Tenser Product of Representation for the Group $\mathbf{C}_{\mathbf{n}}$

Suha Talib Abdul Rahman, Niran Sabah Jasim, Ahmed Issa Abdul Naby
Department of Mathematics, College of Education for pure Science/Ibn-Al-Haitham, University of Baghdad

Abstract

The main objective of this paper is to compute the tenser product of representation for the group C_{n}. Also algorithms designed and implemented in the construction of the main program designated for the determination of the tenser product of representation for the group C_{n} including a flow-diagram of the main program. Some algorithms are followed by simple examples for illustration. Key Words: representation for the group, degree of the representation, character of representation, tenser product.

Introduction

The group of invertible $n \times n$ matrices over a field F denoted by $G L(n, F)$. The matrix representation of a group G is a homomorphism $\mathrm{T}: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{n}, \mathrm{F})$, the degree of this matrix is the degree of that representation [1], the trace for this matrix representation is the character of this representation, [2].

In this paper we consider the group $C_{n}=\left\langle x: x^{n}=1\right\rangle$. In section one the definition of tenser product introduced and apply that the f or representation of this groups by example, the main proposition introduce for the tenser product which we needed it in section two which include the algorithms designed and implemented in the construction of the main program designated for the determination of the tenser product of representation for the group C_{n}.

§. 1 Preliminaries

In this section, we recall definition proposition and remark which we needed in the next section.

Definition 1.1: [3]

Let $A \in M_{n}(\mathbb{C}), B \in M_{m}(\mathbb{C})$, we defined a matrix $A \otimes B \in M_{m}(\mathbb{C})$, put

$$
A \otimes B=\left[\begin{array}{cccc}
\alpha_{11} B & \alpha_{12} B & \ldots & \alpha_{1 n} B \\
\alpha_{21} B & \alpha_{22} B & \ldots & \alpha_{2 n} B \\
\vdots & \vdots & & \vdots \\
\alpha_{n 1} B & \alpha_{n 2} B & \ldots & \alpha_{n n} B
\end{array}\right]_{n m \times n m}, A=\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{2 n} \\
\vdots & \vdots & & \vdots \\
\alpha_{n 1} & \alpha_{n 2} & \ldots & \alpha_{n n}
\end{array}\right]_{n \times n}, B=\left[\begin{array}{cccc}
\beta_{11} & \beta_{12} & \ldots & \beta_{1 m} \\
\beta_{21} & \beta_{22} & \ldots & \beta_{2 m} \\
\vdots & \vdots & & \vdots \\
\beta_{m 1} & \beta_{m 2} & \ldots & \beta_{m m}
\end{array}\right]_{m \times m}
$$

Thus

$$
\begin{aligned}
& A \otimes B=\left[\begin{array}{cccc}
\delta_{11} & \delta_{12} & \ldots & \delta_{1 \mathrm{k}} \\
\delta_{21} & \delta_{22} & \ldots & \delta_{2 \mathrm{k}} \\
\vdots & \vdots & & \vdots \\
\delta_{\mathrm{k} 1} & \delta_{\mathrm{k} 2} & \ldots & \delta_{\mathrm{kk}}
\end{array}\right]_{\mathrm{nm} \times \mathrm{nm}} \\
& \text { Where } \delta_{11}=\left[\begin{array}{cccc}
\alpha_{11} \beta_{11} & \alpha_{11} \beta_{12} & \ldots & \alpha_{11} \beta_{1 \mathrm{~m}} \\
\alpha_{11} \beta_{21} & \alpha_{11} \beta_{22} & \ldots & \alpha_{11} \beta_{2 \mathrm{~m}} \\
\vdots & \vdots & & \vdots \\
\alpha_{11} \beta_{\mathrm{m} 1} & \alpha_{11} \beta_{\mathrm{m} 2} & \ldots & \alpha_{11} \beta_{\mathrm{mm}}
\end{array}\right]_{\mathrm{m} \times \mathrm{m}} \quad, \ldots, \delta_{1 \mathrm{k}}=\left[\begin{array}{cccc}
\alpha_{1 \mathrm{n}} \beta_{11} & \alpha_{1 \mathrm{n}} \beta_{12} & \ldots & \alpha_{1 \mathrm{n}} \beta_{1 \mathrm{~m}} \\
\alpha_{1 \mathrm{n}} \beta_{21} & \alpha_{1 \mathrm{n}} \beta_{22} & \ldots & \alpha_{1 \mathrm{n}} \beta_{2 \mathrm{~m}} \\
\vdots & \vdots & \vdots \\
\alpha_{1 \mathrm{n}} \beta_{\mathrm{m} 1} & \alpha_{1 \mathrm{n}} \beta_{\mathrm{m} 2} & \ldots & \alpha_{1 \mathrm{n}} \beta_{\mathrm{mm}}
\end{array}\right]_{\mathrm{m} \times \mathrm{m}}
\end{aligned}, \ldots
$$

