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ABSTRACT 24 
Timely pavement maintenance and rehabilitation is essential for a healthy road network. As the 25 
resources are always limited, some form of action prioritization is necessary. There are a number of 26 
objectives to satisfy and the influencing variables are too many, leading to complicated decision making 27 
scenarios. In this work, a novel bare-bones particle swarm algorithm is presented for a general multi-28 
objective problem that is discrete in nature. In contrast to the original particle swarm method, the 29 
proposed technique has the advantage in that it is a parameter-free technique. The developed algorithm 30 
is applied to find optimal rehabilitation scheduling considering the two objectives, the minimization of 31 
the total pavement rehabilitation cost and the minimization of the sum of all residual pavement condition 32 
index (PCI) values. The method is benchmarked against a discrete-domain particle swarm algorithm, by 33 
comparing a number of performance criteria, demonstrating its effectiveness.  34 
Keywords: pavement maintenance, pavement management, multi-objective optimization, particle 35 
swarm, bare-bones. 36 
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41 
INTRODUCTION 42 
Highways play an important role in the economic and social well-being of a country at the national and 43 
local levels. Pavement is a key element of road infrastructure. Increasing traffic volumes, heavier loads 44 
and poor reinstatement following excavation by public utility companies allied with repeated adverse 45 
weather conditions are causing significant functional and structural deterioration in the pavement such 46 
as cracking, localized depression, rutting, potholes, texture loss, etc. Increasing demands to repair, 47 
associated with increased pavement deterioration, as well as deficient resource allocation, have made 48 
the task of maintaining pavement network more challenging and difficult (1). Regular maintenance and 49 
rehabilitation (M&R) is essential to preserve and improve a pavement network. Because of limited 50 
availability of resources, maintenance activities must be timely and effective. Unnecessary maintenance 51 
increases overall maintenance costs, whereas delayed maintenance may increase rehabilitation costs. In 52 
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recent years, therefore, efficiency has become a key issue in highway pavement maintenance planning 53 
(2). 54 

Pavement management systems (PMSs) are becoming progressively essential tools in the 55 
decision-making procedures regarding the preservation of pavement networks. A perfect PMS is a 56 
program that would keep all pavement segments at satisfactorily high serviceability and structural 57 
conditions. At both network level and project level, many highway agencies employ prioritization 58 
programming models to compare pavement investment alternatives. The majority of highway authorities 59 
in the world have use different PMS computer programs such as PAVER, HDM-4, UKPMS. These 60 
programs are developed by using decision trees or heuristics (3). In prioritization models, the pavement 61 
condition data are used to find a factor or index to represent the present pavement condition. 62 
Prioritization is done by ranking all the pavement segments based on a priority-ranking index. This 63 
ranking index usually considers different parameters such as highway class, traffic volume, quality 64 
index, etc. The maintenance and rehabilitation needs selection and budget allocation are often conducted 65 
based on this priority-ranking index (4, 5). 66 

An alternative approach to prioritization, in the form of optimization, is also used. A PMS is 67 
required to keep all pavement segments at satisfactorily high serviceability and structural conditions. 68 
However, it shall only require minimum resources (budget, equipment, manpower, etc.) and should not 69 
produce any significant negative effect on the environment, safe traffic operations, and social and 70 
community activities. Since many of these objectives are conflicting requirements, the decision-making 71 
process of PMSs for scheduling pavement maintenance activities should involve a multi-objective 72 
consideration that handles the competing requirements of different objectives (6). Optimization has been 73 
widely adopted for selecting pavement maintenance plans. In this regard, many mathematical 74 
programming techniques (e.g. linear and dynamic programming), computational intelligence methods 75 
(e.g. genetic algorithms and particle swarms) or hybrid models that combine the two techniques have 76 
been used (6). The mathematical programming techniques are limited application and designed for 77 
particular optimisation problems.78 

