = 0                                                                                Ξẇ(@, 7) = (Δ − �c∗�� ¡ `mk)w(@, 7)                                     Πw(@, 0) = w:(@)                                                                          Ω+¼+D (E, 7) = 0                                                                                Ξ 

                           (32) 

 where w(@, 7) = A(@, 7) −  V(@, 7). Now, equation (38) permit to defend the 
following regional boundary control closed loop system       

     ⎩⎨
⎧+-+8 (@, 7) = (Δ − �4c∗ ßàÉ á)A(@, 7) − �4c∗ ßàÉ áw(@, 7) ΠA(@, 0) =  A:(@) Ω+-+D (E, 7) = Ξ                            (33) 

From the proof of theorem 3.8, we have 

         ⎩⎨
⎧+¼+8 (@, 7) = (Δ − �c∗�� ¡`mk)w(@, 7) Πw(@, 0) =  w:(@) Ω+¼+D (E, 7) = 0 Ξ                                                  (34) 

Thus, the combining systems (33)-(34) can be written by the matrix form 

         Ä+-+8+¼+8
Å = Δm�∗ âàÉ ã ¯Aw ±                                                                                    (35) 

where the operator 4c∗ `mÉÝ∗ is defined by 

          Δm�∗ âàÉ ã = Æ Δ − �4c∗ ßàÉ á          −�4c∗ ßàÉ á0                        Δ − �c∗�� ¡`mkÇ                                             (36) 

Consider the previous results  as Δ, �, and 4c∗ ßàÉ á are  bounded linear operators, then, 
by using perturbation theory linear operator, we can deduce that the operator  Δm�∗ ßàÉ á 
generates a strongly continuous semi-group. Therefore, the resolvent Î( Δm�∗ âàÉ ã) is 
non-empty and can be expressed by  
          Î�Δm�∗ ßàÉ á� = Î(Δ − �4m�∗ ßàÉ á) ⋂ Î(�4m�∗ ßàÉ á)  

Finally, we have  

          Ð�Δm�∗ ßàÉ á� = Ð�Δ − �4ßàÉ á� ∪ Ð(�4m�∗ ßàÉ á)  

where Ð�Δm�∗ ßàÉ á� denotes the spectrum of Δm�∗ ßàÉ á. Hence the semi group of  Δm�∗ ßàÉ á 

 

         (6äà�∗ âàÉ ã(7))89: = Ò 6äzÓm�∗ ßàÉ á(7)    6Óm�∗ ßàÉ á(7)0                           6äz��∗¾½¿À(7)Ô  

is stable on the space 
          (��/�(Γ∗))�  ⊕ (��/�(Γ∗))� [30],    
such that 
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     ÖA(. , 7)w(. , 7) Ö(�S/�(c∗))T ⊕(�S/�(c∗))T ≤ �äà�∗ âàÉ ãwz�å�∗Ø.ÖA:(. )w:(. ) Ö(�S(r))T ⊕(�S(r))T 

Consequently, we have  
          ‖A(. , 7)‖(�S/�(c∗))T ≤ �Éäà�∗ âàÉ ãwz�Éåà�∗ âàÉ ã8‖A:‖(�S(r))T 
where  �Éäà�∗ âàÉ ã , �Ùäà�∗ âàÉ ã  >  0 and therefore the system (24) is Γ∗GAFO-stable.∎ 

5.1.2 Circular domain 

Remark 5.3: The previous results can be extend to the case of circular domain with 
the following system 

         

⎩⎨
⎧+-+8 (x, æ, 7) = ΔA(x, æ, 7) + A(x, æ, 7)            ΠA(x, æ, 0) = A(x, æ)                                          ΩÉ+-+D (/, æ, 7) = 0                                                   Ξ                                               (37)  

augmented output function is defined by 

          F(7) = ∫  +Y+D (/, æ, 7)k(/, æ)Kx Kæm                                                                 (38) 

where Ω = 4 ]0, /[, x = / > 0, æ ∈ [0,2è], for internal zone and pointwise sensor 
with another output function [23]. 