$\delta_{\mathrm{kk}}=\left[\begin{array}{cccc}\alpha_{\mathrm{nn}} \beta_{11} & \alpha_{\mathrm{nn}} \beta_{12} & \ldots & \alpha_{\mathrm{nn}} \beta_{1 \mathrm{~m}} \\ \alpha_{\mathrm{nn}} \beta_{21} & \alpha_{\mathrm{nn}} \beta_{22} & \ldots & \alpha_{\mathrm{nn}} \beta_{2 \mathrm{~m}} \\ \vdots & \vdots & & \vdots \\ \alpha_{\mathrm{nn}} \beta_{\mathrm{m} 1} & \alpha_{\mathrm{nn}} \beta_{\mathrm{m} 2} & \ldots & \alpha_{\mathrm{nn}} \beta_{\mathrm{mm}}\end{array}\right]_{\mathrm{m} \times \mathrm{m}} \quad$ and $\mathrm{k}=\mathrm{nm}$.

Example 1.2 :

$A=\left[\begin{array}{cc}1 & -3 \\ 2 & 0\end{array}\right]_{2 \times 2}, \quad B=\left[\begin{array}{ccc}1 & -2 & -1 \\ 3 & 1 & 2 \\ 6 & 4 & 5\end{array}\right]_{3 \times 3}$
$A \otimes B=\left[\begin{array}{ccccccc}1 & -2 & -1 & \vdots & -3 & 6 & 3 \\ 3 & 1 & 2 & \vdots & -9 & -3 & -6 \\ 6 & 4 & 5 & \vdots & -18 & -12 & -15 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots \\ 2 & -4 & -2 & \vdots & 0 & 0 & 0 \\ 6 & 2 & 4 & \vdots & 0 & 0 & 0 \\ 12 & 8 & 10 & \vdots & 0 & 0 & 0\end{array}\right]$

Proposition 1.3 : [4]

Let $A, A^{\prime}, B, B^{\prime} \in M_{m}(K)$, then

(1) $\left(\mathrm{A}+\mathrm{A}^{\prime}\right) \otimes \mathrm{B}=(\mathrm{A} \otimes \mathrm{B})+\left(\mathrm{A}^{\prime} \otimes \mathrm{B}\right)$
(2) $(\mathrm{A} \otimes \mathrm{B})\left(\mathrm{A}^{\prime} \otimes \mathrm{B}^{\prime}\right)=\mathrm{AA}^{\prime} \otimes \mathrm{BB}^{\prime}$

Remark 1.4:

Let S and T be two representations of degree n and m of the group C_{n}, for each $x \in C_{n}$ define $U(x)=S(x) \otimes T(x)$. Then U is representation of degree $n m$, we write $U=S \otimes T$.

Now, let $\chi_{\mathrm{S}}, \chi_{\mathrm{T}}$ be two character of S and T respectively then $\chi_{\mathrm{U}}=\chi_{\mathrm{S}} \chi_{\mathrm{T}}$.

§. 2 The Algorithms

This section contains a collection of the computer ready Fortran algorithms for many standard methods of number theory installed in our main program.

Algorithm (1): The Number of Degree of Representation for the Group C_{n}

Input: n (the degree of the group C_{n})
Step 1: To evaluate m where $T: \mathrm{C}_{\mathrm{n}} \longrightarrow \mathrm{M}(\mathrm{K})$,

$$
\mathrm{M}_{\mathrm{m}}(\mathrm{~K})=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 \mathrm{~m}} \\
a_{21} & a_{22} & \ldots & a_{2 \mathrm{~m}} \\
\vdots & \vdots & & \vdots \\
a_{\mathrm{m} 1} & a_{\mathrm{m} 2} & \ldots & a_{\mathrm{mm}}
\end{array}\right]_{\mathrm{m} \times \mathrm{m}}
$$

Step 2: Do $\mathrm{I}=1$ to m
Do $\mathrm{J}=1$ to m
Print IA(I,J)
End J-loop
End I-loop
Output: The number of degree of representation for groups C_{n} is m .