Many researchers use genetic algorithm for single and multi-objective optimization for 79 
pavement decision making problems {Single objective GA (7–20) Multi objective GA (6, 11, 21–24)}. 80 
When it comes to using particle swarm optimization (PSO) for pavement problems. Wang and 81 
Goldschmidt (2008) proposed a project interaction pre-optimization model that integrates the project 82 
interaction, traffic-demand prediction interaction and maintenance-condition interaction into the 83 
decision optimization process. The pre-optimization model was used as an input of a global multi-84 
objective optimization model-based PSO. The multi-objective PSO problem was converted into a single-85 
objective problem by using the weighted aggregation method (25). Shen et al. (2009) used chaos  PSO 86 
(CPSO), a new random global optimization algorithm which has strong local searching capability, in 87 
their pavement maintenance decision programming. It was applied on an expressway network to satisfy 88 
just a single objective, which was maximization of economic benefit. The pavement maintenance 89 
decision results proposed by the CPSO were validated by comparing with the results of the NSGA-II 90 
algorithm. It was found that the convergence speed of CPSO to reach the optimal solution was quicker 91 
than the convergence speed of NSGA-II (26). In 2010, Tayebi and Hassani used PSO with single-92 
objective function scenarios for a pavement management system at the network level. The same 93 
hypothetical problem formulation of the Pavenet_R model by (10) was used to apply a PSO algorithm 94 
for pavement maintenance programming (27). Chou and Le (2011) formulated a multi-objective PSO 95 
algorithm (i.e. classical one) to study the effect of overlay maintenance activities on the performance 96 
pavement reliability with an optimized treatment cost. The maintenance cost and performance reliability 97 
of the pavement were considered simultaneously in the developed algorithm as multi-objective 98 
functions. For considering uncertainties of input parameters and maintenance effect on pavement service 99 
life, a probabilistic model integrated with a Monte Carlo simulation was proposed to predict 100 
performance reliability (28). Since the genetic algorithm and PSO involve many parameters (such as 101 
mutation operator, crossover operator, mutation probability, crossover probability and population size), 102 
that require the user to choose a number of parameters. Furthermore, the final performance of these 103 
algorithms depends on the value chosen by the user, making their use more difficult for inexperienced 104 
people. This difficulty highlights the need for a parameter-free algorithm and this paper presents one.    105 
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DESCRIPTION OF THE PAVEMENT MAINTENANCE DECISION PROBLEM 106 
Optimization Problem Parameters 107 
The M&R analysis procedure depends on the following data and decision criteria: current state of the 108 
pavement based on distresses, minimum acceptable serviceability level, treatment cost and budget, and 109 
analysis period. For determining the treatment needs, the highway network is divided into a number of 110 
pavement segments of predefined length (4, 10).111 

Agency cost of highway asset is the intervention cost which is necessary to design, construct, 112 
and maintain a highway network. It consists of highway maintenance, rehabilitation and reconstruction 113 
cost. Rehabilitation is necessary for the highway asset at least one time over its lifetime to keep it above 114 
the minimum acceptable serviceability and safety level. The cost of any particular rehabilitation activity, 115 
which is a form of construction, comes from: materials, preliminary engineering, and construction 116 
management (29). If a rehabilitation action is to be applied in subsequent years, then the costs of it can 117 
be discounted to present worth in the following manner: 118 
                                                            (1) 119 
where PWF is the present worth factor, given by: 120 
                                                                                                                                 (2) 121 

The typical range of discount rates R recommended by FHWA is 3 to 5% (30), t = time at which the 122 
money is spent (specified in years). 123 

Depending on the situation, highway agencies have the option to choose a rehabilitation action 124 
from a list of activities. One such list, which is also used in this work, is given in Table 1. It is also 125 
essential to specify the trigger value for each treatment action. A warning level is defined as the 126 
minimum level of pavement performance, such that the treatment must be applied when the pavement 127 
reaches it. The total span of the analysis period is commonly specified by the highway authority 128 
concerned. Furthermore, the length of unit planning period, which is commonly one year, is selected 129 
depending on the requirements of the highway authority (10). 130 

TABLE 1 The maintenance and Rehabilitation (M&R) Strategies 131 
No. M&R strategy 
1 Do nothing 
2 AC* overlay 1in (25mm) 
3 AC overlay 2in (50mm) 
4 AC overlay 4in (100mm) 
5 AC overlay 6in (150mm) 

* Asphalt Concrete132 

Objective Functions 133 
The common objectives of pavement maintenance systems as identified by road authorities comprise 134 
the following: to minimize the present worth of overall treatment costs over the analysis period; to 135 
minimize user costs by choosing and scheduling treatment actions to decrease delays and disruptions to 136 
traffic; and to keep the serviceability of the pavement network over the minimum acceptable level with 137 
the resources available. Commonly, two or more of these objectives are combined by allocating a proper 138 
weighting factor to each (10).139 

The main challenge in pavement management is the selection of maintenance investment 140 
alternatives for a large number of pavement sections over multiple time periods (31). To reach the 141 
optimal maintenance investment decisions, it is important to optimize the M&R decision considering 142 
multiple objectives such as minimum cost and maximum performance, etc. To address complex 143 
optimization problem of pavement management, multi-objective programming of pavement 144 
management activities is developed using the particle swarm optimization technique. 145 