5.2 Case of a pointwise sensor  

In this subsection, we consider the following cases:   

5.2.1 The domain Ω =]0, 1[×]0, 1[  
By the same way in subsection 5.1, we can develop system (30) with internal 
pointwise sensor in the following equations 

         

⎩⎪⎨
⎪⎧+-+8 (@�, @�, 7) = ΔA(@�, @�, 7) + pqÙ(@�, @�)C(7)           ΠA(@�, @�, 7) = A:(@�, @�)                                                 Ω+-+D (E�, E�, 7) = 0                                                              ΞF(7) = pq(o�, o�)A(@�, @�, 7)                                         Π

                                 (39)  

where pqÙ(H�, H�) = p(H� − oÙ�, H� − oÙ�) and  oÙ = �oqÙS, oÙ�� ∈  Ω is location of the 
internal pointwise control (o, pqÙ) (figure 5). Since the zone sensor is couple (o, pq) of  o and pq, then   
                F(7) = �A(@�, @�, 7) =  pq(o�, o�)A(@�, @�, 7)                                          (40)                               
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Fig 5:  b and  oÙ pointwise sensor and control locations. 

and  the operator �C(7) in system (39) is given by  

         �C(7) =  pqÙ(o�, o�)C(7)                                                                                  (41) 

and by regional boundary feedback control in (23) is defined by                                                      

          �C(7) = −pqÙ(o�, o�)4c∗A(. , 7)                                                    

and then, 

          �4c∗éêÉ =  pqÙ4c∗                                                                                             (42)      

Under the condition of example 3.9 the corresponding dynamical system (24) 
represented by  

         

⎩⎪⎨
⎪⎧ +Y+8 (@�, @�, 7) = ΔV(@�, @�, 7) + pqÙ(o�, o�)C(7)                      −�c∗���Ëpq(o�, o�)(A(@�, @�, 7) − V(@�, @�, 7))                ΠV(@�, @�, 0) = V:(@�, @�)                                                          Ω+Y+D (E�, E�, 7) = 0                                                                       Ξ

                           (43) 

and Γ∗AGFO-observer, 

Proposition 4.2: If the overall system (39), (40), (43) and (12)  is given the matrix 
form 

         Ä+-+8+¼+8
Å = Δm�∗ëêÉ ¯Aw ±                                                                                      (44) 

where the operator 	m�∗ëêÉ  is defined by 

          Δm�∗ëêÉ = ÆΔ − pqÙ4c∗éêÉ                − pqÙ4c∗éêÉ0                             Δ − �c∗�� ¡pqÇ 
then, the spectrum of  system (44) is the reunion of the spectrum of regional boundary 
closed-loop control system (48) and the spectrum of Γ∗AGFO-observer (49) and then, 
achieve the stability of system (39).  

Proof:  The system (33), (34) and (12) augmented with the related dynamical system 
(28) described as  Γ∗AFO-observer by the form 
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⎩⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎧

+-+8 (@, 7) = ΔA(@, 7) + pqÙ(o�, o�)C(7)                           ΠA(@, 0) = A:(@)                                                                 Ω+-+D (E, 7) = 0                                                                        ΞF(. , 7) = pqA(. , 7)                                                             ΠC(7) = −4c∗ éêÉ A(. , 7)                                                      Πlim8→�‖A(. , 7) − V(. , 7)‖ ¬S/�(�∗) = 0                         Π+Y+8 (@, 7) = ΔV(@, 7) + pqÙ(o�, o�)C(7)                               −�c∗����Ëpq�A(@, 7) − V(@, 7)�                                    ΠV(@, 0) = Vₒ(@)                                                                  Ω+Y+D (E, 7) = 0                                                                         Ξ

                               (45)  

From the equations (397), (40) and (45), we have the form 

          

⎩⎪
⎪⎪⎪
⎨
⎪⎪⎪
⎪⎧

+-+8 (@, 7) = ΔA(@, 7) − �4c∗éêÉA(. , 7);                      ΠA(@, 0) = A:(@)                                                            Ω+-+D (E, 7) = 0                                                                    Ξ+Y+8 (@, 7) = ΔV(@, 7) − �4c∗éêÉA(@, 7)                           −�c∗�� ¡pq�A(@, 7) − V(@, 7)�                                 ΠV(@, 0) = V:(@)                                                             Ω+Y+D (E, 7) = 0                                                                   Ξ 

                                   (46) 

From theorem 3.8 and equation (46), we can get  

       