Example 2.1 :

The representation $T: C_{4} \longrightarrow M_{3}(\mathbb{R})$, the degree of this representation for the group C_{4} is 3 .
$C_{4}=\left\langle x: x^{4}=1\right\rangle=\left\{1, x, x^{2}, x^{3}\right\}$

$$
T(1)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad T(x)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \quad T\left(x^{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right], \quad T\left(x^{3}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

Algorithm (2):The Tenser Product of Two Representations for the Group $\mathbf{C}_{\mathbf{n}}$

Input: n (the degree of the group C_{n})
Step 1: Do C is the matrix of dimension $m n \times m n$
$\mathrm{C}(0,0)=0$
Do $I=1$ to n
Do $J=1$ to n
$\mathrm{T}(\mathrm{x})=\mathrm{A}(\mathrm{I}, \mathrm{J})$
End J-loop
End I-loop
Step 2: Do I = 1 to m
Do $\mathrm{J}=1$ to m
Set $T(x)=B(I, J)$
End J-loop
End I-loop
Step 3: call algorithm 1
Step 4: To evaluate C where $\mathrm{C}(\mathrm{I}, \mathrm{J})=\mathrm{A}(\mathrm{I}, \mathrm{J}) * \mathrm{~B}$
Step 5: Set $\mathrm{C}(1,1)=\mathrm{A}(1,1) * B$

$$
\begin{aligned}
& \mathrm{C}(1,2)=\mathrm{A}(1,2) * \mathrm{~B} \\
& \vdots \\
& \mathrm{C}(\mathrm{I}, \mathrm{n})=\mathrm{A}(\mathrm{I}, \mathrm{n}) * \mathrm{~B}
\end{aligned}
$$

$$
\text { where } B=\left[\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 m} \\
B_{21} & B_{22} & \ldots & B_{2 m} \\
\vdots & \vdots & & \vdots \\
B_{m 1} & B_{m 2} & \ldots & B_{m m}
\end{array}\right]_{\mathrm{m} \times \mathrm{m}}
$$

Step 6: Set $C=\left[\begin{array}{cccc}C_{11} & C_{12} & \ldots & C_{1 m m} \\ C_{21} & C_{22} & \ldots & C_{2 n m} \\ \vdots & \vdots & & \vdots \\ C_{n m 1} & C_{n m 2} & \ldots & C_{n m m n}\end{array}\right]_{n m \times n m}$
Output: The tenser product of two representations of C_{n} is $\mathrm{C}(\mathrm{mn}, \mathrm{mn})$

Example 2.2 :

The representation $T: C_{3} \longrightarrow M_{3}(\mathbb{R})$, the degree of this representation for the group C_{3} is 3 .
$\mathrm{C}_{3}=\left\langle\mathrm{x}: \mathrm{x}^{3}=1\right\rangle=\left\{1, \mathrm{x}, \mathrm{x}^{2}\right\}$

$$
\mathrm{T}(1)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{3 \times 3} \quad, \quad \mathrm{~T}(\mathrm{x})=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]_{3 \times 3} \quad, \quad \mathrm{~T}\left(\mathrm{x}^{2}\right)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]_{3 \times 3}
$$