The multi-objective programming of pavement management can be presented mathematically 146 
as follows: 147 

Minimize the total pavement maintenance cost 148 

                              (3) 149 
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and minimize the sum of all residual PCI values to maximize the PCI of candidate section.   150 

151 

where152 

In the equations above, m is the treatment type; M stands for the total number of different 153 
treatment types; p is the pavement section number under consideration; N is the total number of 154 
pavement sections; t is any  time in the analysis period, and T is the total analysis period (both are usually 155 
specified in years);  is the unit cost of treatment type m;  is the length of pavement section p; 156 
stands for the width of section p;  is the discount rate;  = PCI for section p at time t;  is 157 
the maximum PCI level (100 %);  is the annual average daily traffic for section p at time t. 158 
In this work, the following acceptable level for section performance is chosen:  %. 159 

Pavement Deterioration Model 160 
A PMS must predict the performance of a pavement network for the subsequent years in order to 161 
evaluate the outcome of a given set of maintenance decisions, thereby enabling it to optimize the 162 
maintenance decision. A pavement deterioration model is an essential component when determining 163 
treatment needs, and when estimating highway user costs and benefits of the treatment application (32).164 
In general, deterioration models are established in terms of a pavement condition indicator and the 165 
exogenous influences contributing to pavement deterioration (22). Various researchers have developed 166 
network-level deterministic deterioration prediction models for flexible pavements, to predict pavement 167 
deterioration by considering distress, pavement age, traffic loading, and maintenance effects. Here, a 168 
deterministic deterioration model for arterial highways in the wet freeze climatic region has been 169 
designed to estimate future pavement condition, described, in detail, in the previous work of the authors 170 
(33) :171 

172 
173 

                                                  (5)  174 

where PCI is the pavement condition index. It should be noted that this optimization method is 175 
dependent of any particular deterioration prediction model.  176 

PARTICLE SWARM OPTIMIZATION  177 
Particle swarm optimization (PSO) is a simulation of the social behavior of birds or fish within their 178 
flock or school, and was developed by Kennedy and Eberhart in 1995 (34). The swarm of PSO comprises 179 
a set of particles, each particle representing a possible solution of an optimization problem. Each particle 180 
moves in the search space, and this movement is achieved by the operator that is directed by a local 181 
element and by social elements. Each solution or particle is assumed to have a position and a velocity. 182 
The position and velocity of the ith particle is denoted at iteration z by Xi(z) = {Xi,1(z), Xi,2(z), …, 183 
Xi,n(z)} and Vi(z) = { Vi,1(z), Vi,2(z), …, Vi,n(z)}. Here, n is the dimension of the search space, where n 184 
= N×T. Then, each particle i updates the position and velocity of its jth dimension at iteration z + 1 by 185 
using the following equations (35, 36):  186 

             (6) 187 

                                     (7) 188 

where  is the local or personal best position for the jth dimension of particle i at 189 
iteration z;  is the global best position or particle leader at iteration z;  is the inertia weight 190 
of the particle;  and  are acceleration coefficients that are positive constants;  and  are random 191 
numbers in [0,1]. 192 

In the velocity update equation, the leader particle Gbest in each generation guides the particles 193 
to move towards the optimal positions. In each generation, the particle memory is updated. For each 194 
particle in the swarm, performance is estimated according to the fitness function or objective function 195 
of the optimization problem. The inertia weight w is used to regulate the effect of the previous velocities 196 
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on the current velocity, and hence to effect a trade-off between the global and local exploration abilities 197 
of the particles (37). 198 

Multi-Objective Optimization Problems 199 
Multi-objective optimization problems include the simultaneous satisfaction of two or more objective 200 
functions. Furthermore, the multiple objectives of optimization problems are usually conflicting 201 
objectives, which means there is no single optimal solution. Therefore, it is necessary to find a decent 202 
trade-off of solutions that represent a compromise between the objectives. In multi-objective particle 203 
swarm optimization (MOPSO) problems, the main challenge is to determine the best global particle 204 
"leader" at each generation. In a single-objective problem, the leader particle is found easily by choosing 205 
the particle that has the best position. For multi-objective problems there is a set of non-dominated 206 
solutions called "Pareto-optimal solutions", which is the set of best solutions (37). 207 

The feasible solutions of a multi-objective optimization problem are Pareto-optimal solutions if 208 
there are no other feasible solutions that can yield progress in one objective without damaging at least 209 
one other objective (38). The Pareto optimality is named after Vilfredo Pareto. The definition of Pareto 210 
optimality is that "A decision vector, is Pareto-optimal if there does not exist a decision vector, 211 

 that dominates it. For maximization problems, this condition can be expressed as, 212 
. For minimization problems,  will be Pareto-optimal if  for any 213 