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧+-+8 (@, 7) = �Δ − �4c∗éêÉ �A(@, 7) − �4c∗éêÉ w(@, 7)              ΠA(@, 0) = A:(@)                                                                          Ω+-+D (E, 7) = 0                                                                                 Ξẇ(@, 7) = (Δ − �c∗�� ¡ pq)w(@, 7)                                          Πw(@, 0) = w:(@)                                                                            Ω+¼+D (E, 7) = 0                                                                                 Ξ 

                          (47) 

 where w(@, 7) = A(@, 7) −  V(@, 7). Now, equation (47) permit to defend the 
following regional boundary control closed loop system       

     ⎩⎨
⎧+-+8 (@, 7) = (Δ − �4c∗éêÉ)A(@, 7) − �4c∗éêÉ w(@, 7) ΠA(@, 0) =  A:(@) Ω+Y+D (E, 7) = 0 Ξ                                  (48) 

From the proof of theorem 3.8, we have 

         ⎩⎨
⎧+¼+8 (@, 7) = (Δ − �c∗�� ¡pq)w(@, 7) Πw(@, 0) =  w:(@) Ω+¼+D (E, 7) = 0 Ξ                                                     (49) 
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Thus, the combining systems (48)-(49) can be written by the matrix form 

         Ä+-+8+¼+8
Å = Δc∗é ¯Aw ±                                                                                          (50) 

where the operator 4c∗ `mÉÝ∗ is defined by 

         Δc∗é = Æ Δ − �4c∗éêÉ          −�4c∗éêÉ0                        Δ − �c∗�� ¡pqÇ                                                       (51) 

Consider the previous results  as Δ, �, and 4c∗éêÉ are  bounded linear operators, then, 
by using perturbation theory linear operator, we can deduce that the operator  Δc∗é 
generates a strongly continuous semi-group. Therefore, the resolvent Î(Δc∗é) is non-
empty and can be expressed by  
          Î(Δc∗é) = Î(Δ − �4c∗éêÉ) ⋂ Î(�4c∗éêÉ)  

Finally, we have  

          Ð(Δc∗é) = Ð�Δ − �4c∗éêÉ � ∪ Ð(�4c∗éêÉ)  

where Ð(Δc∗é) denotes the spectrum of Δc∗é. Hence the semi group of  Δc∗é 

         (6ä�∗ë(7))89: = Ò 6äzÓm�∗ëêÉ (7)    6Óm�∗ëêÉ (7)0                           6äz��∗¾½¿À(7)Ô  

is stable on the space 
          (��/�(Γ∗))�  ⊕ (��/�(Γ∗))� [30],    
such that 

          ÖA(. , 7)w(. , 7) Ö(�S/�(c∗))T ⊕(�S/�(c∗))T ≤ �ä�∗ëwz�å�∗ëØ.ÖA:(. )w:(. ) Ö(�S(r))T ⊕(�S(r))T 

Consequently, we have  
          ‖A(. , 7)‖(�S/�(c∗))T ≤ �Éä�∗ëwz�Éå�∗ë8‖A:‖(�S(r))T 
where  �Éä�∗ë , �Ùä�∗ë  >  0 and therefore the system (24) is Γ∗GAFO-stable.∎ 

5.2.1 The domain Ω = 4 ]0, /[, x = / > 0, æ ∈ [0,2è], 
Remark 5.3: The previous results can be extend to the case of circular domain with 
system (15) augmented to the output function 

         F(7) = ∫  +Y+Y (/, æ, 7)k(/, æ)Kx Kæm                                                                  (52) 

where Ω = 4 ]0, /[, x = / > 0, æ ∈ [0,2è], for internal zone and pointwise sensor 
with anther output function [23]. 

6. Conclusion  

Various characterizations have been established using the associated gradient sensors 

structures and feedback control for the RBAGFO-observer. New results have been 

obtained linked to divert kind of the information: controls; domains; conditions of 

boundary.  It has been shown that the structure of sensors and  feedback controls 

pledge the existence of RBAGFO-observer which is enable to characterize regional 
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boundary closed loop control system. Numerous applications have illustrated and 

demonstrated to diffusion distributed parameter systems in different situations. May 

be interested to extend these results to the case of hyperbolic systems as in [25]. 
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