$\mathrm{T}(1) \otimes \mathrm{T}(\mathrm{x})=\left[\begin{array}{llllllllll}0 & 0 & 1 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 1 & 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 0 & 1 & \vdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]_{9 \times 9}$
, $\mathrm{T}(1) \otimes \mathrm{T}\left(\mathrm{x}^{2}\right)=\left[\begin{array}{lllllllllll}0 & 1 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 & 0 \\ 0 & 0 & 1 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 & 0 \\ 1 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 0 & 1 & 0 & \vdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 1 & \vdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \vdots & 1 & 0 & 0 & \vdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 & 1 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 1 & 0 & 0\end{array}\right]_{9 \times 9}$
$\mathrm{T}(\mathrm{x}) \otimes \mathrm{T}(1)=\left[\begin{array}{ccc:ccc:ccc}0 & 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 1 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 \\ 0 & 0 & 1 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 1 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & \vdots & 1 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 1 & 0 & 0 & 0\end{array}\right]_{9 \times 9}$
, $\mathrm{T}(\mathrm{x}) \otimes \mathrm{T}\left(\mathrm{x}^{2}\right)=\left[\begin{array}{ccc:ccccccc}0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 1 \\ 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 \\ 0 & 1 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 1 & 0 \\ \hline \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 1 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 1 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 \\ 1 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 & 0 \\ 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 0 & 1 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 1 & \vdots & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 & 0\end{array}\right]_{9 \times 9}$
$\mathrm{T}\left(\mathrm{x}^{2}\right) \otimes \mathrm{T}(1)=\left[\begin{array}{ccc:ccc:ccc}0 & 0 & 0 & \vdots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 1 & 0 & \vdots & 0 \\ 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 1 & \vdots & 0 \\ 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 1 \\ 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 1 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 0 & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & 0 & 0 & \vdots & 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 & \vdots & 0 & 0 & \vdots & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]_{9 \times 9}$
, $\mathrm{T}\left(\mathrm{x}^{2}\right) \otimes \mathrm{T}(\mathrm{x})=\left[\begin{array}{cccccccccc}0 & 0 & 0 & \vdots & 0 & 0 & 1 & \vdots & 0 & 0 \\ 0 \\ 0 & 0 & 0 & \vdots & 1 & 0 & 0 & \vdots & 0 & 0 \\ 0 \\ 0 & 0 & 0 & \vdots & 0 & 1 & 0 & \vdots & 0 & 0 \\ 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \vdots & 0 & 0 & 0 & 1 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & \vdots & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]_{9 \times 9}$

Algorithm (3): The Tenser Product of Three Representations for the Group $\mathbf{C}_{\mathbf{n}}$

Input: n (the degree of the group C_{n})
Step 1: Call algorithm 2
Step 2: Do I = 1 to k
Do $\mathrm{J}=1$ to k
D(I,J)
End J-loop
End I-loop

Step 3: To evaluate R where $\mathrm{R}(\mathrm{I}, \mathrm{J})=\mathrm{C}(\mathrm{I}, \mathrm{J}) * \mathrm{D}$
Step 4: Set

$$
\begin{aligned}
& \mathrm{R}(1,1)=\mathrm{C}(1,1) * \mathrm{D} \\
& \mathrm{R}(1,2)=\mathrm{C}(1,2) * \mathrm{D}
\end{aligned}
$$

Step 5: Set

$$
\mathrm{R}=\left[\begin{array}{cccc}
\mathrm{R}_{11} & \mathrm{R}_{12} & \ldots & \mathrm{R}_{1 \mathrm{~s}} \\
\mathrm{R}_{21} & \mathrm{R}_{22} & \ldots & \mathrm{R}_{2 \mathrm{~s}} \\
\vdots & \vdots & & \vdots \\
\mathrm{R}_{\mathrm{s} 1} & \mathrm{R}_{\mathrm{s} 2} & \ldots & \mathrm{R}_{\mathrm{ss}}
\end{array}\right]_{\mathrm{s} \times \mathrm{s}} \text { where } \mathrm{s}=\mathrm{nm} \mathrm{\times k}
$$

Step 6: Do $\mathrm{I}=1$ to s
Do $\mathrm{J}=1$ to s
Print R(I,J)
End J-loop
End I-loop
Output: The tenser product of three representations of C_{n} is $R(s, s)$

Example 2.3 :

The representation $T: C_{4} \longrightarrow M_{2}(\mathbb{R})$, the degree of this representation for the group C_{4} is 2 .

$$
C_{4}=\left\langle x: x^{4}=1\right\rangle=\left\{1, x, x^{2}, x^{3}\right\}
$$

$$
\mathrm{T}(1)=\mathrm{T}\left(\mathrm{x}^{2}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \mathrm{T}(\mathrm{x})=\mathrm{T}\left(\mathrm{x}^{3}\right)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Now present some tenser product for these representations of the group C_{4}
$\mathrm{T}(1) \otimes \mathrm{T}(\mathrm{x}) \otimes \mathrm{T}(1)=\left[\begin{array}{ccccc:ccccc}0 & 0 & \vdots & 1 & 0 & 1 & 0 & 0 & \vdots & 0 \\ 0 & 0 \\ 0 & 0 & \vdots & 0 & 1 & 1 & 0 & 0 & \vdots & 0\end{array}\right]$