.  An objective vector,  is Pareto optimal if x is Pareto optimal" (39). For a set of 214 
objective functions {f1, f2,…., fK}, the condition that a feasible solution  dominates another feasible 215 
solution x, then it is denoted by , the target being maximization. 216 

Discrete (Binary) Particle Swarm Optimization  217 
The most common optimization problems have either discrete or qualitative distinctions between 218 
variables. In the discrete PSO, the solutions can be assumed to be one of the several discrete values. The 219 
most common example of a discrete PSO is binary optimization, where all solutions will be 0 or 1. 220 
Fundamentally, the continuous domain PSO is different from a discrete PSO in two ways. Firstly, the 221 
particle coordinate is composed of binary values. Secondly, the velocity must be transformed into a 222 
probability change, that is, the chance of the binary variable taking the value of 1 (40, 41). 223 

The algorithm of PSO for continuous optimization problems was modified for solving discrete 224 
(binary) optimization problems by changing the position equation to a new one. The following is an 225 
equation for the modified algorithm (40–42): 226 

                                      (8) 227 

where  is a quasi-random number chosen from the continuous uniform distribution in 228 
the interval [0,1], i.e. U[0,1], and  is the sigmoid function given by 229 

230 

 Barebones Particle Swarm Optimization (BBPSO) 231 
The behavior of a particle is such that it converges to a weighted average between its local best position 232 
and the global best position. This behavior induced Kennedy to modify the original algorithm by 233 
replacing the equation of the particle velocity with a Gaussian sampling based on  and 234 

, resulting in BBPSO. The velocity equation of the original algorithm is replaced by (39, 43):235 

                  (10) 236 

Where, N denotes a Gaussian distribution. Based on this equation, the particle position is 237 
randomly chosen from the Gaussian distribution with the mean of the local best position and the global 238 
best position. In addition, Kennedy developed another version of the BBPSO, symbolized by BBExp, 239 
by modifying the equation thus: 240 

(11)241 
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As there is a probability of 50% that the jth dimension of a particle changes to the corresponding 242 
local best position, the new version of the algorithm tends to search for local best positions. The main 243 
strengths of BBPSO are that it is parameter-free and appropriate for application to real problems where 244 
the information on inertia weights and acceleration coefficients of particles is insufficient or difficult to 245 
obtain (43). In addition, it is easy to implement and performs well when dealing with multi-objective 246 
optimization problems (43). 247 

DISCRETE BAREBONES MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION 248 
(DBB-MOPSO) 249 
In this section a discrete version of the BBPSO, called discrete multi-objective PSO (DBB-MOPSO), is 250 
proposed for multi-objective optimization problems. The process flow of the DBB-MOPSO algorithm 251 
is shown in Figure 1. The process stages are as follows. 252 

Initialization 253 
Particle Positions 254 
The first step in the initialization stage of DBB-MOPSO is randomly generating the swarm with a 255 
predefined size. For each particle, values are assigned for each dimension randomly from a predefined 256 
set of values, as explained in detail below (43). 257 

One of the main steps in designing an effective particle swarm optimization algorithm is the 258 
correct representation of particle positions for finding a proper mapping between the problem solution 259 
and the particle. There are two forms of representation, namely direct and indirect representations (44).260 
In this research, a combination of direct and indirect representation is adopted. A problem solution 261 
(position) in direct representation is encoded in a one dimensional string of size n, where n = N×T. Every 262 
element of the string is a number chosen randomly from the set {1,2,3,….,M}, where for the problem at 263 
hand, M is the number of pavement maintenance actions. For the current problem, the structure of direct 264 
encoding is shown in Figure 2: 265 

In indirect encoding, solutions for each particle are encoded in a position matrix, n×M. In the 266 
position matrix, the values of the matrix elements for each particle are binary values, 0 or 1. Moreover, 267 
in each column the value of most of the elements is 0; just one element, corresponding to the 268 
maintenance action, is 1. For the direct representation in Figure 2, the indirect encoding is shown in 269 
Figure 3: 270 
Particle Velocity, Local Best Position 271 
Indirect encoding is used to initialize the velocity of each particle. The n×M matrix is generated and all 272 
elements of the matrix are assumed to be 0. The initial personal best position of each particle is assumed 273 
to be equal to the initial position of the particle, , where is the initial 274 
position of the jth dimension of the ith particle in the swarm. To save the non-dominated solutions found 275 
across all iterations, an archive, or memory, is initialized from the initial swarm.  276 

Updating The Local Best Positions 277 
The local best position for particle i, , is the best position reached by the particle itself to date. 278 
The local best position is updated at each iteration according to the equation (12). If the fitness value of 279 
the previous  is smaller than the fitness value of the current position , the current 280 

 will not be replaced. Otherwise, it will be replaced by the current position  (43).281 

                     (12) 282 

where i = 1, 2, …, I, and I is the total number of particles in the swarm (i.e. the swarm’s size).283 
284 
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285 

FIGURE 1 Flow chart of the binary barebones particle swarm optimization algorithm 286 

287 

                  288 
FIGURE 2 Direct representation (encoding) 289 
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290 
FIGURE 3 Indirect representation (encoding) for particle i291 

Updating the Global Best Positions 292 
The leader particle or global best position  is the best solution found from the swarm of particle 293 
neighbours so far. For single-objective optimization problems the global best position is found in a 294 
straightforward manner. Conversely, in multi-objective optimization problems, the multiple conflicting 295 
objectives make it challenging to select a leader solution. To overcome this problem, DBB-MOPSO is 296 
designed to maintain a memory (archive) with a sufficient capacity to store the non-dominated (Pareto) 297 
solutions, as proposed by (39, 43).298 

To find the leader particle, the sigma method is used here. This method was developed by 299 
Mostaghim and Teich (2003). In this method, a value  is assigned to each solution with coordinates 300 

, and thus all the solutions that are on the line  have the same  value. The sigma 301 
value (  can be determined for two objectives as follows: 302 

                                                                                                        (13) 303 

For more than two objective functions, Mostaghim and Teich [2003] provide the formulae for 304 
the estimation of . The leader particle  among the archive members of each generation is 305 
selected as follows. Firstly, the sigma value  is assigned to each non-dominated solution e in the 306 
archive. Secondly, the sigma value is determined for particle a of the current generation. Then, the 307 
distance between them ( ,  is calculated. Finally, solution g in the archive that has the lowest 308 
distance to solution  is chosen as the global best position or leader particle. Therefore, each solution 309 
which has a closer sigma value to the sigma value of a non-dominated solution must choose that non-310 
dominated solution as the leader solution (45).311 

Updating Particle Velocities and Positions  312 
To handle the multi-objective optimization problem, a new version of BBExp, namely BBVar, has been 313 
proposed to update a particle’s position by (43), and it works as shown below: 314 

                       315 

                                                                                                                                            (14) 316 

where,  is a random number chosen from U[0,1]. This formulation avoids the use of particle 317 
velocities used in the regular PSO algorithm.  318 

For discrete problems the definition in Equation (14) is of not much use as the resulting 319 
positions, for each dimension of a particle, will have to be either 0 or 1. In this work, the velocity term 320 
is reintroduced for the discrete barebones algorithm. However, rather than using the parameters as 321 
defined in Equation (6), it is proposed to make use of Equation (14), where the difference between the 322 
current particle position and the estimated position in the next iteration, by using Equation (14), is 323 
defined as the equivalent velocity of the particle. Hence, it is proposed here to make the change in the 324 
following manner to update a particle’s velocity, to deal with discrete multi-objective problems:  325 

326 

                                                (15) 327 
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After (44), the particle’s position is proposed to be updated as follows:328 

            (16) 329 

For particle i, the values of all elements, except one, in each column j of the position matrix are 330 
0, and only the element that has the maximum velocity is assigned 1. If, in a given column, there is more 331 
than one element with the maximum velocity value, then one of these elements is assigned 1 randomly 332 
(44). The same method is used by the DBB_MOPSO algorithm presented here.  333 

Mutation Operator 334 
The main feature of PSO is the fast speed of convergence. However, in multi-objective optimization,335 
the PSO algorithm could converge to non-optimal solutions. To prevent a premature convergence to 336 
non-optimal solutions in the MOPSO, a mutation operator is used to control convergence speed. In 337 
addition, it allows the MOPSO algorithm to expand the search capability, thus gaining better diversity. 338 
At the beginning of the generation process, all particles of the swarm are affected by the mutation 339 
operator with the full range of decision variables, with the influence of the mutation operator declining 340 
as the iteration number increases (43). The procedure of mutation operation is given by the following 341 
pseudo-code: 342 

FUNCTION MUTATION: Out = MUTATE (X, Z)   //X = any particle in the swarm; Z = max. no.  
                                                                                         of iterations//
FOR i = 1 TO I                                              // For all the particles // 