Algorithm (4): The Character of Representations for the Group $\mathbf{C}_{\mathbf{n}}$
Input: n (the degree of the group C_{n})
Step 1: $\chi(0)=0$
Step 2: Do I = 1 to m χ_{I}
End I-loop
Step 3: Do $\mathrm{J}=1$ to n
χ_{J}
End J-loop
Step 4: Do $I=1$ to m
Do $\mathrm{J}=1$ to n
$\chi_{(\mathrm{k})}=\chi_{\mathrm{I}} * \chi_{\mathrm{J}}$
End J-loop
End I-loop
Print χ_{k}
Step 5: Set $\chi_{\mathrm{k}}=\left[\begin{array}{c}\chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \vdots \\ \chi_{\mathrm{s}}\end{array}\right], \mathrm{s}=(\mathrm{nm}) / 2$

Step 6: Call algorithm 3
Step 7: Call algorithm 4
Output: The character of representation for C_{n} is $\chi(\mathrm{k}), \mathrm{k}=1$ to s .

Example 2.4 :

Consider the character table of C_{3}, where $\omega=e^{\frac{2 \pi i}{3}}$

Class	1	x	x^{2}
Order	1	1	1
χ_{1}	1	1	1
χ_{2}	1	ω	ω^{2}
χ_{3}	1	ω^{2}	ω

In 1
$\chi_{1} \otimes \chi_{2}=(1)(1)=1, \chi_{1} \otimes \chi_{3}=(1)(1)=1, \quad \chi_{2} \otimes \chi_{3}=(1)(1)=1$
In \mathbf{x}
$\chi_{1} \otimes \chi_{2}=(1)(\omega)=\omega \quad, \quad \chi_{1} \otimes \chi_{3}=(1)\left(\omega^{2}\right)=\omega^{2} \quad, \quad \chi_{2} \otimes \chi_{3}=(\omega)\left(\omega^{2}\right)=1$
In \mathbf{x}^{2}
$\chi_{1} \otimes \chi_{2}=(1)\left(\omega^{2}\right)=\omega^{2} \quad, \quad \chi_{1} \otimes \chi_{3}=(1)(\omega)=\omega \quad, \quad \chi_{2} \otimes \chi_{3}=\left(\omega^{2}\right)(\omega)=1$
In 1
$\chi_{1} \otimes \chi_{2} \otimes \chi_{3}=(1)(1)(1)=1$
In \mathbf{x}
$\chi_{1} \otimes \chi_{2} \otimes \chi_{3}=(1)(\omega)\left(\omega^{2}\right)=1$
In \mathbf{x}^{2}
$\chi_{1} \otimes \chi_{2} \otimes \chi_{3}=(1)\left(\omega^{2}\right)(\omega)=1$
$\chi=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ \omega \\ \omega^{2} \\ 1 \\ \omega^{2} \\ \omega \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$

The Algorithm of the Main Program:

The Tenser Product of Representations for Group $\mathbf{C}_{\mathbf{n}}$

Input: n (the degree of the group C_{n})
Step 1: Call algorithm 1
Step 2: Call algorithm 2
Step 3: Call algorithm 3
Step 4: Call algorithm
Output: $(T(I), I=1$ to $m)$ To evaluate the tenser product of representation for the group C_{n} End

Flow Diagram of the Main Program

References

[1] C.Curtis and I.Reiner, Representation Theory of Finite Groups and Associative Algebras, John Wiley and Sone, New York, 1962.
[2] I.M.Jsaacs, Characters Theory of Finite Groups, Academic Press, New York, 1976.
[3] M.J.Collins, Representations and Characters of Finite Groups, New York, Published by the Press Syndicate of the University of Cambridge, 1990.
[4] T.H.Majeed, On the Tenser Product of Representations for the Symmetric Groups S_{n}, Journal of College of Education, Al-Mustansiriya University,Vol. 1, pp. 12-26, 2002.