IF                    //  is a random number chosen from U[0,1] //
FOR j = 1 TO n                   // Do it for all the dimensions // 

                                        Position  == 1  // j number chosen randomly from the set     
                                                                        {1,2,3,….,M}
                                                                          randomly //       

END FOR 
END IF  

End FOR                                  // Return the swarm after mutation // 

External Archive Pruning 343 
In multi-objective optimization algorithms, it is necessary to retain the non-dominated solutions 344 
generated across all iterations of the search. In each generation, all new non-dominated solutions are 345 
stored in the external archive, while all solutions which became dominated are eliminated. It is common 346 
to adopt an external archive with limited capacity characteristics (43, 46). To avoid reaching the 347 
maximal capacity of the external archive, crowding distance is used to eliminate some solutions without 348 
a negative effect on its distribution. When the archive capacity has reached the maximum limit, the 349 
solutions that have the largest crowding distance values are retained in the archive (43). The following 350 
pseudo-code is the pruning archive procedure. 351 

FUNCTION PRUNING ARCHIVE: Opt = PRUNE_ARCHIVE (C, Xc, arch_cap)
// C: fitness values of non-dominated solutions; Xc: non-dominated solutions; arch_cap: maximum 
capacity of the archive; B: the number of the non-dominated solutions //
CDA = zeros(B)                      //CDA: crowding distance; initialize as a 2D matrix//  
FOR k = 1 TO K                     // K: number of objectives//       

C_k = C(k)                 //consider the fitness value for the kth objective// 
[C_k_sort, sorted_indices] = sort(C_k)  //sort the kth objective in ascending order and get  

                                                                              the sorted particle indices// 
CDA(sorted_indices_first,k) = 10000      // particle corresponding to the largest objective  

                                                                          function is given a large crowding distance 
CDA(sorted_indices_final,k) = 10000      // particle corresponding to the smallest objective  

                                                                          function is also given a large crowding distance  
FOR b = 2 to (B-1)      // the 1st and the last ones are excluded// 

                            CDA(sorted_indices(b)) = CDA(sorted_indices(b))
                                                                       +(C_k_sort(b+1) – C_k_sort(b-1))/(C_k_sort(1) –
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                                                                                                                                    C_k_sort(end))    
                       //crowding distance calculation - normalized// 

END FOR 
END FOR
[CDA, particle_indices_sorted] = sort (CDA)        // Sort in descending order using each objective  
                                                                                   value// 
particle_indices_pruned = particle_indices_sorted(1: arch_cap)   // Retain the first (number of  
                                                                                                         solutions = maximum capacity  
                                                                                                         of archive) with the largest  
                                                                                                         crowding distance values in the  
                                                                                                         archive// 

       // output the Pareto (non-dominated) optimal solutions // 

Compromise Solution 352 
To avoid the subjective judgment of decision makers, a fuzzy set function is employed to mimic the 353 
agency preferences and to find the compromise solution from the non-dominated solutions in the 354 
archive. Therefore, at the final generation of algorithm, the compromise solution is identified from the 355 
equation (17) (43):  356 

       (17) 357 

Where  = membership value of the kth objective function and particle ith,  = non-dominated 358 
solution ith in the archive,  = the minimum and maximum of the kth objective function.  359 

Then, the normalized fuzzy set function  of non-dominated solution ith is estimated by: 360 

           (18) 361 

Where K = the total number of objectives, B = the total number of the non-dominated solutions 362 
in the archive. 363 

The particle ith having the maximum  in the archive is selected as the compromise solution 364 
(43). 365 

IMPLEMENTATION OF THE PROBLEM  366 
The developed DBB-MOPSO algorithm is applied to a pavement maintenance decision optimization 367 
problem. This problem is the selection of the optimal treatment action from 5 maintenance actions for 5 368 
pavement sections over 10 years. The decision variables are encoded by direct and indirect 369 
representations as shown in Figure 4.  370 

There are Several variations of PSO used to solve continuous problems.  The binary version of 371 
PSO was developed by Kennedy and Eberhart. The discrete multi-objective particle swarm (DMOPSO) 372 
algorithm presented by Izakian et al. (2010) is the same original version for multi objective problem. 373 
DMOPSO is used to evaluate the performance of the developed algorithm. Both the proposed algorithm 374 
and the one Izakian et al. are coded in MATLAB and applied to the same optimization problem. The 375 
parameters of the problem are given below: 376 

� A swarm size of 100, archive size of 100, number of iterations of 100 are assumed for both 377 
algorithms. 378 

� a velocity range [6, -6], is assumed for the DMOPSO algorithm. This velocity range is 379 
recommended by Kennedy and Eberhart (1995) for discrete problems. The values of c1 = 2, c2380 
= 2 are recommended by Izakian et al. (2010).   381 
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 382 
FIGURE 4 Particle position encoding for the pavement maintenance optimization problem383 

PERFORMANCE METRICS  384 
There are different metrics to examine the accuracy and the diversity of different procedures in 385 
regenerating the Pareto front of multi-objective optimization problems. Some of these metrics are 386 
described below, before employing these to perform an evaluation of the effectiveness of the proposed 387 
method. 388 
Maximum Spread 389 
This measure was developed by Zitzler et al. (2000). "This index is utilized to estimate the maximum 390 
extension covered by the non-dominated solutions in the Pareto front. In a two objective problem, the 391 
Maximum Spread corresponds to the Euclidean distance between the two farther solutions" (47, 48). 392 

     (17) 393 

where B = the number of the non-dominated solutions, K = the total number of objectives. Larger 394 
values of this index indicate better performance. 395 
Spacing396 
Spacing is a measure to determine how well distributed (spaced) the solutions are in the non-dominated 397 
set obtained. It is defined as: 398 

        (18) 399 

where qi = the minimum value of the sum of the absolute difference for every objective function 400 
value between the ith solution and all the D non-dominated solutions found. In Equation (18), 401 

      (19) 402 

The  = mean of all , and is defined as: 403 

         (20) 404 

If the value of this metric is smaller, the solutions will be uniformly spaced (48). 405 
Generational Distance (GD) 406 
Generational distance was proposed by Van Veldhuizen and Lamont (1998). It is a method to evaluate 407 
the Euclidean distance between each element in the non-dominated solution found until now and its 408 
nearest element in the Pareto-optimal set. It is defined as: 409 

         (23) 410 

where  = the number of members in the set of non-dominated solutions found to date, di = the 411 
Euclidean distance between non-dominated solutions (measured in the objective function space).  412 

All members found are in the Pareto-optimal set if the GD value is equal to zero (49). 413 
Diversity (D)  414 
The diversity metric was developed by Deb et al. (2002). It is used to estimate the extent of spread 415 
among the found solutions. It is defined as follows (49):416 
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        (24) 417 

Where             (25) 418 

df, dl are the Euclidean distances between the extreme solutions and the boundary, non-419 
dominated solutions (first and final solutions of the found non-dominated set),  = the average of all 420 
distances di, i = 1, 2, ..., (D - 1), assuming that there are D solutions on the best non-dominated front. 421 

RESULTS 422 
The discrete barebones multi objective particle swarm optimization (DBB-MOPSO) is applied to find 423 
the optimal maintenance action plan for five pavement sections over 10 years. For algorithm 424 
implementation, the program code in MATLAB is generated. After 100 generations, for the DBB-425 
MOPSO algorithm, 10 non-dominated solutions from 100 solutions are found as shown in Figure 5. The 426 
efficiency of the proposed algorithm is evaluated, as mentioned earlier, by comparing it against the 427 
existing algorithm called the discrete multi-objective particle swarm (DMPOSO) algorithm developed 428 
by Izakian et al. (2010). After 100 generations, for the DMOPSO algorithm, 17 non-dominated solutions 429 
were from 100 solutions found as shown in Figure 6. The DMOPSO needs the lowest execution time 430 
about 27 hours to achieve results compared to the novel algorithm about 34.5 hours but the novel 431 
algorithm converges to optimal solutions with lower generations.  432 

To simulate the agency preferences, the compromise solution is applied for both algorithms as 433 
shown in Figures 5 and 6. The solution having the maximum membership value ( ) in the archive is 434 
selected as the optimal pavement maintenance in both algorithms. Table 2 shows the optimal 435 
maintenance programming found by both the algorithms. It can be seen that the overall value of 436 
pavement conditions found by the DBB-MOPSO algorithm is slightly better than the overall value of 437 
pavement conditions found by DMOPSO, but the cost value of DMOPSO is about 5% better than the 438 
proposed algorithm. In the optimal maintenance plan found by DBB-MOPSO algorithm as shown in 439 
Table 3, there is heavier investment in the pavement maintenance of all sections at the beginning of the 440 
plan period compared with the end of the 10 years. However, in optimal maintenance program found by 441 
DMOPSO algorithm as shown in Table 4, there is heavy maintenance investment for most sections in 442 
the middle years.    443 

444 
FIGURE 5 Pareto solutions of the DBB-MPSO at 100 generations 445 

TRB 2016 Annual Meeting Paper revised from original submittal.



Mahmood, Mathavan, Rahman                                                                                                                          13 

446 
FIGURE 6 Non-dominated solutions of the DMOPSO at 100 generations 447 

TABLE 2 Optimal Maintenance Plans Found by Both Algorithms 448 
Algorithm Cost Condition μ
DBB-MOPSO 399.25 5.87E+10 0.121 
DMOPSO 379.22 5.86E+10 0.077 

449 

TABLE 3 The Pavement Maintenance Programming Based on The DBB-MOPSO Algorithm 450 

 451 

TABLE 4 The Pavement Maintenance Programming Based on The DMOPSO Algorithm 452 

453 
To exam the performance of the novel algorithm, the performance metrics with respect to 454 

spacing, maximum spread, generational distance (GD), and diversity are estimated. Table 5 shows the 455 
results reported in terms of the mean and standard deviation of the performance metrics for both 456 
algorithms. There is no significant difference in the mean and variance for the DBB-MOPSO and the 457 
DMOPSO algorithms at 100 iterations.  458 

TABLE 5 The Mean and Variance of Different Performance Metrics Over 100 Iterations 459 

Algorithms Performance Metrics 
Spacing Maximum Spread Generational distance  Diversity 

DBB-MOPSO Mean 2.18E+08 7.85E+08 1.07E+07 0.971 
SD 4.86E+07 1.87E+08 1.01E+07 0.0131 

DMOPSO Mean 2.31E+08 8.41E+08 1.02E+07 0.973 
SD 3.97E+07 1.33E+08 6.32E+06 0.0112 

For verifying the non-dominated solutions spread in the entire region of the true front, the 460 
diversity measure is estimated. Figure 7 shows the proposed algorithm has lower diversity at 100 461 
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generations compared to the DMOPSO algorithm hence the latter performs better. However, when the 462 
mean value of diversity over the 100 iterations is considered, as shown in Table 5, the difference is very 463 
small. The larger standard deviation value for the proposed algorithm means that the diversity of 464 
solutions is not as steady as for DMOPSO. As shown in Figure 8, DBB-MOPSO has slightly smaller 465 
value of generational distance GD compared to DMOPSO at the 100th iteration. Therefore, the 466 
convergence speed of the DBB-MOPSO to the Pareto front is slightly better than the DMOPSO at this 467 
stage. But the average GD over the iterations is very similar (Table 5). According to Figure 9, the 468 
maximum spread of the DBB-MOPSO algorithm is approximately in the same range of DMOPSO, but 469 
the mean value of this performance metric over the whole iteration range is definitely smaller than that 470 
of DMOPSO. Figure 10 shows that DBB-MOPSO has slightly smaller values of spacing. The smaller 471 
values means the solutions of DBB-MOPSO are more uniformly spaced compared to the DMOPSO 472 
algorithm and this is an advantage of the proposed algorithm. 473 

474 
FIGURE 7 The diversity metric of the both algorithms 475 

476 
FIGURE 8 The generational distance metric of the both algorithms 477 

478 
FIGURE 9 The maximum spread metric of the both algorithms 479 
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480 
FIGURE 10 The spacing metric of the both algorithms 481 

CONCLUSION 482 
A novel particle swarm algorithm is developed for a discrete multi-objective problem. This novel 483 
algorithm, being based on the bare-bones method, is parameter free presenting a clear advantage over 484 
the algorithms where the user has to do parameter selection. The proposed algorithm is applied to find 485 
optimal rehabilitation scheduling considering the two objectives the minimization of the total pavement 486 
rehabilitation cost and the minimization of the sum of all residual PCI values. 487 

Although the results showed that the cost obtained via the proposed algorithm is slightly higher 488 
than that of the DMOPSO algorithm, the overall value of pavement performance found by DBB-489 
MOPSO is higher than that obtained by DMOPSO, another existing discrete optimization algorithm. 490 
The optimal maintenance plan found by the DMOPSO algorithm is comparatively similar to that found 491 
by DBB-MOPSO, but the results showed that the novel algorithm can converge to Pareto front with 492 
little iterations, lower diversity, smaller GD, and higher maximum spread compared to the DMOPSO 493 
algorithm.  494 

In future, the novel algorithm will be put through more validation by benchmarking its 495 
performance with different algorithms from the particle swarm optimization and genetic algorithm 496 
domains. Moreover, in this paper, the algorithm is applied to an unconstrained pavement maintenance 497 
decision optimization problem. In the future, it will also be tested on a constrained problem of pavement 498 
maintenance programming. This algorithm was applied to a small test case for validation. Large 499 
networks will be tested in future.   500 
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